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Introduction

Mn-substitution effects on the magnetic and
zero-field ferromagnetic resonance properties of
¢-Fe>Oz nanoparticlesy

Jessica MacDougall, (2 ¢ Asuka Namai, (2 ** Onno Strolka (2 % and

Shin-ichi Ohkoshi {2 *3°

Metal substitution is an important way to tune the magnetic properties of ferrites. In the present study,
to investigate the effects of Mn substitution on the magnetic properties and millimeter wave absorption
properties on g-Fe,O3 for the first time, Mn-substituted epsilon iron oxides, e-Mn,Fe, O3z _,,» (x = 0
(Mn0), 0.10 (Mn1), and 0.20 (Mn2)) were synthesized by sintering iron oxide hydroxide with manganese
hydroxide in a silica matrix. Transmission electron microscopy shows particle sizes of 18.7 + 5.8 nm
(Mn0), 19.0 + 6.2 nm (Mn1), and 19.8 4+ 6.7 nm (Mn2). Energy dispersive X-ray spectroscopy confirms a
uniform manganese distribution across all particles, while the powder X-ray diffraction patterns
demonstrate that e-Mn,Fe, ,Oz_,/» has an orthorhombic crystal structure with a space group of Pna2;
(e.g., the lattice constants in Mn2 are a = 5.1031(4) A, b = 8.7759(8) A, and ¢ = 9.4661(7) A). As the Mn
substitution ratio increases, the Curie temperature decreases from 487 K (Mn0) to 469 K (Mn2). As for
the magnetic properties at 300 K, the coercive field increases from 17.2 kOe (Mn0) to 18.2 kOe (Mn2),
while the saturation magnetisation decreases from 17.1 emu g~* (Mn0) to 13.9 emu g~! (Mn2), with
increasing substitution ratio. Terahertz time-domain spectroscopy demonstrates that the samples exhibit
electromagnetic wave absorption in the millimetre-wave region, due to zero-field ferromagnetic
resonance. As the Mn substitution ratio increases, the resonance frequency increases from 174 GHz
(Mn0) to 182 GHz (Mn1) and 187 GHz (Mn2). Due to the substitution of Fe*" with Mn?*, the saturation
magnetisation decreases and the coercive field and the resonance frequency increase.

ferrites) or dielectric loss. Several examples of absorbing mate-
rials in the millimetre-wave region have been reported.”*°

The demand for materials capable of absorbing electromag-
netic waves has escalated due to recent advances in telecom-
munication technologies. As millimetre waves (30-300 GHz)
become more common in applications such as high-speed
wireless communications and radar systems, the development
of efficient millimetre-wave absorbing materials is necessary to
mitigate noise and interference."® Electromagnetic wave
absorbing materials are categorized by their absorbance
mechanism, such as magnetic loss (e.g, spinel ferrites, barium
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Amongst them, Epsilon iron(m) oxide (e-Fe,Oz) shows
millimetre-wave absorption at a high frequency of 182 GHz
due to its zero-field ferromagnetic resonance.'’™” Further-
more, e-Fe,0; exhibits a high coercivity, which is retained even
with single-digit-diameters.'®° Due to its unique functional-
ities, various other applications in addition to millimetre-wave
absorption are anticipated to use &-Fe,O; such as magnetic
recording,>>* ferroelectric devices,>*>® magnetic hyper-
thermia,”**° MRI contrast,* Li-ion batteries,”* heavy metal ion
detection,®® and photocatalytic applications.>® Moreover, &-
Fe,0; was recently discovered on the surface of ancient glazed
pottery, reportedly playing an important role as a pigment.***>
Therefore, e-Fe,O; has been attracting attention, and various
synthesis methods have been investigated.**~*

Metal substitution can tailor the intrinsic properties of &-Fe,O;.
To date, eFe,0O; has been substituted with gallium,'*”>®
aluminum,*****" chromium,*>®* rhodium,"****> ruthenium,
indium,*®* and scandium” alongside co-substitution with tita-
nium and cobalt.'®***”* This approach can attune the coercive field
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and zero-field ferromagnetic resonance. So far, only rhodium
and ruthenium substitution have been reported to increase
magnetic anisotropy. In the present study, we investigated the
effect of manganese substitution, which has not been explored
previously. In this paper, we report the synthesis, crystal
structure, magnetic properties, and millimetre-wave absorption
properties of Mn-substituted &-Fe,0;.

