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A machine learning methodology for reliability
evaluation of complex chemical production
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System reliability evaluation is very important for safe operation and sustainable development of complex
chemical production systems. This paper proposes a hybrid model for the reliability evaluation of
chemical production systems. First, the influential factors in system reliability are categorized into five
aspects: Man, Machine, Material, Management and Environment (4M1E), each of which represents

a component subsystem of a complex chemical production process. Second, the Support Vector

Machine (SVM) algorithm is used to develop machine learning models for the reliability evaluation of
each subsystem, during which Particle Swarm Optimization (PSO) is applied for model parameter
optimization. Third, the Random Forest (RF) algorithm is employed to correlate the reliability of the five
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subsystems with the reliability of the corresponding whole chemical production system. Then, Markov

Chain Residual error Correction (MCRC) is adopted to improve the predictive accuracy of the machine
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1 Introduction

Along with the development of society and modern advanced
technologies, we have developed a tendency to design and
construct industrial manufacturing systems and equipment of
greater sophistication, complexity, capacity and capital cost,
and also chemical processes have become more and more
automated.' There have been many tragic chemical processing
accidents, for example, the BP Texas City refinery explosion and
the explosion at PetroChina’s Jilin chemical plant in 2005.”
Under these circumstances, the desire for higher system reli-
ability and process HSE (Health, Safety, Environment) assess-
ment has been building up on account of their critical roles in
the safe operation and sustainable development of production
systems.** As a result, system reliability assessment has become
one of the vital ingredients in the planning, design, construc-
tion and operational phases of an industrial production
process. Since the 1960s, chemical system reliability has
received extensive attention.’
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learning model. The efficacy of the proposed hybrid model is tested on a case study, and the results
indicate that the proposed model is capable of delivering satisfactory prediction results.

System reliability is an old discipline which has been
extensively studied for more than half a century. It covers
a broad area, including embedded systems,® power supply
systems,” automotive production® and more. Many algorithms
have been proposed for the system reliability evaluation of
different domain problems.® In 1962, Rudd'® applied reliability
theory to the design of chemical processing systems and used
dynamic programming as a tool in achieving the optimal design
for series processing systems that operate in the presence of
frequent failures of key processes. In 1982, Tillman et al™
studied the Bayesian method and its availability by analyzing
the assumptions and applicability of classical statistical
methods and Bayesian methods in reliability analysis and
evaluation. Nowadays, new advances in machine learning
algorithms and computing power have provided opportunities
for the development of more effective and efficient system
reliability evaluation approaches.

Nieto et al.** developed a hybrid model for the reliability
evaluation of aircraft engines, by combining Support Vector
Machines (SVMs) for model regression and the Particle Swarm
Optimization (PSO) technique for model parameter optimiza-
tion. Zhao et al.™ reported a dynamic particle filter-support
vector regression (PF-SVR) approach for the reliability predic-
tion of mechanical engines. They applied PF for dynamic esti-
mation of the SVR model parameters, which facilitated the
adaptability of the SVR model to the dynamic data pattern.
Recently, this method was extended by the same group to
address the online reliability prediction of systems under multi-
state varying operation conditions.'* Recently, He et al.** used
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a ladder network for evaluation of the remaining useful life of
centrifugal pumps to improve system reliability. The reliability
analysis of complex engineering problems is usually computa-
tionally expensive. Thus, it is important to reduce the compu-
tational cost while ensuring predictive accuracy. Xiao et al.*®
used a back-propagation neural network to construct surrogate
models for the reliability analysis of structural systems, in order
to alleviate the computational burden and improve efficiency.
Similarly, Menz et al.'” developed a method which adaptively
couples kriging based active learning and reduced basis
modeling for reliability analysis. Wang and Shafieezadeh'® used
adaptive kriging to establish a high-fidelity reliability updating
model for the reliability assessment of structural systems,
which was reported to be effective in computational efficiency
enhancement and achieving high accuracy.

Although many algorithms have been proposed for reliability
evaluation, usually, each one was specially developed for
a specific type of system and is applicable in specific evaluation
scenarios. In order to assess the reliability of complex chemical
production systems, Liu et al.® established a fault-oriented
reliability model for the safety, environmental and economic
assessment of chemical systems. Later on, Miao et al.*® studied
the system as a man-machine-environment system and pre-
sented a blurry evaluation mechanism to analyze the reliability,
based on fuzzy theory, reliability theory, human error, envi-
ronmental impact and machinery equipment failure theory.
Additionally, Liu et al.** included factors from the material and
management aspects of dynamic chemical production systems
in the reliability evaluation, and developed a hybrid algorithm
that integrates grey relational analysis, a genetic algorithm,
a back-propagation neural network and Markov chain residual
correction.

