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Title: Estimating OH radical photochemical formation rates in natural waters during long-term 

laboratory irradiation experiments (Sun et al.) 

The hydroxyl (·OH) radical is known to be generated by photochemical reactions in natural waters. As 

the most oxidative reactant among the active oxygen species, it plays an important role in the 

transformation and oxidation of a variety of organic and inorganic compounds, including priority 

pollutants. Thus, estimation of its formation rate is significant for understanding these processes; however, 

its accurate estimation during long-term laboratory irradiations (days to weeks) has been problematic. 

This paper examines different approaches for accurately determining ·OH radical formation rates in 

natural waters using either short-term (hours) or long-term irradiations.  It also discusses possible 

pathways of ·OH formation in long-term irradiations in relation to hydrogen peroxide and iron 

concentrations. The merit of this study is not only methodological improvement, but it also provides 

better understanding of phototransformation pathways of dissolved organic matter (DOM). 
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“Uncorrected rate, corrected rate and instantaneous rate of •OH photoproduction in Dismal Swamp water.” 
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Estimating hydroxyl radical photochemical formation rates in natural 1 

waters during long-term laboratory irradiation experiments 2 

Luni Sun; Hongmei Chen; Hussain A. Abdulla; Kenneth Mopper
*
 3 

 4 

Abstract 5 

In this study it was observed that, during long-term irradiations (> 2 days) of natural waters, the 6 

methods for measuring hydroxyl radical (•OH) formation rates based upon sequentially determined 7 

cumulative concentrations of photoproducts from probes significantly underestimate actual •OH 8 

formation rates. Performing a correction using the photodegradation rates of the probe products improves 9 

the •OH estimation for short term irradiations (< 2 days), but not long term irradiations.  Only the 10 

‘instantaneous’ formation rates, which were obtained by adding probes at each time point and irradiating 11 

the water sample (or sub-sample) for a short time (≤2 h), were found appropriate for accurately estimating 12 

•OH photochemical formation rates during long-term laboratory irradiation experiments. Our results also 13 

showed that in iron- and dissolved organic matter (DOM)-rich water samples, •OH appears to be mainly 14 

produced from the Fenton reaction initially, but subsequently from other sources possibly from DOM 15 

photoreactions. Pathways of •OH formation in long-term irradiations in relation to H2O2 and iron 16 

concentrations are discussed. 17 

 18 

Introduction 19 

The hydroxyl radical (•OH) is the most oxidative reactant among the reactive oxygen species, it plays 20 

an important role in the transformation and oxidation of a variety of organic and inorganic compounds
1, 2

. 21 

Photochemical reactions are the major sources of •OH radical in natural waters. The photo-formation of 22 

•OH depends on its major sources in sunlit waters, which include DOM photoreactions, the photo-Fenton 23 

reaction, and nitrate and nitrite photolyses
3
. Nitrate and nitrite photolyses are often found to be important 24 

sources
4
, in rivers where their contributions are 1~89 % from nitrate and 2~70 % from nitrite, while in 25 

seawaters their contributions are 7~75 % from nitrate and 1~8 % from nitrite 
3
. However, in iron-rich 26 

waters, the contribution of the photo-Fenton reaction (see below) can account for more than 70% the of 27 

total photochemical •OH production
5-7

.  28 

                                                           
   Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 
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Fe(II) + H2O2 → Fe(III) + •OH + OH
–
 29 

where Fe(II) and Fe(III) include the hydrated and DOM-complexed iron species. In seawater and high 30 

DOM freshwaters, DOM photoreactions appear to be the main source for •OH
2,8-12

. Reactions involving 31 

hydroquinolic and phenolic moieties within humic substances appear to be responsible, at least in part, for 32 

•OH photoproduction in these waters
2, 8

.  33 

    In natural waters, photochemical formation rates of •OH are determined indirectly using probes. The 34 

probe reactions can be split into two broad categories: 1) •OH addition to probes, with •OH either being 35 

added to the carbon atoms in probes such as 4-nitrophenol, nitrobenzene, benzene, benzoic acid, and 36 

terephthalate, or being added to the sulfoxide group in probes, e.g. dimethyl-sulfoxide; and 2) abstraction 37 

of a hydrogen atom on the probes such as methanol, formic acid, methane and butyl chloride
8, 13, 14