Results and discussion
Materials

Fig. 1 shows the synthetic scheme. Varying the feed ratio
(=IMn]/[Mn + Fe]) produced three samples: 0 (Mno0), 0.05
(Mn1), and 0.10 (Mn2). Iron oxy-hydroxide (B-FeO(OH)) nano-
particle dispersions and Mn(NO,), were added to 0.420 dm?
water. The molar amounts of Fe (ng) in p-FeO(OH) and Mn
(nyvn) in Mn(NOg3), were (fge, ) = (10.0, 0 mmol) for MnO,
(9.52, 0.51 mmol) for Mn1, and (9.02, 1.01 mmol) for Mn2.
While stirring the solution at 50 °C, aqueous ammonia (25%,
0.0192 dm®) was slowly added dropwise. Then the reaction
mixture was stirred for an additional 30 minutes. Afterwards,
tetraethyl orthosilicate (0.024 dm?) was added dropwise. Sub-
sequent stirring at 50 °C for 20 hours yielded a colloidal
solution. The addition of ammonium sulphate (~10 g per
0.200 dm?®) precipitated the product.

The precipitated product was collected, washed by centrifu-
gation, and dried at 60 °C. Next, the precipitate was ground into
a fine powder and sintered in air for 4 hours at 1102 °C. The
silica matrix was etched using a 5 mol dm > NaOH aqueous
solution at 65 °C. Afterwards, the samples were collected by
centrifugation, washed with water, and dried, providing a red-
brown powder. Elemental analysis was performed with X-ray
fluorescence spectroscopy (XRF). Table 1 shows that the
observed [Mn]/[Mn + Fe] ratios were the consistent with the
feed ratios (i.e., 0 for Mno0, 0.05 for Mn1, and 0.10 for Mn2).

| X Mn(NOy), + (2 — x) B-FeO(OH) |

l NH; aq.
l TEOS

X Mn(OH), + (2 — x) B-FeO(OH)
embedded in SiO,

Sintered at

1102 °C in air
y

e-Mn,Fe,_,05 4
embedded in SiO,

NaOH aq.
65 °C

e-Mn,Fe; .04y

e-Mn,Fe, .05 4 |

Fig. 1 Schematic of e-Mn,Fe,_,Os_,/» nanoparticle synthesis.
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Table 1 Feed and experimental [Mn]/[Mn + Fe] ratio

Sample Feed [Mn]/[Mn + Fe] Observed [Mn]/[Mn + Fe]
MnoO 0 0

Mni 0.05 0.05

Mn2 0.10 0.10

Transmission electron microscopy (TEM) images were
acquired using a JEM-1011 (JEOL). Fig. 2a shows the TEM
images. The samples consisted of nanoparticles with sizes of
18.7 + 5.8 nm (Mn0), 19.0 + 6.2 nm (Mn1), and 19.8 & 6.7 nm
(Mn2). Scanning transmission electron microscopy with elec-
tron dispersive spectroscopy (STEM-EDS) images were taken
with a Thermal ARM-200F. Fig. 2b shows the STEM-EDS images
for Mn1. The distribution of Mn ions was consistent across all
the particles, indicating that Mn was uniformly substituted into
the iron oxide structure. Quantitative analysis of individual
particles showed that the average [Mn]/[Mn + Fe] in the sample
was 0.05 for Mn1. This value corresponds to the XRF results
(Fig. S1, ESIf).