Different from other engineering systems, chemical
production processes usually possess some unique character-
istics, such as nonlinearity, high complexity, continuity,
dynamics and time delay.”> On the one hand, the chemical
production process itself can usually be regarded as a complex
topology made up of unit operations and connection pipelines,
which cannot be reduced to a series-parallel system. Hence, the
system can be recognised as a complex system.” On the other
hand, the system reliability is affected by factors from a number
of related subsystems, including the comprehensive capacity of
operation engineers (man), the quality and characteristics of
raw materials (material), the state of the production machines
(machine), the supervision framework and organizational
measures (management) and the overall production environ-
ment (environment).”* The reliability statuses of these subsys-
tems together determine the reliability of the overall production
system. In practice, some of the factors from the subsystems are
usually strongly coupled and interfere with the evaluation
procedure. This poses difficulties for the reliability evaluation of
chemical production systems. It is difficult for modelers to
manually decide the most relevant influential factors and
exclude those that are interfering. Also, the lack of good quality
industrial data is another obstacle for accurate reliability
evaluations.*
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In this paper, a hybrid model is proposed for the reliability
evaluation of chemical production systems. This work is
a follow up of Liu’s research,* striving to develop an efficient
reliability evaluation framework with high accuracy. The
proposed evaluation approach consists of four steps. First, grey
relational analysis (GRA) is used to evaluate the degree of
correlation between the influencing factors of the five aspects
(4M1E) and thus to exclude factors of low impact. Then,
a hybrid PSO optimized SVM (PSO-SVM) model is applied for
reliability evaluation of the five subsystems (4M1E). Third, the
Random Forest (RF) algorithm is employed to correlate the
reliability of the coupled 4M1E subsystems with the reliability of
the overall system. Finally, a Markov chain is used for residual
correction.

The rest of this paper is arranged as follows. Section 2
introduces the background knowledge for the relevant algo-
rithms. Section 3 presents the proposed hybrid model (GRA-
PSO-SVM-RF-MCRC) based on the perspective of system engi-
neering. Section 4 applies the proposed methodology to a case
study to validate its effectiveness. The results and discussion are
given in Section 5, followed by a summary and conclusion
section.

2 Background

This section gives a brief introduction to the algorithms
employed in this study.

2.1 Grey relational analysis (GRA)

Grey Relational Analysis (GRA) is a part of grey system theory,
which was developed by Deng® to cope with the situation when
system information is incomplete and/or unknown. It has been
proved to be effective in solving problems with complicated
interrelationships between multiple factors and variables.”®
Classical GRA is based on time series data and/or cross-
sectional data. The main procedure is as follows. The first
step is called grey relational generating. Analogous to
a normalization process, it processes all performance values of
every considered aspect into a comparability sequence, in order
to eliminate inaccuracy of results caused by the means of
measurement and the difference in performance values’ ranges.
Based on the result of the first step, the second step defines
a reference sequence (Xo(k), k = 1, 2, ..., n), by comparing the
rescaled performance values. The third step calculates the grey
relational coefficient between all the comparability sequences
x: =x(klk=1,2,..,ni=1,2,.. m)and the reference
sequence using eqn (1), while the last step computes the grey
relational grade r; between the reference sequence and
comparability sequence i. The closer the value of r; is to 1, the
higher the degree of correlation.

miinmkin}Xo(k) - X;(k)| + pmfixm]?x|X0(k) — Xi(K)|
| Xo(k) — Xi(k)| + Pm?XHl/?X|Xo(k) — X,(k)|

5i(k) =

ri = %igz(k) (2)
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where p is the resolution coefficient, which is generally 0.5. For
a more detailed description of the implementation of GRA, the
readers are referred to Kuo et al.””

2.2 Support vector machine (SVM)

SVM is a supervised learning method used for classification and
regression. It was introduced by Vapnik® and is successfully
used for predicting values from very different fields. It has good
generalization ability for regression and is suitable for finite
sample regression problems. For a given training set T = (x;, y;),
i =1, .., [ the basic idea of the support vector regression
machine is to select a suitable kernel function ¢, to map the
input variables (x;) in low-dimensional space into higher-
dimensional space, and represent the nonlinear problem in
a linear form.>>*°

I
f(xi) = Z wip(x;) +b 3)

where o is the weight vector, and b is a constant, which are
obtained by optimizing the following problem.

. - | R . -
Min-R(w, £7,€7) = glloll” + €37 +€)

st. f(x)—yi=e+&,i=1,..,n (4)
yvi—f(x)=e+Et i=1,...,n
EH e =0, i=1,...n

where &' and ¢ are slack variables, and C is the penalty
parameter for errors. For a more detailed description of SVM,
the readers are referred to Wang et al.**

2.3 Particle swam optimization (PSO)

Particle Swam Optimization (PSO) was first proposed by Ken-
nedy and Eberhart.®* It is proved to be effective for integer
nonlinear optimization problems, continuous nonlinear opti-
mization problems and combined optimization problems.****
Inspired by the predation behavior of birds, PSO realizes the
search for optimal solutions in complex space through coop-
eration and competition among individuals.*® Each particle i,
namely every individual of the swarm, remembers the best
solution found by itself (P"?) and by the whole swarm (P&'°"). A
particle moves along the search space at velocity V;, and its
position is denoted by P;. The state of a particle is represented as
follows.