. 38 

Among these probes, benzene and benzoic acid have been commonly used. Typically, the probes are 39 

added initially to the samples and the cumulative concentrations of phenolic products are measured after 40 

irradiating for several minutes
15

 or hours
3, 10, 16, 17

. These phenolic product compounds are non- or very 41 

weak absorbers of light in the solar irradiance spectrum and thus do not undergo direct photoreaction; 42 

however, in natural waters, their phototransformation/destruction may be promoted by the presence of 43 

DOM, possibly through electron or hydrogen atom transfer from reactive excited triplet states of DOM
18, 

44 

19
, or reaction with reactive oxygen species, such as hydrogen peroxide

20
, and singlet oxygen

21
. Thus, 45 

during long-term irradiations, this loss may lead to significant underestimation of the cumulative 46 

concentrations of phenolic products. This underestimation is likely minor when only initial •OH 47 

formation rates are taken into account
17

, but it may be significant for time-course studies of •OH 48 

formation rates or its steady-state concentration, such as studies on the sources of •OH which usually 49 

require several hours to adequately measure the generation of •OH
3, 6, 16

. For example, in studies 50 

examining the photo-Fenton reaction in natural waters, the •OH formation rate, and H2O2 and Fe (II) 51 

concentrations were measured hourly under different experimental conditions
7
. Moreover, DOM 52 

photochemical transformation studies usually run for hours to days
22-24

. Since DOM is an important 53 

source and sink of •OH (as well as other reactive species), accurate estimation of •OH can improve our 54 

understanding of DOM transformation pathways. Therefore, it is necessary to establish the stability of 55 

both the •OH probe compound and the quantified product species with respect to direct and indirect 56 

photolysis in natural waters
25

. 57 

In this study, we estimated time-course •OH formation rates in DOM-rich water (Great Dismal 58 

Swamp) and estuarine water by two approaches: 1) correcting for product loss and 2) obtaining near-59 

instantaneous formation rates. The corrected formation rates were obtained by adding the 60 

photodegradation rates of corresponding products to their formation rates, and the instantaneous rates 61 
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were obtained by adding probes at each time point and irradiating the sample for a short time (≤2h). 62 

Moreover, we discuss possible pathways of •OH formation in iron- and DOM-rich samples during long-63 

term irradiations. 64 

 65 

Experimental 66 

Chemicals 67 

Phenol (purity grade >99 %), sodium benzoate (99.5 %), benzene (HPLC grade), and desferrioxamine 68 

mesylate (DFOM) (92.5 %) were obtained from Sigma; salicylic acid (SA) (99%) was obtained from 69 

Fisher; H2O2 (35 % w/w) and methanol (HPLC grade) were obtained from Acros. Ultra-pure water (Milli-70 

Q water, >18 MΩcm
-1

) was used for solution preparation.  71 

 72 

Sample description 73 

Water samples were freshly obtained from the Great Dismal Swamp (near 36.7°S and 76.4°W, salinity 74 

0 ppm, pH 3.7) and Elizabeth River estuary (near 36.9°S and 76.3°W, salinity 20 ppm, pH 7.5) in spring 75 

2013. Samples were filtered within 24 hours of collection through a pre-cleaned 0.1 µm capsule filter 76 

(Polycap TC, Whatman). Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were 54 77 

ppm and 1.9 ppm for the Great Dismal Swamp sample, and 3 ppm and 0.9 ppm for the Elizabeth River 78 

estuarine sample. 79 

 80 

Irradiations 81 

All samples were placed into quartz tubes or flasks and kept oxygenated by periodic shaking in air. 82 

