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The transmembrane anion transport activity of 43 synthetic molecules based on the structure of marine 

alkaloid tambjamine were assessed in model phospholipid (POPC) liposomes. The anionophoric activity 

of these molecules showed a parabolic dependence with lipophilicity, with an optimum range for 

transport efficiency. Using a quantitative structure-transport activity (QSAR) approach it was possible to 

rationalize these results and to quantify the contribution of lipophilicity to the transport activity of these 10 

derivatives. While the optimal value of log P and the curvature of the parabolic dependence is a property 

of the membrane (and so similar for the different series of substituents) we found that for relatively 

simple substituents in certain locations on the tambjamine core, hydrophobic interactions clearly 

dominate, but for others, more specific interactions are present that change the position of the membrane 

hydrophobicity parabolic envelope. 15 
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Introduction 

The control of the transmembrane transport of ions is an essential 

function of living organisms. This control is essentially exerted 

by transmembrane proteins, although there are small lipophilic 

molecules (ionophores) capable of facilitating the transmembrane 5 

transport of ions.1,2 The vast majority of identified natural 

ionophores are cation selective. Nevertheless, anion transport is 

no less important and the characterization of the facilitated 

transmembrane anion transport by both natural and synthetic 

systems is receiving increasing attention.3-8 These molecules 10 

could have potential in the treatment of conditions derived from 

the defective regulation of chloride and bicarbonate transport 

such as Cystic Fibrosis or Bartter´s syndrome.9,10 Moreover 

naturally occurring cationophores find applications as 

antimicrobials and biomembrane research tools, thus, anion 15 

selective ionophores could find similar applications.  

 Among the identified naturally occurring anionophores, the 

structurally related prodiginines and tambjamine alkaloids are the 

most studied examples.11 These compounds show interesting 

pharmacological properties including antitumor activity.12,13 The 20 

synthetic prodiginine analogue Obatoclax has been shown to 

display promising anticancer activity in the clinic.14 We have 

demonstrated that the ionophoric activity of these compounds is 

related to their cytotoxicity.15 Active ionophores are able to 

disrupt intracellular pH gradients and to trigger apoptosis in 25 

cancer cells.16-19  

 An increasing number of synthetic molecules capable of 

facilitating anion transport by forming lipophilic supramolecular 

complexes or membrane spanning channels have been reported in 

the literature.20-23 Despite this progress, the knowledge of the 30 

requirements for designing effective anion transporters remains 

poor, and identification of active derivatives is mostly based on 

trial/error methods. Qualitative structure-transport activity studies 

underscored lipophilicity as one of the most important factors 

influencing the ionophoric activity of these compounds.24 35 

Moreover, we have also introduced the concept of lipophilicity 

balance in the design of these compounds.25 Quantitative 

structure–activity relationship (QSAR) approaches are widely 

employed in medicinal chemistry. QSAR constitutes a powerful 

tool to assist rational molecular design and to predict different 40 

physicochemical properties.26 Recently, we have reported a 

quantitative structure-transport activity (QSAR) study of the 

anion binding and transport of a series of 1-hexyl-3-

phenylthioureas bearing various substituents at the para- 

positions of the aromatic ring.27 This study allowed us to 45 

determine a statistically relevant model correlating anion 

transport activity with parameters such as lipophilicity, the 

Hammett coefficient of the varied substituent and SPAN, a 

descriptor for molecular size. Prompted by this success we 

decided to perform a more ambitious study introducing several 50 

structural changes on the studied molecules. We aimed to 

investigate a series of active anion transporters having dissimilar 

lipophilicity values as well as transport activities. In this regard, 

the tambjamine alkaloids represent ideal candidates because of 

their synthetic accessibility and tolerance to different substituents 55 

while remaining as active transmembrane anion transporters. In 

this work we present a QSAR study of the transmembrane anion 

transport activity of 43 tambjamine inspired transporters, aimed 

to shed light on the structural design requirements to successful 

anion carriers and the quantification of the relationships between 60 

lipophilicity and transmembrane anion transport activity of small 

molecules. 