Vid D = Vil + en(PE — P + caro(PE° — P (5)
PoetD = Py 4 7, D ©)

where k denotes the iteration number, d represents the search
direction, w is the inertial weight, r; and r, are random numbers
with uniform distribution in the range of 0 to 1, and ¢; and ¢,
are the cognition and social parameters respectively. The PSO
algorithm is well suited to handling nonlinear, nonconvex
design spaces with discontinuities. It has the advantage of fast
convergence and is robust.

20376 | RSC Adv, 2020, 10, 20374-20384

View Article Online

Paper

2.4 Random forest algorithm (RF)

The RF algorithm is a supervised data-mining technique
designed to produce accurate predictions without overfitting
the data.*”*® It is an ensemble of decision trees and uses both
bootstrap aggregation (bagging) and random variable selection
for tree building. During training, RF first creates a collection of
regression trees, trains each tree on a bootstrapped sample of
the original training data, and randomly selects potential
predictors to determine the best split at each tree node. The
bootstrapped sample for each tree is obtained by drawing
a sample with replacement from the original training data. It
has the same number of individuals as the original training
data, but some individuals are repeated several times, while
some others are left out (also called out-of-bag). The left-out
individuals are used for estimation of the prediction error.
For regression, the prediction output produced by each tree in
the “forest” is summarized and processed by an averaging
method.

2.5 Markov chain residual correction (MCRC)

The core idea of the Markov method is to decide the state
transferring probability matrix.*>*° The transition probability of
state E; to state E; after k iterations is determined as follows.

my®

3
Pij<): i

(7)
where M; indicates the total number of states, and m,'j(") is the
number of times state E; is transferred to state E;. Then the n x
m transfer matrix P* is expressed as follows.

Py Py PR P,
ph) — P21(k) Pzz(k) st(k) PZn(k) (8)
Pml(k> Pm2<k) Pm3(k) Pmn )

The state transition probability matrix is used to correct the
original data by the Markov chain prediction model.

X+ = X°P* (9)

where X* is the probability transition matrix at time k, and X° is
the probability vector of the initial state. The prediction results
are corrected according to the following formula.

Fg

le_q (10)

where F; is the prediction value, and g is the boundary value of
the original state interval.

3 Construction of the proposed GRA-
PSO-SVM-RF-MCRC hybrid model for
system reliability evaluation

In this section, the proposed hybrid chemical system reliability
evaluation model is presented. The objective of the model is to
obtain an accurate prediction for the reliability of a given

This journal is © The Royal Society of Chemistry 2020
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chemical production system, by evaluating a collection of
factors that impact different aspects of the system. Factors
influencing the system reliability are collected according to the
following five perspectives: man, machine, material, manage-
ment and environment (4M1E).

3.1 4MIE aspects of chemical production systems

The reliability of industry production systems, especially
chemical production systems, is affected by a collection of
factors, covering the quality of raw materials (M) used, the state
of the production machinery and instruments on-site (M), the
comprehensive capacity of employees (Man, M), the supervision
framework and organizational measures (M), and the overall
production environment (E). One can conclude that the impact
of the influential factors on the system reliability is highly
nonlinear and mutually interfering, since each item listed above
again contains a set of more detailed indicators and their
influences on the system do not exist independently but rather
are coupled with each other. Not to mention that the indicators
are very likely to be measured by different means and therefore
are of different dimensions. Owing to these factors, it is easy for
prediction models to be stuck with a high level of inaccuracy
and slow convergence. To tackle this, the influential factors are
categorized into five perspectives: man, machine, material,
management, and environment, in short 4M1E.

Firstly, man factors represent the comprehensive capacity of
the system participants. The participants include decision
makers, organizers, supervisors and direct operators. Examples
of man factors are the direct operators’ technical ability, health
condition, safety awareness, adaptability and manual operation
capability, the supervisors’ and the inspectors’ understanding
and mastery of the safety standards, etc. Secondly, machine, as
an indispensable constituent of industrial production systems,
affects the system reliability directly. Factors such as whether
the equipment is in good condition for disaster prevention,
whether the performance is stable, whether the machine is
convenient and safe to operate, etc., will affect the reliability of
the system. Thirdly, material refers to the hazardous, toxic,
explosive and corrosive nature of the materials used in
production. Fourthly, management mainly denotes the regula-
tions that the organization enforces to regulate the daily oper-
ation of industrial production systems. Finally, environment
defines the engineering and technical environment, such as the
level of regional fire resistance, readily accessible safety facili-
ties, level of noise, concentration of dust, and so on. The choice
of specific indicators depends on the characteristics of the
specific case at hand.

3.2 GRA-PSO-SVM-RF-MCRC hybrid model for system
reliability prediction

The proposed approach realizes chemical system reliability
evaluation in four steps. First, GRA is applied to evaluate the
impact of each factor in system reliability in order to exclude
those of low-impact. It is a decisive step towards ensuring model
accuracy control and reducing the computational cost of
machine learning methods when faced with complex industrial
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problems. Second, a hybrid PSO optimized SVM (PSO-SVM)
model is used to evaluate the reliability of the five subsystems
separately. Third, RF is used to correlate the reliability of the
subsystems with that of the whole chemical production system.
As stated by Zio,* it is very hard to acquire system reliability
data with high quality. Usually, the collected data possess a high
level of noise. Based on our previous research** and literature
survey, it is found that the randomness of the feature sampling
of the RF algorithm enriches the diversity of the decision trees
and thus prevents the model from overfitting and reduces the
noise interference. Finally, Markov Chain Residual error
Correction (MCRC) is used to improve the prediction accuracy.
The evaluation process of the proposed approach is briefly
illustrated in Fig. 1.