Irradiations were conducted using a solar simulator containing UVA340 bulbs (Q-Panel). The solar 83 

simulator is described elsewhere
26

. These lamps have a spectral output nearly identical to natural sunlight 84 

from ~295 to ~360 nm (http://www.solarsys.biz/0103.shtml). In a comparison of the light output from the 85 

solar simulator to natural sunlight, the solar simulator provided 127% of the photobleaching occurring 86 

under winter mid-day sunlight at 36.89°N latitude
27

. Consequently, the •OH production rates in this study 87 

are likely somewhat higher than in the environment. Dark controls were wrapped in foil and placed inside 88 

the solar simulator. All samples were irradiated at room temperature and at their natural concentrations 89 

and pH in order to approximately simulate surface conditions, and to avoid potential contamination. 90 

 91 

Determination of •OH formation rate 92 

Probe compounds (sodium benzoate or benzene) were added to aliquots of the water sample to final 93 

concentrations of 5.0 mM and 3.0 mM respectively. Complete dissolution of benzene was facilitated by 94 
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vigorous stirring at room temperature.  These samples were used to determine the effect of long-term, 95 

continuous irradiation of the •OH probes.  Other aliquots of the water sample were used for measuring 96 

instantaneous •OH formation rates and parameters including DOC, TDN, DFe and H2O2 production. The 97 

instantaneous •OH formation rates were determined by irradiating the latter aliquots without the probes 98 

present; subsamples were then removed at specific time points and irradiated for ≤2h with the •OH 99 

probes. 100 

Benzoic acid reacts with •OH to form SA and other products, while benzene reacts to form phenol and 101 

other products. The fraction of SA (or phenol) formed relative to the other •OH photoproducts is 102 

constant
10

 thereby enabling the use of SA (or phenol) production to determine the total •OH production, 103 

as described below. The SA and phenol photoproducts were measured using HPLC with fluorescence 104 

detection as described in detail elsewhere
10, 29

; the excitation/emission wavelengths were 300/400 nm 
9
 for 105 

SA and 260/310 nm for phenol
28

, respectively. Cumulative SA and/or phenol concentrations were plotted 106 

vs. irradiation time. The observed photo-formation rates of SA and phenol (Rob) were determined from the 107 

tangent slopes at each time point of the curve using Matlab. Rob was used to evaluate the uncorrected •OH 108 

photo-production rate, Runc, which was calculated by the following equation: 109 

Runc = 
�����

�
                                                                                                                                                                                                                     (1) 110 

where Y is the yield of photoproduct formed per probe molecule oxidized by •OH. Since the reaction 111 

between probe and •OH forms more than one product
10, 29

, this value is always less than 100 % (see 112 

Results and Discussion). F is a calibration factor, which is related to the fraction of the •OH flux that 113 

reacts with the probe and accounts for competing OH scavengers in natural waters, such as DOM. F is 114 

evaluated for each sample type by competition kinetics using a series of different probes concentrations as 115 

described in detail by Zhou and Mopper
30

. For our experiments, F was 1.11~1.26, depending on the 116 

probes and sample types. 117 

 118 

Determination of photodegradation rates of •OH probe products 119 

Photodegradation rates of SA and phenol were obtained by irradiating 40 µM SA and 180 µM phenol 120 

in the Dismal Swamp sample and measuring their concentrations over 24 h.  The concentrations of SA 121 

and phenol chosen were close to the maximum cumulative concentrations formed in our irradiation 122 

experiments. 123 

 124 

Determination of dissolved organic carbon (DOC)/total dissolved nitrogen (TDN), dissolved iron 125 

(DFe) and H2O2 production 126 
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DOC and TDN were measured for all samples using high temperature (720°C) catalytic combustion on 127 

a Shimadzu TOC-V-CPH carbon analyzer. DFe concentration and H2O2 production were measured for 128 

Dismal Swamp sample. DFe was measured using a Hitachi Z8100 polarized Zeeman flame atomic 129 

absorption spectrophotometer equipped with an iron hollow cathode lamp; and H2O2 production was 130 

measured by modified (p-hydroxyphenyl)-acetic acid dimerization method
31

. 131 

 132 

Results and Discussions 133 

Calibration of Yph value 134 

Y is the yield of photoproduct formed per probe molecule oxidized by •OH. Most Y values of SA (YSA) 135 

from published radiolysis experiments are 17~18%
10, 14, 32

 while the values of phenol (Yph) range from 136 

66% to 95% 
14, 33-35

; the high Yph of 95% was observed during nitrate photolysis
35

. Because of the wide 137 

range of published Yph values, we did not select a Yph value for our system from published data. Instead, 138 