Crystal structure and composition analysis

Powder X-ray diffraction (PXRD) measurements were conducted
using a Rigaku Ultima IV with Cu Ko = 1.5418 A radiation, and
Rietveld analyses were performed using Rigaku PDXL2
software. Fig. 3 shows the PXRD patterns of each sample.
MnoO consisted of e-Fe,O; (96%, orthorhombic, Pna2, space
group) with lattice constants of a = 5.0907(4) A, b = 8.7922(8) A,

(a)

25nm

Fig. 2 (a) TEM images of Mn0, Mn1, and Mn2. (b) STEM-EDS images with
elemental mapping of Mn1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 PXRD patterns with Rietveld analyses. Gray crosses, black lines, and
grey lines indicate the observed pattern, the calculated pattern, and their
difference, respectively. Red, purple, blue, and gold lines denote the
calculated patterns for the e-phase, a-phase, B-phase, and spinel-phase,
respectively. Red, purple, blue, and gold bars indicate the calculated Bragg
positions for the ¢-phase, a-phase, B-phase, and spinel-phase,
respectively.

¢ = 9.4764(5) A, and V = 424.15(6) A® and a small impurity of
a-Fe, 03 (4%, hexagonal, R3¢ space group). Mn1 was very similar
to MnO as it was mostly e-phase (94%) and o-phase (6%).
However, there was a small amount of spinel-phase (1%, cubic,
Fd3m space group). The major phase of Mn2 was also g-phase
(75%) along with smaller amounts of spinel-phase (14%),
a-phase (4%), and B-phase (7%, cubic, Ia3 space group). The
phase diagram is shown in Fig. S2 (ESIt).

The lattice constants changed monotonically with manga-
nese substitution (Fig. 4a and Table S1, ESIt). In the e-phase,
a increased from a = 5.0907(4) A (Mn0) to 5.1031(4) A (Mn2),
whereas both b and ¢ decreased from b = 8.7922(8) A (Mn0) to
8.7759(8) A (Mn2) and ¢ = 9.4764(5) A (Mn0) to 9.4661(7) A
(Mn2). Since the lattice volume was reduced (ie., from
V = 424.15(6) A* (Mno0) to 423.93(6) A® (Mn2)), the e-phase
showed an anisotropic contraction. X-ray photoelectron

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Change in lattice parameters of ge-Mn,Fe, ,O3z_,/». (b) Crystal
structure of e-Mn,Fe,_,Osz_,/,». Orange, blue, green, purple, and red balls
represent metal atoms at the A, B, C, and D sites, and O atoms,
respectively.

spectroscopy (XPS) measurements indicated that all samples
had a Mn 2p peak at 641 eV. This peak was assigned to Mn>*,”>
The change in the lattice constants of the unit cell can
be considered as follows: replacing trivalent Fe** ions (ionic
radius = 0.645 A) with divalent Mn*" (ionic radius = 0.830 A)
introduced oxygen vacancies into the structure, which anisotropi-
cally affected the lattice constants.”® There are several examples of
hematite displaying such a volume contraction.”*”®

The chemical compositions and corresponding oxygen vacan-
cies for the Mn*"-substituted iron oxides were determined by
charge balance considerations, assuming that each phase con-
tained the same ratio of Mn*" cations. The estimated composi-
tions of each phase were &-Fe,0; (96%) and o-Fe,0; (4%) for MnO,
&Mny 10Fe1.0002.05 (94%), 0-Mng 1oFe; 900205 (6%), and spinel-
Mng ;5Fe; 550, (1%) for Mnl, and &-Mng,oFe; g9Oz00 (75%),

Mater. Adv., 2025, 6, 969-976 | 971
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0-Mng 0Fe; 500200 (4%), B-Mng s0Feq.8005.90 (7%), and spinel-
Mny 3oFe; 7004 (14%) for Mn2.