Considering the complicated interrelationships between
various influential factors, GRA is used to trim the influential
factors. After evaluating the influence that each factor has on
the system reliability, factors with low impact are automatically
excluded from the prediction process, thus improving the
prediction accuracy and convergence speed. Subsequently, the
remaining influential factors are evaluated and analyzed in
groups to produce reliability evaluations for the respective
subsystems, by using a combinatorial algorithm of SVM and
PSO. SVM is chosen as the machine learning algorithm for
reliability prediction of the five different subsystems because it
is well-known to be a universal approximator of the majority of
multivariate functions to the desired degree of accuracy.'”> As
stated in Section 2.2, the selection of the kernel function is of
great importance for ensuring the accuracy and universality of
the proposed model. In the present study, the Radial Basis
Function (RBF) is chosen as the kernel function for SVM
regression,*** which is formulated as follows.

2
Xi— X
K(x;,x) = exp< - |2a2) = eXp( —ylx; — x|2) (1)

8
GRA module
Influential factor collection )
based on 4M1E

| oA
| Parameters initializing
1 (The number of decision trees,

| the depth of the tree)

[ Random Forest training

Low impact factor exclusion

| 1
| 1
| 1
[ 1
I 1
1
i .
1
: Grey relational analysis :
|
[ 1
[ 1
| 1
[ 1
I 1
I 1
1

| The first step
| PsO-SVM
module

<Zn/ aiterion—_____ No
pean relative erzod o

— Yes

Particle Swam
e P;

No ‘ermination criterion
tness value sma]l}t

|
|

I

I

|

|

| .

| Optimization parameters
|

|

|

|

|

I,

Reliability of the holistic system
The third step
R e e e e e e e e )

(C.Y) determinati
fitness function

Error state determination

Calculation

Optimal parameters

System reliability correction

[
[
[
[
[
[
[
[
I
[
[
I
[
I
[
[
[
[
i
I
I
i
!
[
I
!
[
[
[
: Reliability of each subsystem

1
I
1
1
i
1
1
I
Yes !
1
1
1
1
1
I

I
i
[
i
[
[
I
[
|| State transition probability matrix
I
|
[
[
|
|
[

! The second step The fourth step

Fig.1 The proposed hybrid model (GRA-PSO-SVM-RF-MCRC) for the
reliability evaluation of chemical production systems.
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Fig. 3 Flow chart for the considered ammonia plant.

where x is any point in space, x; is the center of the kernel
function, and ¢ is the function width parameter. During model
training, PSO is used to carry out the optimization mechanism
corresponding to the setting of the optimal kernel hyper-
parameters. Specifically, in order to improve model accuracy, vy
and C (the penalty parameter for errors) are optimized; during
the optimization procedure, the Mean Square Error (MSE) is

Table 1 Considered reliability factors from the man subsystem
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used as the fitness function to assess the prediction accuracy of
the model.

After the evaluation of the 4M1E subsystems, the predicted
reliability values then serve as the input for the following step
involving the reliability evaluation of the whole production
system. Herein, RF is employed as the machine learning algo-
rithm, and the output reliability evaluation value obtained in
this step is then corrected by MCRC. The algorithm topology of
the proposed evaluation framework is illustrated in Fig. 2.

4 Case study: a synthetic ammonia
plant

A real synthetic ammonia plant in China is taken as a test case
in order to illustrate the applicability of the proposed method.
Fig. 3 shows a flow chart of the ammonia plant. As is shown, the
ammonia synthesis process consists of 15 units, including
carbon removal, purified gas separation, flashing, desorption,
condensation and so on. For the reliability evaluation of the
process, 37 indicators that reflect the performance of the five
considered aspects in accordance with the categorization
explained in Section 3.1 are collected. For the man subsystem,
eight influential factors were considered in the present study,
which are listed in Table 1. Nine indicators were considered for
the evaluation of the machine subsystem, which are denoted by
b; and listed in Table 2. As for the material subsystem, in the
context of chemical production, reaction temperature and
pressure are also taken into consideration. The material factors
considered are denoted by c¢;, and are listed in Table 3, while the
considered items related to the management perspective are
listed in Table 4. Lastly, the environmental effect is complex and
changeable. In the current case, factors such as regional fire
resistance level and environmental noise level are taken into
consideration. Table 5 lists the detailed items related to the
environment subsystem. The specific values collected for these
indicators are given in Table 6. As is shown, 100 data entries in
total were collected periodically from the ammonia plant over
one year. This data set was also used in the study by Liu et al.>