we used the much less variable YSA value (17%
10

) to calibrate the Yph value by using H2O2 photolysis as a 139 

pure •OH source. Different concentrations of H2O2 were added to solutions containing sodium benzoate 140 

or benzene and irradiated for 1 h. Assuming the degradation of SA and phenol is negligible in this short 141 

period, at the same concentrations of H2O2, the •OH photoproduction rate Runc should be the same for 142 

both probes, that is: 143 

    Runc=  
�������	

���
= 
�
���
�	

�
�
                                                                                                                                                                                            (2) 144 

but, since there are no other competing scavengers, FSA=Fph=1: 145 

Runc=  
���	

���
= 
�
�	

�
�
                                                                                                                                                                                                                 (3) 146 

Yph was then calculated as: 147 

      Yph =  

�����
�

���
                                                                                                                                                                                                                  (4) 148 

In our experiments, Yph value was calculated as 69.3±2.2 %, which was then used for all calculations. 149 

This value is in agreement with most published values
21-24

. 150 

 151 

Corrections of •OH formation rates 152 

Photodegradation was observed for both SA and phenol, and followed first order reaction kinetics. The 153 

photodegradation rate at each time point is k[SA or phenol]t, where k is the slope of the plot of Ln 154 

(concentration) vs. the irradiation time; it is -0.0495 h
-1

 for SA and -0.0459 h
-1 

for phenol (Fig. 1). 155 
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 156 

Fig. 1 SA (a) and phenol (b) photodegradation in the Dismal Swamp sample over a 24 h irradiation in a UV solar 157 

simulator. Subsamples for measuring SA and phenol degradation rates were taken at the same time as the •OH 158 

measurements. 159 

 160 

The corrected photoformation rate of SA or phenol is the observed SA (or phenol) formation rate (Rob) 161 

plus its degradation rate. Therefore, the •OH formation rate (Rcor) was corrected and calculated by the 162 

following equation: 163 

Rcor =    = Runc+                                                                               (5) 164 

Uncorrected •OH formation rate (Runc), corrected formation rate (Rcor), and instantaneous formation 165 

rates (Rins) at each time point during 15 d are shown in Fig. 2 and Fig. 3.  Rins was assumed to be the true 166 

•OH formation rate; i.e., the degradation of SA or phenol is negligible for a one hour irradiation (Fig. 1).  167 

The negative Runc values at the longer irradiation times (Fig. 2 and Fig. 3) is probably due to the 168 

substantial photodegradation of the probe photoproducts upon long-term irradiation. 169 

Comparison of •OH formation rates 170 

Between 2h and 8 h, Runc values were lower than Rins values (Table 1).  The differences averaged 29 % 171 

using benzoic acid and 16% using benzene as probes; thus ROH significantly underestimated •OH 172 

formation. By performing corrections for probe product degradation, the agreement improved. The 173 

differences between Rcor and Rins averaged 8 % using benzoic acid and 4% using benzene as probes. 174 

However, for longer irradiation periods (more than 8 h), neither Runc nor Rcor agreed well with Rins, as 175 

differences were >30 %. The reason for the large discrepancies might be that the added probes changed 176 

DOM photodegradation and OH production pathways, which only became significant after long-term 177 

irradiations containing the probe. Therefore, for long-term irradiations (e.g., > ~1 day) Rins should be used 178 

to determine the OH production rate. There were no significant differences in Rins between two different 179 

probes (paired t test, P=0.1066) for up to 15 days of irradiation (Fig. 4).   180 

 181 
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Table 1. Uncorrected •OH formation rate (Runc), corrected formation rate (Rcor), and instantaneous formation rates 182 