 

Results and discussion 

A series of tambjamine derivatives 1-43 were selected for this 65 

work (Fig. 1). Tambjamines are marine alkaloids characterized by 

a 4-methoxy-2,2´-bipyrrole core. Some of the studied compounds 

are natural products such as tambjamine B (20), tambjamine C 

(31), tambjamine K (32) or BE-18591 (30), whereas others are 

synthetic tambjamine analogues. With this selection we aimed to 70 

create a library of compounds including systematic variations on 

the enamine substituent and also to explore the possibility of 

replacing the -OMe group characteristic of naturally occurring 

derivatives by a benzyloxy group. The synthesis of these 

compounds is straightforward from the appropriate 75 

bipyrrolealdehyde.28 Compounds 5, 9, 20-32, 34, 35, 37-40 and 

42 have been previously reported and all of them were 

characterized by standard methods.29 
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Fig.1 Compounds included in this study  

Anion transport assays 

In order to measure the transmembrane transport activity of 

compounds 1-43, the chloride efflux from 1-palmitoyl-2-oleoyl-5 

sn-glycero-3-phosphocholine (POPC) chloride loaded vesicles 

was monitored over time using a chloride selective electrode, 

according to reported methods.30 Briefly, 200 nm POPC 

liposomes loaded with chloride (489 mM NaCl, 5 mM phosphate 

buffer pH 7.2) were prepared. These vesicles are then suspended 10 

in an isotonic nitrate solution (489 mM NaNO3, 5 mM phosphate 

buffer pH 7.2) and the studied compound added as a DMSO 

solution (typically 10 µL or less to avoid any influence in the 

outcome of the experiment). The chloride release is then 

monitored over 300 s using a chloride selective electrode. A final 15 

reading, considered to be 100% chloride release, was obtained 

after addition of detergent to lyse the vesicles. The transport 

assays were repeated at different carrier concentrations. These 

data were subjected to Hill analyses in order to obtain a 

quantitative measure of the transporter efficiency.31 Thus the 20 

effective concentrations required to induce 50% of chloride efflux 

in the time scale of the experiments (300 s) were calculated 

(EC50, Table 1). Hill analyses also provided the Hill parameter n 

values. The Hill parameters were all consistent with a mobile 

carrier mechanism.32 All the studied compounds were found to be 25 

highly active anion carriers, with EC50 values of 0.003-0.346 

mol% carrier/lipid. The initial rate of chloride release (kini) was 

also calculated for carrier loadings of 0.05 mol% compound to 

POPC. An overview of all these data is provided in Table 1. 

Quantitative analysis of transmembrane anion transport 30 

Quantitative structure-transport activity (QSAR) studies represent 

a commonly employed approach to modelling physical and 

biological properties of compounds. 26,33 This approach is a 

powerful tool for structure optimization and targeted design of 

new compounds. The objective of a QSAR study is the 35 

construction of a statistically relevant model. Using a 

combination of software sources: ALOGPS 2.1 and e-dragon 

1.0,34,35 (which gave constitutional descriptors, topological 

descriptors, topological charge indices, geometrical descriptors, 

WHIM descriptors, charge descriptors and molecular properties), 40 

Chemicalize,36 ACDiLabs 2.0,37 TorchV10lite38 and 

ChemBioDraw 12.0 ultra software39 a total of 506 descriptors 

were calculated. Based on our previous observations, we 

identified lipophilicity as an important parameter determining the 

transmembrane transport efficiency of a given transporter.27 In 45 

order to obtain an experimental measure of this property, the 

retention times (RT) of all compounds were measured using 

reverse phase HPLC. In this assay, lipophilic compounds show 

higher retention times whereas hydrophilic compounds are eluted 

more quickly. 40 These experiments are used as an indirect 50 

measure of the lipophilicity. On the other hand, log P, the 

octanol-water partition coefficient, is the more employed 

quantitative measure of lipophilicity. The importance of this 

parameter41 in medicinal chemistry and drug discovery has led to 

the development of several software packages to predict the log P 55 

values without the need of experimentally time consuming 

measures. Moreover, these predictions allow the calculation of 

log P values of virtual compounds. Simple correlations of the 

measured RT and the different calculated log P values showed an 

excellent agreement (see ESI, logP_RT_correlations.pdf).40 This 60 

correlation supported the validity of computationally obtained log 

P values for these compounds. The best correlation was found for 

the calculated ALOGPs values using the ALOGPs 2.1 software, 

therefore ALOGPs descriptor was selected as the best log P 

descriptor. Those values are shown in Table 1 along with RT 65 

data. 
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Table 1 Overview of transmembrane anion transport data: EC50, n, initial 

rate of chloride release (kini), log P and retention times  

Compound EC50 
Hill 

parameter n 
kini

a log Pb 
Retention Time 

(min) 