It is worth mentioning that, in this study, the system reli-
ability is evaluated at five levels, ranging from the most unre-
liable to the most reliable, which are given in Table 7. The
values of the indicators listed in Tables 1-5 were collected from
the ammonia plant. The readily available system information,
such as the average age and education degree of the workers,
was directly collected from the information system of the plant.
For other non-quantitative indexes, for which the specific values
are not readily available, the Delphi method** was employed to

Symbol Meaning Symbol Meaning

a; Average age as Safety knowledge

a, Average working age ae Safety consciousness

as Education degree a, Health condition

a, Vocational safety training degree ag Ratio of senior engineers

20378 | RSC Adv, 2020, 10, 20374-20384
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Table 2 Considered reliability factors from the machine subsystem
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Symbol Meaning Symbol Meaning

by Equipment protector intact rate bs Communication facility intact rate
b, Equipment intact rate b, Anti-static facility intact rate

b; Fire facility intact rate bg Transport line intact rate

I Alarm facility intact rate b Emergency rescue facility timeliness
bs Monitor intact rate

Table 3 Considered reliability factors from the material subsystem

Symbol  Meaning Symbol  Meaning

G Material fire hazard Cy Material corrosivity
[ Material toxicity Cs Reaction temperature
c3 Material explosiveness  ¢¢ Reaction pressure

quantify their reliability levels. For example, the safety knowl-
edge of the operating engineers (as) and the fire hazard level of
the raw materials (¢;) are indicators that cannot be easily
quantified by precise analytical models. Hence, they are char-
acterized by five common grades, namely, 1, 0.9, 0.8, 0.7 and

0.5." Here, 1 represents the best state, 0.9 represents a good
state, 0.8 represents a general state, 0.7 represents a poor state,
and 0.5 represents the worst state. Generally speaking, if the
system reliability is evaluated to be greater than 3 (out of 5), it
can be considered safe and does not require maintenance.
The Delphi method is a forecasting tool originally developed
by Norman Dalkey from the RAND Corporation for a U.S. mili-
tary project in the 1950s, and has been extensively studied and
reviewed since then. It is characterized by the following four key
features: (1) anonymity of Delphi participants, which allows the
participants to express opinions freely and make decisions
based on their own merit; (2) iteration, which allows the
participants to refine their view iteratively in light of the

Table 4 Considered reliability factors from the management subsystem

Symbol Meaning Symbol Meaning

dy Management organization ds Protector management regulations

d, Safe operation regulations ds Equipment safety management
regulations

d; Safety inspection regulations d, Hazard management regulations

dy Fire and explosion protection regulations dg Safe accident treatment regulations

Table 5 Considered reliability factors from the environment subsystem

Symbol Meaning Symbol Meaning

ey Regional fire resistance level A Operation ground slip resistance

e, Environmental noise level es Dust concentration

[ Material placement level e Regional safe passage distance

Table 6 Collected system reliability datasets for the case study”

No. a; o ag a by by b €1 Ce c d - dg d e e e R

1 37.1 28.2 4.78 98.3 924 496 1 149 498 08 - 1 1.08 0.8 -+ 82 2.78 3.83

2 239 - 5.1 1.02  97.7 94.7 4.89 1 149 485 1.7 - 2.8 277 05 103 1.12 3.86

3 22.3 179 3.04 89.8 86.1 3.97 0.9 149 399 42 -+ 41 434 07 - 83 1.98 4.06

4 33.1 23.1 412 90.2 874 4.09 09 149 4.07 4.1 -+ 43 356 1 57 4.89 4.54

5 271 -+ 7.9 1.96 92.3 73.3 1.05 0.5 17 108 15 -- 1.8 165 08 - 78 2.89 1.45

96 33.1 24.3 419 98 94.8 496 0.5 18 1.08 08 - 1 1.12 0.8 -+ 78 290 3.27

97 33.1 23.7 4.09 97.8 92.2 491 0.5 17 111 1 1.1 111 09 63 4.01 3.14

98 21.8 16.8 2.82 85.8 71.9 1.09 0.9 149 4.02 4 - 43 454 1 -+ 56 4.8 3.12

99 239 - 45 1.05 84.8 82.2 242 0.5 18 1.07 32 -+ 25 250 0.5 102 1.16  2.96

100 35.2 25.8 4.85 67.9 80.7 2.41 0.5 18 116 42 -+ 43 422 08 - 78 292 3.24

“a, b, ¢, d and e represent the reliability of the five subsystems. Their specific values are obtained by the Delphi method. The rows present the time
series data set periodically collected from the ammonia production plant over one year.
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Table 7 Five levels of system reliability

Level 1 2 3 4 5

Reliability Unreliable Less reliable Generally reliable More reliable Very reliable

progress of the group work; (3) controlled feedback, which
allows the participants to be informed of the other participants’
perspectives and provides them the opportunity to clarify or
change their views; (4) statistical aggregation of group
responses, which allows quantitative analysis and data inter-
pretation.*® For more information about this method, readers
are referred to this publication.** The Delphi method can be
applied to problems where there is incomplete knowledge, or
problems that do not lend themselves to precise analytical
techniques but rather could benefit from the subjective judg-
ments of individuals on a collective basis.*” The merits of the
Delphi method are well suited to the needs of this study.