(Rins) during 8 h (n=2) 183 

Time (h) 
•OH fomation rates (µM/h) by using 

Benzoic acid Benzene 

 Runc Rcor Rins Runc Rcor Rins 

1 10.5±0.1 11.0±0.1 10.8±0.1 10.3±0.5 10.6±0.5 10.7±0.1 

2 9.0±0.1 9.9±0.1 10.1±0.4 9.3±0.4 9.9±0.5 10.0±0.4 

4 6.5±0.3 8.3±0.3 9.6±0.4 8.0±0.1 9.0±0.1 9.6±0.5 

6 5.6±0.2 7.8±0.2 9.0±0.3 7.2±0.1 8.6±0.1 9.0±0.3 

8 5.2±0.4 8.0±0.4 8.3±0.5 6.6±0.6 8.1±0.6 8.3±0.5 

   184 

 185 

Fig. 2 Runc,  Rcor and Rins using benzoic acid as probe for 8h (a) and 15 day (b) irradiations of Dismal Swamp water. 186 

Error bars are within the data points unless otherwise indicated.   187 

 188 

Fig. 3. Runc,  Rcor and Rins using benzene as probe for 8 h (a) and 15 day (b) irradiations of Dismal Swamp water. 189 

Error bars are within the data points unless otherwise indicated. 190 
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 191 

Fig.4. Comparison of Rins between two probes for a 15 day irradiation of Dismal Swamp water. Error bars are within 192 

the data points unless otherwise indicated. 193 

 194 

    Measurements were also conducted in a low DOC (3 ppm) sample from the Elizabeth River (salinity of 195 

20). Only benzene was used as the •OH probe because it has higher Y and, thus a somewhat better 196 

selectivity than benzoic acid
36

; and its corresponding photoproduct phenol has higher fluorescent intensity 197 

than SA. The photodegradation rate of phenol in the Elizabeth River sample was 0.00443 h
-1

, which is 198 

only 1/10 of that for the Dismal Swamp water sample. •OH formation rates were also low in the Elizabeth 199 

River sample (< 40 nM/h). However, this is not only due to low DOM, but also due to competing natural 200 

•OH scavengers including CO3
2-

 and Br
- 
in saline water

12, 37
. The t test showed no significant differences 201 

between Runc, Rcor and Rins during 6 h of irradiation (P>0.17) (Fig. 5. a): thus, use of a correction or 202 

instantaneous rate was not necessary. However, significant differences were observed for irradiations > 203 

~24h (Fig. 5. b); thus the measurement of Rins also appears to be necessary for long-term irradiations, 204 

even for this relatively low DOC sample. 205 

 206 

Fig. 5. Runc,  Rcor and Rins for 24 h and 11 day irradiations of Elizabeth River water. Error bars are within the data 207 

points unless otherwise indicated. 208 

 209 

Possible •OH formation pathways in Dismal Swamp water 210 
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    Rins values were positive through 15 days of continuous irradiation, and ranged from ~10.5 µM/h on 211 

day 1 to ~2 µM/h on day 15 (Fig. 4). After day 1, the rate decreased until a plateau at ~6 µM/h was 212 

reached (from ~day 3 to day 12), after which it dropped to ~2 µM/h on day 15. During the irradiation, 213 

DFe decreased from nearly 20 µM to 3 µM (Fig. 6a), and photochemically-induced flocculation was 214 

observed after day 4. The photoproduction of H2O2 varied widely over the irradiation (Fig. 6c.d). H2O2 215 

showed strong initial production, but fell to zero between day 2 and day 4, and then was produced again 216 

after day 4 upon the onset of flocculation.  We hypothesize that the photo-Fenton reaction was the main 217 

source of the •OH initially, on the basis of high DFe and high H2O2 photoproduction from DOM during 218 

the first day.  Nitrate photolysis was likely a negligible source of •OH as the maximum •OH production 219 

from nitrate was only ~2.1 x 10
-3

 µM /h, based on a dissolved nitrogen concentration and assuming all 220 

dissolved nitrogen was nitrate and assuming an •OH photo-production rate from nitrate of ~1.1 x 10
-3

 µM 221 

•OH/h per µM nitrate
12

 
37

. To test for the effect of iron (i.e., the photo-Fenton reaction), an aliquot of 222 

