Chemical Science

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Chem. Sci., 2019, 10, 5849

Correction: Identification of selective protein protein interaction inhibitors using efficient in silico peptide-directed ligand design†

Andrew M. Beekman,*a Marco M. D. Cominetti,a Samuel J. Walpole,a Saurabh Prabhu,a Maria A. O'Connell,a Jesus Anguloa and Mark Searcey*ab

DOI: 10.1039/c9sc90088h

www.rsc.org/chemicalscience

Correction for 'Identification of selective protein–protein interaction inhibitors using efficient *in silico* peptide-directed ligand design' by Andrew M. Beekman *et al.*, *Chem. Sci.*, 2019, DOI: 10.1039/c9sc00059c.

The authors regret that the structures of compounds 2, 3, 10 and 11 are incorrect in the original article. The correct structures are presented in the updated version of Table 1 below.

The original ESI was replaced by a correspondingly revised version on 1st May 2019 to reflect these changes.

[†] Electronic supplementary information (ESI) available: See DOI: 10.1039/c9sc00059c

Table 1 IC_{50} values for inhibition of the binding of FAM-p4 to hDM2 and hDMX of small molecules. A green background indicates the compound was designed for and was selective to the same protein. Yellow indicates the compound is a dual inhibitor. A red background indicates the compound was designed for one protein but was selective for the other protein

	Structure	hDMX FA IC ₅₀ (μΜ) [95% CI]	hDM2 FA IC _{5ο} (μΜ) [95% CI]	Structure	hDMX FA IC ₅₀ (μM) [95% CI]	hDM2 FA IC ₅₀ (μΜ) [95% CI]
2	HO N=N O OH OH	0.013 [0.003, 0.046]	0.24 [0.16, 0.36]	7 N=NHFmoc	>100	2.46 [1.01, 4.70]
3	F N=N HO OH OH	0.019 [0.005, 0.071]	0.10 [0.03, 0.76]	8 HO NaNHO NHFmoc	>100	5.77 [4.00, 8.37]
4	HO N=N S	1.28 [0.64, 2.52]	8.00 [6.12, 20.06]	9 HO N N O OH OH	>100	12.42 [8.61, 21.23]
5	F N=N, N S	1.49 [1.06, 2.10]	>100	10 FACHN OBN OBN OBN OBN	10.97 [8.28, 19.66]	22.44 [17.92, 29.60]
6	F N=NHO O NHFmoc	0.97 [0.79, 1.44]	1.74 [0.89, 3.38]	11 F N=N OBn OBn	1.17 [1.02, 4.20]	>100

 $[^]a$ IC₅₀ values determined by non-linear regression of at least three independent experiments (see ESI, pg 10). Errors are 95% confidence intervals (CI). Fmoc, 9-fluorenylmethylcarbonyl.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.