1 0.00719 1.19 0.952 3.08 10.4 

2 0.00613 1.23 1.41 3.74 11 

3 0.00699 1.25 1.24 4.17 11.6 

4 0.00779 1.32 1.17 4.63 12.2 

5 0.0104 1.29 1.02 4.72 11.9 

6 0.00951 1.25 1.13 5.02 12.7 

7 0.288 0.965 0.0231 7.11 14.5 

8 0.0688 1.42 0.229 2.58 8.8 

9 0.0197 1.29 0.638 2.86 9.8 

10 0.0134 1.28 0.786 3.37 10.5 

11 0.0231 1.31 0.470 3.76 11 

12 0.0260 1.29 0.494 3.2 10.4 

13 0.0208 1.18 0.474 2.92 9.6 

14 0.0155 1.27 0.661 3.49 10.3 

15 0.0236 1.37 0.444 3.62 10.5 

16 0.0221 1.29 0.510 3.76 10.8 

17 0.0167 1.48 0.830 2.68 9 

18 0.0494 1.59 0.314 2.11 8.2 

19 0.197 0.853 0.0919 1.88 n.d. 

20 0.346 1.30 0.0368 1.03 7 

21 0.0921 1.08 0.215 1.55 7.7 

22 0.0274 1.03 0.517 2.03 8.5 

23 0.0116 0.860 0.743 2.46 9.3 

24 0.00648 1.18 1.46 2.99 10.2 

25 0.005 1.19 1.50 3.52 10.9 

26 0.00451 1.51 1.52 4.02 11.5 

27 0.00312 1.07 2.63 4.79 12.1 

28 0.0038 1.10 1.63 5.1 12.6 

29 0.0053 1.33 1.54 5.36 13.1 

30 0.00731 1.15 1.09 6.14 13.8 

31 0.0113 1.20 0.941 2.24 9.2 

32 0.00668 1.05 1.01 2.84 10 

33 0.0977 0.963 0.224 1.5 n.d. 

34 0.0157 1.32 0.744 4.4 11.5 

35 0.0116 1.20 0.708 5.94 13.1 

36 0.0123 0.857 0.321 6.46 n.d. 

37 0.0133 1.45 0.600 4.38 11.6 

38 0.00878 1.43 1.69 3.3 11.3 

39 0.0196 1.14 0.605 3.62 10.7 

40 0.00968 1.74 1.16 4.49 11.9 

41 0.00517 1.15 1.04 6.07 n.d. 

42 0.0204 0.929 0.420 6.42 13.9 

43 0.0616c -c 0.186 7.14 10.4 

n.d. not determined; aValues calculated by fitting the plot of relative 

chloride release (y) versus time (x) for 0.05 mol% compound to lipid to 
an asymptotic function y = a-b·cx. The initial rate of chloride release (kini 5 

in %s-1) is given by -bln(c); blog P values calculated using ALOGPs 2.1 

software. cDetermined via correlation between kini and EC50 (see ESI). 

 A simple plot of the transport activity, expressed as log 

(1/EC50), vs ALOGPs or retention time (RT) suggested a 

parabolic dependence of these variables (Fig. 2(a) and (b)). The 10 

rationale behind this observation is that there is an optimum 

compromise in the hydrophilicity/hydrophobicity balance, which 

maximizes the transmembrane transport activity of a given 

compound.24 A too hydrophilic transporter would not partition 

into the phospholipid membrane whereas a too hydrophobic 15 

derivative would not be able to move away from the membrane 

core and thus act as a carrier. At the beginning of the modelling 

part of this study, a set of 38 compounds had been synthesized. 