Dismal Swamp sample was irradiated with 100 µM DFOM, which effectively binds all DFe into a 223 

photochemically unreactive complex
6
. The DFOM addition reduced the •OH formation rate by about 90% 224 

during an 8 h irradiation, thus confirming the initial importance of Fenton chemistry in •OH 225 

photoproduction in the Dismal Swamp sample. Between day 4 to day 7, H2O2was again being 226 

photoproduced (Fig. 6c, d), but a sharp decrease in DFe was also observed during this period, which is 227 

likely decreased the importance of Fenton chemistry relative to OH photoproduction from other sources, 228 

in particular DOM photoreactions
23

. The reasons for the reappearance of H2O2 after day 4 are not known, 229 

but may be related to major photochemically-induced changes in DOM composition and structure
38

 and to 230 

the initialization of DOM photoflocculation after day 4 
23, 39

.  This is supported by the inverse relation 231 

(R
2
=0.97) between the DOC-normalized OH production rate and the DOC-normalized DFe concentration, 232 

particularly after day 4 (Fig. 6b). To our knowledge, this behavior of H2O2 photoproduction has not been 233 

previously observed and, thus, warrants further study. After day 10, as most DOM had been degraded or 234 

mineralized, •OH formation decreased again. 235 

    It needs to be pointed out that, in addition to trapping the free •OH, these probes (as well as most other 236 

commonly used •OH probes) also react with other highly reactive hydroxylating species 
8, 40-42

: e.g., 237 

excited quinones triplets photochemically produce a species capable of hydroxylation, even though these 238 

species exhibit reactivities about one an order of magnitude lower than the free •OH
40

. As quinone 239 

structures were observed in the Dismal Swamp DOM by FTIR
 
(unpublished data), it is likely that these 240 

hydroxylating species contributed to the formation of hydroxylated compounds from the added probes. 241 

Moreover, during the photo-Fenton reaction, the highly reactive and oxidizing ferryl ion, Fe(IV), can be 242 

formed, although at relatively low rates
34, 43

. This species is capable not only of abstraction of a hydrogen 243 
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atom, even from methane
44

, but also of aromatic and benzylic hydroxylation, e.g. conversion of benzene 244 

to phenol
45, 46

. Although the ferryl ion is less oxidizing than the hydroxyl radical
47

 , we cannot reject its 245 

possible minor contribution to probe product formation in our iron rich system. Thus, in this study, all 246 

reported •OH production rates include both free •OH and any highly reactive species capable of 247 

hydroxylation the probe molecules. However, even if part of the probe product signal is due these other 248 

reactive species, they (in addition to •OH) may have played role in the transformation of DOM, as DOC 249 

decreased about 75 % after 15 days irradiation, in agreement with Helms et al.
39

. Details of 250 

phototransformation pathways of DOM will be further discussed in a future study. 251 

 252 

Fig.6. (a) •OH formation rate, DFe and H2O2 concentration; (b) •OH formation rate, DFe and H2O2 concentration 253 

normalized to DOC; (c) •OH formation rate, DFe loss rate and H2O2 formation rate; (d) •OH formation rate, DFe 254 

loss rate, and H2O2 formation rate normalized to DOC during irradiation. •OH ( ), H2O2 ( ), and DFe ( ). 255 

Equivalent time points for iron and H2O2 were calibrated based on measured DOC in photodegraded subsamples 256 

relative to the original sample (DOC as %).  257 

 258 

Conclusions 259 
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In both DOM-rich and poor natural waters examined in this study, the methods for measuring •OH 260 

formation rates by obtaining sequential cumulative concentrations of photoproducts from probes 261 

substantially underestimated the actual •OH formation rate during long-term irradiations. Therefore, it is 262 

recommended that instantaneous formation rates be used to estimate •OH photochemical formation rates 263 

during long-term irradiation experiments, regardless of the probe used. For short-term irradiations of 264 

natural waters, it is recommended that photodegradation rates of corresponding probe photoproducts be 265 

determined in order to correct the OH production rate. Our results also showed that, in the iron- and 266 

DOM-rich sample, •OH is likely produced mainly from the Fenton and photo-Fenton reactions initially, 267 

but after that, •OH appears to be produced mainly by other pathways, in particular DOM photoreactions, 268 

the mechanisms of which need to be further studied. 269 
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