Fig. 4b shows the crystal structure of the e-Mn,Fe, O3 ..
The structure has four non-equivalent metal sites (ie., two
distorted octahedral sites (A and B sites)), one regular octahe-
dral site (C site), and one tetrahedral site (D site). Rietveld
analysis indicated that Mn doping selectively occurred at the
distorted octahedral B site. Previous reports on metal-
substituted &-Fe,O; indicated that large metal cations (In*';
0.800 A) substituted into the distorted octahedral A and B
sites,®® while small metal cations (AI**; 0.535 A, Ga®'; 0.620 A,
Ti**; 0.605 A) substituted into the tetrahedral D sites'***?? and
similar size cations (Rh**; 0.665 A, Ru®*; 0.68 A) substituted into
the regular octahedral C sites.’*®*®¢ In light of these reports,
Mn*" was considered to occupy the B site because it has a larger
ionic radius than that of Fe*'.

Magnetic properties

Fig. 5 shows the field-cooled magnetisation (FCM) curves under
an external field of 1 kOe. The Curie temperatures (Tg) were
487 K for Mn0, 471 K for Mn1, and 469 K for Mn2. Mn1 and
Mn2 had contributions from the spinel-phase (Fig. S3, ESIT).
Fig. 6a left shows the magnetic hysteresis loops measured at
300 K. The ratio of Mn substitution affected the H. value. The
value increased slightly from 17.2 kOe for Mn0 to 17.3 kOe for
Mn1l. However, Mn2 exhibited a large distortion in the hyster-
esis loop, which had a negative effect on H. (i.e., 0.35 kOe), due
to the inclusion of the soft-magnetic spinel-phase.

To estimate the intrinsic H, value of e-Mn,Fe, O3 ., we
applied a correction that considered the contributions of the
spinel-phase and o-phase (Fig. 6a, right). The estimated H.
values for e-Mn,Fe, ,O; ,,, increased as the Mn ratio increased:
17.2 kOe for &-Fe,03, 18.0 kOe for &-Mng ;0Fe; 9902.05, and 18.2 kOe
for &Mng,oFe; 500200 By contrast, the saturation magneti-
sation (M) decreased: 17.1 emu g~ * for &-Fe,0j, 15.6 emu g " for
£Mng10Fe;.0002.05, and 13.9 emu g~ * for e-Mng soFe; 003,00 (Fig. 6b
and Table 2).

Millimetre wave absorption properties

An Advantest TAS7400 was used to perform terahertz time-
domain spectroscopy (THz-TDS) measurements. A THz pulse
was irradiated onto the sample and both the transmitted and
reflected THz pulses were measured in the time domain. The
spectra were obtained by a Fourier transformation. The
measurement employed pellet samples (13 mmd). The pellets
had a thickness (d) of approximately 1.11 mm and a volume
filling ratio of 54 vol%. Fig. 7 shows the absorption spectra with
the fringe patterns arising from multiple reflections removed.””
As the Mn substitution ratio increased, the absorption peak
shifted to higher frequencies, the resonance frequency (f;)
increased from 174 GHz (Mn0O) to 182 GHz (Mnl) and
187 GHz (Mn2), and the full width at half maximum (FWHM)
broadened from 9 GHz (MnO) to 11 GHz (Mn1) and 13 GHz
(Mn2). The observed increase in the f; value is apparently due to
Mn-substitution since the f; value of &-Fe,Oz;, which can be
slightly affected by particle size and shape, is 182 GHz at most.

972 | Mater. Adv., 2025, 6, 969-976

View Article Online

Materials Advances

MnOQ  &Fe,0; (96%)

a-phase (4%)

_1)

Magnetisation (emu g
S
|

2 -
0 — 1T T T T T T T 7
0 100 200 300 400 500 600
Temperature (K)
Mn1 €-Mng 1oFeq 990, g5 (94%)
orphase (6%)
10 Spinel-phase (1%)
"_c)
>
£
L
c
ie]
©
2
©
c
=)
(o]
=
0 T T T T T T T T T T T
0 100 200 300 400 500 600
Temperature (K)
€-Mng o Feq goO. 75%
M2 G ohese sy "
B-phase (7%)
20 Spinel-phase (14%)
‘Tc)
> ]
2 15
L
c
S 10
©
2
(o]
=
0 T T T

— . . —
0 100 200 300 400 500 600

Temperature (K)

Fig. 5 FCM curves in an external field of 1 kOe for Mn0, Mn1, and Mn2.
Dotted line is to guide the eye for the contribution of the spinel-phase.