However, the majority of these compounds were present in the 

middle of the explored ALOGPs range (values from 2 – 6) with 20 

only a few compounds above or below this range. Therefore, the 

need of including further compounds, having low and high log P 

values, to confirm this parabolic dependence and to avoid an 

excessive leverage of data corresponding to compounds 

displaying low activity and extreme log P values was evident. 25 

Compounds of a similar structure to the existing tambjamines 

were hypothesised and their ALOGPs values calculated. Those 

that fell in the ranges of 1-2.5 and 5-7.5 were considered suitable 

and suggested for synthesis. Thus, 5 additional tambjamine 

derivatives (numbers 19, 33, 36, 41, 43) were synthesised and 30 

measured (the new molecules are highlighted by * in Fig. 2(c)). 

Attempts to find simple correlations between the anion transport 

activity and the lipophilicity of tambjamine derivatives were not 

satisfactory. Therefore, it was evident that a more sophisticated 

analysis should be made. 35 

 
Fig. 2 (a) Plot of log(1/EC50) vs ALOGPs of the first set of 38 

compounds; (b) plot of log(1/EC50) vs RT of the first 38 compounds; (c) 

plot of log(1/EC50) vs ALOGPs showing all 43 compounds, the new 

molecules are highlighted by * 40 

Data Cleaning 

Prior to running any QSAR analyses the descriptor dataset was 

cleaned. Descriptors were removed if they were incomplete with 

values unavailable for some of the molecules, if the values were 

classed as non-numeric or if the descriptors had little or no 45 

variation across the dataset. Following the cleaning of the dataset, 

a total of 330 descriptors remained (see ESI, 

Tambjamines_dataset_cleaned.csv). The descriptor dataset still 

contained different calculated values of log P. Some descriptors 
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are the square of another descriptor, e.g. ALOGPs-sq. 

QSAR – stratified sampling and bootstrap 

In the first stages of the investigation, the initial dataset (38 

compounds) was split into a training set and a test set using 

conventional QSAR methods, and attempts were made to validate 5 

a number of model fits using cross-validation techniques. The 

cross validation methods were not successful with this dataset. 

Although the dataset is of a reasonable size, splitting the dataset 

into a training and test set resulted in a test set only containing 6 

compounds. Due to the parabolic relationship between 10 

Log(1/EC50) and log P and high leverage of the few molecules 

with high or low log P, the selection of the test set had an 

extremely large influence on the validation statistics obtained. It 

is apparent that if the training set were to miss out even a few of 

the high and low log P molecules then the most reasonable fit 15 

would simply be a line almost independent of log P. 

 To cope with the leverage of the high and low log P molecules, 

a stratified test set selection method was employed, ensuring that 

compounds were selected for the low, mid and high log P ranges. 

However, the size of the dataset and the relatively few molecules 20 

in the strata does not allow for much flexibility in the selection. 

To minimise test set selection bias and maximize the information 

from all the molecules in the dataset, a bootstrap method was 

selected as a suitable method for validation of the model fits. 

Using the bootstrap package, boot, in R,42, 43 the data were 25 

sampled from the full dataset and the statistics calculated, using a 

resampling of the dataset 999 times. Comparing the confidence 

intervals for the bootstrap fit and the linear least squares 

prediction highlights the reasonable robustness of the fits. 

QSAR Models 30 

The first avenue that was explored was fitting the whole dataset 

to one model. The full descriptor set was examined in JMP,44 and 

using the stepwise fit a ‘fit all models’ was run, modelling the 

Log(1/EC50) against the set of descriptors with a maximum of 

three parameters for the model. (four parameters generated too 35 

many models for the available computing power, four parameter 

models were generated with a subset of descriptors). The 

modelling considered ALOGPs and ALOGP-sq as lipophilicity 

descriptors. As described earlier, the ALOGPs descriptor was 

identified as the best log P descriptor through correlation with 40 

retention times. (RT) (for full correlations see ESI (log 

P_RT_correlations.pdf)). 

The simple parabolic two parameter model (ALOGPs, ALOGP-

sq) generates the following equation (1) with an R2 value of 

0.629: 45 

 

Log(1/EC50) = -0.579 +1.203 ALOGPs – 0.133 ALOGPs-sq 

(1) 

 Increasing the number of parameters to three increased the R2 

value to approximately 0.79 for the top models. All the top 20 50 

models have an R2 value above 0.74. Summary information about 

the 10 best three-parameter models to the whole dataset is shown 

in Table 2, ranked by R2 values (additional models can be seen in 

ESI).  