5 Results and discussion
5.1 Grey relational analysis (GRA)

tAfter GRA of each subsystem, the degrees of correlation between
each considered influential factor and the reliability of the
respective subsystem are obtained. The analysis results of the five
subsystems are illustrated in the form of radar charts, which are
shown in Fig. 4. For the man subsystem, the average age of the
employees (a;) does not affect the system reliability significantly
compared to the other four principal influential factors, namely,
the average working age (a,), education degree (a;) and voca-
tional safety training degree (a,) of the employees and the ratio of
senior engineers in the workforce (ag). The same conclusions
apply for the safety knowledge (as), safety consciousness (as) and
health condition of the workers (a;). As a result, the four corre-
lation factors with low impact, i.e. a4, as, as and a5, are excluded
from the system reliability evaluation. For the machine
subsystem, as shown in Fig. 4(b), the nine considered factors are

a5 ho b5 ca

(a) Subsystem: Man (b) Subsystem: Machine (c) Subsystem: Material

d1 el
0.800
dg d2
0.400
0.200
d7 { o.000 d3
dé da
ds e4

(d) Subsystem: Management (e) Subsystem: Environment

Fig. 4 Radar charts illustrating the Gray Relational Analysis (GRA)
results for the correlation degrees of the relative influential factors in:
(@) man subsystem, (b) machine subsystem, (c) material subsystem, (d)
management subsystem, and (d) environment subsystem.
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of equal importance for the system reliability assessment, thus all
of these factors are included in the evaluation model. As for the
material subsystem, it can be concluded from Fig. 4(c) that four
of the selected factors have a non-negligible influence on the
system reliability, therefore, the remaining two factors, which
refer to the reaction temperature (¢s) and pressure (cg), are left out
during the reliability assessment of the subsystem. The GRA
result for the management subsystem is presented in Fig. 4(d),
which suggests that regulations for safe operation (d,), safety
inspection (d;), equipment safety management (dg), hazard
management (d;) and safe accident treatment (dg) impact the
system reliability more than the other three indicators. Conse-
quently, only these five indicators are considered in the subse-
quent assessment model. Last but not least, three indicators out
of six were confirmed by the grey relational analysis for the
environment subsystem, as can be concluded from Fig. 4(e). In
this way, the 37 influential factors selected for system reliability
evaluation are reduced to 25, each of which is considered to be
strongly correlated with the reliability of the respective
subsystems.

Fitness

0 20 40 60 80 100 120 140 160 180 200
Generation

0 20 40 60 80 100 120 140 160 180 200
Generation
(b) Fitness curve of the machine

(a) Fitness curve of the man subsystem
subsystem

Fitness
°
o
&

gu 20 40 60 80 100 120 140 160 180 200
Generation
(d) Fitness curve of the management
subsystem

0 20 40 60 80 100 120 140 160 180 20C
Generation

(c) Fitness curve of the material
subsystem

0.
0.079
0.07]
0.077]
0.076
0.075|
0.074f
0.073
0.072f
0.071

Fitness

0.0

0 20 40 60 80 100 120 140 160 180 200
Generation

(e) Fitness curve of the environment
subsystem

Fig. 5 Fitness curves of the evaluation model training for: (a) man
subsystem, (b) machine subsystem, (c) material subsystem, (d)
management subsystem, and (d) environment subsystem.
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5.2 Prediction results for the system reliability by applying
the proposed two-step hybrid algorithm

After the GRA procedure, the remaining 25 influential factors
were processed by the proposed hybrid algorithm. To better
balance the datasets for the training and validation of the two
evaluation models, the collected 100 datasets were first divided

o
o
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—0— Ralvalue
—4— Prdicedvatos

5 5
£, £,
g g
=g E3
< 2
= 2 =2
1 1
005 10 15 20 25 30 35 40 45 5 0 5 10 15 20 25 30 35 40 45 5
Sample index Sample index
(a) Prediction result of the man (b) Prediction result of the machine
subsystem subsystem
6 6
=@~ Ralvalve =@~ Real valve
= DPrdicted value - Pradiced valse
5 5
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E
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0 0
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(c) Prediction result of the material

subsystem

5 10 15 20 25 30 35 40 45 5
Sample index

(d) Prediction result of the management
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Fig. 6 Comparison of the reliability values predicted by the obtained
PSO-SVM model and the actual values for: (a) man subsystem, (b)
machine subsystem, (c) material subsystem, (d) management
subsystem, and (d) environment subsystem.
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into two groups. The first 50 (50%) datasets were used as
training data to train the PSO-SVM models to evaluate the
reliability of the subsystems. After 200 generations of evolution,
the evaluation models for the five subsystems were obtained.

The fitness curves of the evaluation model training for each
subsystem are shown in Fig. 5. It can be seen that, after the first
30 iterations of model training, the models all reached a high
fitness. Then, the remaining 50 (50%) datasets were used as
testing data for the trained models to produce predictions for
the subsystem reliability. A comparison between the predicted
reliability value and the actual value for each subsystem is given
in Fig. 6. It can be concluded from the results that the reliability
prediction for the respective subsystems has reached a satis-
factory accuracy.