A similar increase of f; in metal-substituted &-Fe,O; has only
been reported with rhodium substitution.

Mechanism for the increased resonance frequency and coercive
field by manganese substitution

In the present manganese substituted &-Fe,Oz;, XPS measure-
ments confirmed that Fe** was replaced by Mn®. O>~ vacancies
maintained the electrical neutrality. Therefore, the composi-
tion was eMn,Fe, ,O;_,,. The O vacancies reduced the
number of superexchange interaction pathways, decreasing
the T value.”®%° In addition, B-site substitution of Mn**
affected the magnetic structure of &-Fe,0;. e-Fe,O; is a collinear
ferrimagnet composed of positive sublattice magnetisations
at B and C sites (Mg and M) and negative sublattice

© 2025 The Author(s). Published by the Royal Society of Chemistry
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spinel-phase, respectively. (b) Mg and H. versus x plot.

Table 2 Magnetic properties of e-Mn,Fe, Oz 4/

Sample Tc (K) H, (kOe) M, (emu g™ )
Mno 487 17.2 17.1
Mn1 471 18.0 15.6
Mn2 469 18.2 13.9
magnetisations at A and D sites (M, and Mp).*""® Since the

superexchange interaction at tetrahedral D sites was smaller
than those at the other octahedral sites (A-C sites), Mp was
smaller than the other sublattice magnetisation. Consequently,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Millimetre-wave absorption spectra of Mn0, Mn1, and Mn2 nor-
malized by the e-phase fraction and filling ratio. Fringe patterns from
multiple reflections are removed.

sublattice magnetisations did not compensate for each other and
spontaneous magnetisation appeared in &-Fe,O,. Mn>" substitution
at the B sites causes O~ vacancies around the substituted B sites,
which reduced the number of superexchange interaction pathways
and decreased M. As a result, the total magnetisation decreased,
which was experimentally observed by the 19% decrease in satura-
tion magnetisation. On the other hand, the magnetic anisotropy H,
tended to be inversely proportional to magnetisation, while the
coercive field and resonance frequency were proportional to H,.>*
Due to the decreased magnetisation, the coercive field and the
resonance frequency increased by 7% and 8%, respectively.

Conclusions

We prepared a series of Mn-substituted &Fe,0s, and eMn,Fe, 03
(x =0, 0.10, and 0.20). Replacing trivalent Fe** ions with divalent Mn**
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ions forms oxygen vacancies, causing anisotropic contraction of
the unit cell. Mn-substitution increases not only the coercive
field from 17.2 kOe (x = 0) to 18.2 kOe (x = 0.20) but also the
zero-field ferromagnetic resonance frequency from 174 GHz
(x = 0) to 187 GHz (x = 0.20). Although Rh-substituted &-Fe,O3
shows a similar increase in the resonance frequency and
coercive field, the mechanism differs from the present material.
The enhancement in Rh-substituted &-Fe,O; is caused by the
orbital angular momentum on Rh*"."® From the viewpoint of
sustainable development goals, manganese is the 12th most
naturally abundant chemical element in the earth’s crust
(0.1 wt%). By contrast, rhodium is extremely rare (<0.001 wt%).*>
Consequently, the present material has potential as an eco-friendly
material in various applications such as millimetre-wave absorption,
magnetic recordings, two-dimensional ferroelectric-ferroelectricity,
and biomedical applications.

Data availability

Crystallographic data for e-Mn,Fe, ,O;_,/,, has been deposited
at the Cambridge Crystallographic Data Centre under 2380300
- 2380302 and can be obtained from https://www.ccdc.cam.ac.
uk/. The data supporting this article have been included as part
of the ESL ¥
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