 Following the ‘fit all models’ fit, confidence intervals were 55 

obtained for a selected number of models from the least-squares 

analysis. These models were then also run through a bootstrap 

method in R to obtain confidence intervals using a sampling 

method. Due to the distribution of the data still being heavily 

biased towards the middle of the ALOGPs range, we utilised a 60 

stratified selection within the bootstrap function to ensure that a 

selection of points from the lower and upper regions were always 

included. 

Table 2 Best fitted 3 and 4 parameter models, ranked by R2 values. 4 

parameter models are fitted with a small subset. 65 

No. 

Des. 
Descriptors R2 

3 ALOGPs ALOGPs-sq Mv – 0.7901  

3 ALOGPs ALOGPs-sq J3D – 0.7892  

3 ALOGPs ALOGPs-sq Mp – 0.7836  

3 ALOGPs ALOGPs-sq nH – 0.7822  

3 ALOGPs ALOGPs-sq AMW – 0.7768  

3 ALOGPs ALOGPs-sq J – 0.7680  

3 ALOGPs ALOGPs-sq E3u – 0.7672  

3 ALOGPs ALOGPs-sq ARR – 0.7654  

3 ALOGPs ALOGPs-sq Density (g/cm3) – 0.7615  

3 ALOGPs ALOGPs-sq Surface tension (dyne/cm) – 0.7571  

4 ALOGPs ALOGPs-sq nCIC J3D 0.8160  

4 ALOGPs ALOGPs-sq nH J 0.8152  

4 ALOGPs ALOGPs-sq AMW J 0.8151  

4 ALOGPs ALOGPs-sq AMW J3D 0.8141  

4 ALOGPs ALOGPs-sq J3D Ui 0.8140  

4 ALOGPs ALOGPs-sq Density (g/cm3) J3D 0.8138  

4 ALOGPs ALOGPs-sq Density (g/cm3) J 0.8121  

4 ALOGPs ALOGPs-sq Parachor (cm3) nH 0.8099  

4 ALOGPs ALOGPs-sq Molar refractivity (cm3) nH 0.8085  

4 ALOGPs ALOGPs-sq Polarizability (cm3) nH 0.8084  

 

 Confidence intervals obtained from the bootstrap function 

were well aligned with the confidence intervals obtained from the 

linear fit (Table 3). (See ESI for additional details) This suggests 

that the fits are quite robust. The most variation comes in the 70 

coefficient for the intercept with a much narrower range in the 

ALOGPs and ALOGPs-sq coefficients. However, plotting actual 

vs predicted for the models gives a fairly similar appearance for 

all of the selection of ten models (See ESI for details). 
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Table 3 Coefficients and confidence intervals for the best two, three and 

four parameter models 

 

 
Model 

parameters 

ALOGPs 

ALOGPs-

sq 

ALOGPs 

ALOGPs-
sq 

Mv 

ALOGPs 
ALOGPs-

sq 

nCIC 
J3D 

  R2 0.6292 0.7901 0.816 

C
O

E
F

F
IC

IE
N

T
S

 

 Intercept -0.579 3.362 -5.105 

Linear fit 
2.5% C.I. -1.165 1.838 -7.579 

97.5% C.I. 0.008 4.887 -2.632 

Bootstrap 
2.5% C.I. -1.108 2.159 -7.681 

97.5% C.I. -0.086 4.419 -2.694 

 ALOGPs 1.203 1.372 1.284 

Linear fit 
2.5% C.I. 0.903 1.135 1.056 

97.5% C.I. 1.504 1.610 1.511 

Bootstrap 
2.5% C.I. 0.904 1.126 1.087 

97.5% C.I. 1.470 1.579 1.493 

 ALOGPs-

sq 
-0.133 -0.158 -0.146 

Linear fit 
2.5% C.I. -0.168 -0.186 -0.172 

97.5% C.I. -0.098 -0.129 -0.120 

Bootstrap 
2.5% C.I. -0.166 -0.190 -0.173 

97.5% C.I. -0.093 -0.123 -0.116 

 3rd 

parameter 
 -6.616 0.411 

Linear fit 
2.5% C.I.  -9.063 0.057 

97.5% C.I.  -4.168 0.764 

Bootstrap 
2.5% C.I.  -8.432 0.064 

97.5% C.I.  -4.473 0.796 

 4th 
parameter 

 