After the model training for the subsystems, the predictive
results from the trained PSO-SVM models for the subsystems
were used to develop a reliability evaluation model for the
overall ammonia production plant. Namely, the 50 predicted
reliability values for each subsystem were the input for the RF
model to correlate the reliability of the five subsystems with that
of the whole production system. Since the 50 datasets were
obtained from the 51° to the 100™ data entries of the original
dataset, they were labelled as No. 51°*¢ to No. 100P™%, Then,
80% of the dataset (i.e. No. 517" to No. 90P"%) was used as the
training set, and the remaining 20% (i.e. No. 91°™¢ to No.
100P™?) was used as the testing set for the RF model.

In order to better assess the efficacy of the proposed method,
a comparison between the proposed model and the model
developed by Liu et al.>* was carried out, and is given in Table 8.
As shown in Table 8, the relative error of the prediction by the
proposed model varies in the range of 0 to 11.2%, while that of
the literature result varies between 0 and 23.3%. The relative
errors of the two models are visualized in Fig. 7. This suggests
that the proposed approach is more stable and accurate in the
prediction of system reliability.

To further analyze the prediction results and compare the
proposed approach with the literature method, the Mean
Square Error (MSE) and the Mean Relative Error (MRE) were

Table 8 Comparison of the reliability predictions for the ammonia plant between the proposed model and the model developed by Liu et al.#*

Model developed by Liu et al.>!

The proposed approach

Relative error Absolute Relative error

No. R RPred Absolute error (%) RPred error (%)

91Pred 2.68 2.16 —0.5205 —19.42 2.53 —0.1480 —5.52
ggpred 3.48 2.95 —0.5261 —15.12 3.13 —0.3469 -9.97
ggpred 3.57 3.29 —0.2773 —7.77 3.34 —0.2346 —6.57
g4pred 3.80 3.96 0.1603 4.22 3.45 —0.3523 —9.27
g5pred 2.72 2.36 —0.3635 —13.36 2.62 —0.1001 —3.68
96lDred 3.27 3.11 —0.1560 —4.77 3.10 —0.1687 —5.16
g7Pred 3.14 3.16 0.0236 0.75 3.20 0.0584 1.86
ggpred 3.12 3.79 0.6721 21.54 3.47 0.3495 11.20
ggpred 2.96 2.27 —0.6897 —23.30 2.67 —0.2914 —9.85
100P™d 3.24 3.47 0.2349 7.25 3.20 —0.0370 —1.14

@ R _ actual value of system reliability, RE™ - predicted value of system reliability.
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Fig.7 Relative prediction errors of the proposed model and the model

developed by Liu et al.®

calculated to assess the results of each evaluation step,
according to the following formulas.

1 ¢ 2
M E = - i T I 12
SE= 3 (00— k) (12)
Zﬂ o; — kil
i=1 ki
MRE = = x 100% (13)

where k; is the actual value, o; is the predicted value, and N is the
total number of datasets. Table 9 lists the analysis results for the
method developed by Liu et al,* while the results for the
proposed model are shown in Table 10.

It can be concluded from Tables 9 and 10 that the prediction
results of the proposed approach are more accurate than those

Table 9 Prediction accuracy analysis for the subsystems and the
overall system for the method developed by Liu et al.?*¢

Step-1
Step-2
CategOIy Rman Rmach Rmat Rmana Renv R
S
MSE 0.015 0.160 0.030 0.202 0.017 0.179
MRE 4.62%  9.57%  6.00%  14.37%  4.07%  11.75%

a man lﬂaCh mat mana env
Rman gmach pmat pmana i

and Ry denote the system reliability of
the five subsystems, namely, man, machine, material, management
and environment, and the overall system, respectively.

Table 10 Prediction accuracy analysis for the subsystems and the
overall system for the proposed model

Step-1
Step-2
Category Rman Rmach Rmat Rmana Renv R
S
MSE 0.018 0.021 0.007 0.217 0.007 0.057
MRE 3.97%  4.12%  2.81%  13.40%  2.75%  6.42%

20382 | RSC Adv, 2020, 10, 20374-20384
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Table 11 Factors of the man subsystem
Predicted Relative error Normalized

No. Actual value value (%) value (%) State
51Pd 3,09 3.07 —0.50 24.62 E,
52Pd 5 99 2.97 —0.66 24.21 E,
53Ped 319 2.88 —7.80 6.69 E,
8gPd 359 3.50 —2.42 19.91 E,
goPred 5 67 2.82 5.76 39.97 E,
90P™d  3.99 3.64 —8.69 4.50 E,

of the model developed by Liu et al.>* In terms of MSE, the
proposed model achieves predictions with 0.057 deviation from
the true value of the overall system reliability, which is much
lower than the deviation observed for the literature method,
0.179. In terms of MRE, the deviation observed for the proposed
model is 6.42%, while that for the literature model is 11.75%.
The same situation occurred for the prediction of the five
subsystems.

5.3 Results of Markov chain residual correction

It is shown that the proposed model gives relatively accurate
predictions for system reliability, with relative errors within
10%. In order to further improve the prediction accuracy and
enhance the model stability, Markov chain residual correction
is applied.

In this study, the golden ratio is applied to divide the Markov
chain states into intervals, based on the relative prediction
errors for the training sets as listed in Table 11. The division
point v, is determined by the following equation.

ve=QX |s|<t,r=1,2, ..t (14)
where X is the mean value of the relative prediction error X, Q is
the golden partition ratio, which equals 0.618, and s and the
magnitude number ¢ are determined based on the range of the
relative prediction error X. By assigning values of 1 and —1 to s,
three state intervals were obtained, namely, E;[0, 0.182],
E,[0.182, 0.475] and E;3[0.475, 1], which correspond to the
original state intervals, E,[-10.53%, — 3.13%],
E,[-3.13%, 8.84%)] and Ej[8.84%, 30.22%).

After the determination of state intervals, the transition
matrix P is obtained for each data set. Taking the second data
entry in Table 8 as an example, its state transition matrix P is
calculated as follows.

Table 12 Comparison between the original predicted value and the
value corrected by the Markov chain residual correction

Corrected value from the
Markov chain residual

Original predicted value correction

Relative error
Modified value (%)

Predicted Relative error
Actual value value (%)

3.48 3.13 -9.97 3.23 —7.18

This journal is © The Royal Society of Chemistry 2020
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Table 13 Comparison of prediction accuracy between the two
models

Model MSE MRE (%)
Model developed by Liu et al.>! 0.131 9.69
The proposed model 0.022 3.77
0.2 0.5 0.3
P=103043 0.6087 0.0870 (15)
0.4 0.6 0

The state vector of the initial state is given as (1, 0, 0).
Multiplying the state vector by the state transition matrix
produces its state vector (0.2, 0.5, 0.3). According to the division
of the state intervals, the relative error is in the state range E,.
Hence, improved prediction results are achieved by MCRC, as
shown in Table 12.

By applying the MCRC to all the system prediction datasets,
the prediction accuracy of the evaluation model is further
improved. For the proposed model, the MSE is reduced from
0.057 to 0.022, and the MRE drops from 6.42% to 3.77%. It is
worth mentioning that the MCRC method was also applied to
the literature method,** which resulted in a decrease in the MSE
from 0.179 to 0.131, and the MRE from 11.75% to 9.69%. A
comparison of the prediction accuracy after MCRC between the
two models is presented in Table 13. This proves that the MCRC
methodology can be used to effectively reduce the amplitude of
the prediction error. This is due to the fact that the Markov
chain uses the transfer matrix to analyze the future trend of the
current status.

6 Conclusion

This paper presents a hybrid reliability prediction model for
chemical production systems, striving to deliver satisfactory
predictive reliability results for chemical production systems by
combining the advantages of machine learning algorithms.
First, factors affecting the reliability of chemical production
systems are collected from five perspectives, namely man,
machine, material, management and environment (4M1E),
followed by a GRA analysis procedure on each subsystem, in
order to reduce the dimension of the problem at hand and thus
speed up the convergence rate. Second, support vector regres-
sion is applied to predict the reliability of the five perspectives
separately, and PSO is used to optimize the parameters
involved. Third, the RF algorithm is employed to predict the
reliability of the whole chemical production system. Lastly,
MCRC is adopted to further improve the prediction accuracy.
Applying the model to an ammonia plant in China proved its
efficacy. Compared to the literature method, the proposed
model achieved better prediction results with lower prediction
error. Both the Mean Square Error (MSE) and the Mean Relative
Error (MRE) were calculated in order to evaluate the prediction
accuracy of the proposed model. It is shown that, in terms of
MSE, the proposed model achieved predictions with 0.022

This journal is © The Royal Society of Chemistry 2020
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deviation from the true value of the overall system reliability,
which is much lower than the deviation observed for the liter-
ature method, 0.131. In terms of MRE, the deviation observed
for the proposed model is 3.77%, while that for the literature
model is 9.69%. Furthermore, it is concluded that the MCRC
methodology can be used to effectively reduce the amplitude of
the prediction error, due to the fact that the Markov chain uses
the transfer matrix to analyze the future trend of the current
status. In addition, the proposed model can be extended to the
reliability evaluation of other complex industrial production
systems.

The comparison between the proposed method and Liu’s
work® proved that PSO-SVM and RF can better deal with the
scarcity of available reliability data, as the training process for
GA-BP requires more data to ensure model accuracy. Addition-
ally, it should be noted that the proposed approach is a machine
learning method based on collected industrial data. Although
selection of more suitable machine learning methods can
certainly improve evaluation accuracy, the whole modeling and
evaluation process is founded on the quality of the training
data. If the model is provided with better quality data, then
better result accuracy can be achieved. Also, as randomness
exists in the machine learning process (for example, the
randomness of the feature sampling of RF), uncertainties exist
in the model training and estimation. When the same model is
trained at a different time and/or on a different machine, the
result might be slightly different.
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