1.587 

Linear fit 2.5% C.I. 0.808 

97.5% C.I. 2.367 

Bootstrap 2.5% C.I. 0.796 

97.5% C.I. 2.330 

 

 As shown by the models described in Table 2, there were a 

large number of calculated descriptors that seemed to offer 5 

potentially useful additional descriptive power to the fits, but 

without any clear advantage of one over the others (apart from 

the clear importance of log P). This suggested that Principle 

Component Analysis and Partial Least Squares analysis might be 

useful. However, this led to insignificant improvements in the 10 

models, and made the contributions of the terms in the models 

less clear. Therefore, we sought an alternative classification 

approach along the lines of partial decisions trees by modelling 

subsets of the compounds based on the structural features of the 

molecules. 15 

Structural Classification 

The compounds in this series share a bipyrrole core structure, and 

the rest of the structure can be categorised by three variations on 

backbone structure (see Fig. 3). The R4 position on the 

heterocycle (ring-substituent) is either occupied by an OMe group 20 

or by an OBn group, the R5 position (enamine-substituent) is 

either an NH group or a NH-Ph moiety (with two exceptions: 

compound 19 is NH-CH2-Ph and compound 38 is NH-py), the R6 

substituent (R-group) is quite varied but can be grouped into the 

type of substituent e.g. alkyl, halogen, etc. The presence or 25 

absence of a structural feature is a key aspect which could have 

an effect on the activity of a molecule. Due to this we looked into 

separating the set of molecules into groups by the structural 

substituents.  

 30 

Fig. 3 Backbone structure of tambjamines (left). Overlay of compounds 

side on and face on (green - compound 7, red - compound 25, grey - 

compound 37) highlighting the similarities and differences of the 

structural subgroups (right).   

 35 

Fig. 4 Plot of log(1/EC50) vs ALOGPs splitting the dataset by different 

substituents: a) ring-substituent (R4), b) enamine-substituent (R5), c) R-

type (R6), see Fig 3.  

 Splitting by ring-substituent R4 gives two groups: thirty-three 

compounds with a methoxy group and ten compounds with a -40 

OBn substituent (Fig. 4a). Splitting considering R5 group gives 

two main groups and two points that do not fit into either the NH 

or NH-Ph classification. The NH group has nineteen compounds 

and the NH-Ph group has twenty-two compounds (Fig. 4b). 

Splitting by the R6 group is fairly difficult as there are a variety of 45 

different substituents. The most populated group is that in which 
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R6 is an alkyl group, with twenty-eight compounds. The 

remaining fifteen compounds fit into six other groups (Fig. 4c). 

 The subset with the most interesting grouping involves the 

split by enamine-substituent R5 (Fig. 4b). From plotting 

Log(1/EC50) against ALOGPs (assuming a parabolic relationship) 5 

we have two sets of data where the peak Log(1/EC50) values 

appears to change between the two sets. However the optimum 

log P value appears to be similar for the two sets. The R-Type 

plot shows a nice parabolic relationship for the R6 alkyl R-Type, 

however the other groups are not populated well enough to show 10 

a proper correlation. The reason for this is that in the NH group 

set the main substituent that is possible is an alkyl chain. On the 

other hand, with the benzene ring in NH-Ph there is the 

opportunity to substitute a wider variety of R-types. Since there is 

only a substitution at the para position it limits the number of 15 

compounds that will have the same R-type substituent. Due to 

this we choose to take only those compounds with an alkyl 

substituent and carry out modelling of the subset using the lme4 

package,45, 46 in R. This package allows us to use an entire dataset 

to fit the curve of the parabola, whilst allowing the subset of data 20 

to adjust the positioning of the curve by changing the intercept. A 

linear mixed effect model (lmer) was run for the subset of the 

compounds containing an alkyl R-Type, modelling the dataset to 

the form Log (1/EC50) = a + b·ALOGPs + c·ALOGPs-sq, and 

further splitting by the substituent R4. See Fig. 5. 25 

 

 

Fig. 5 lmer fit and model for the alkyl R type for both OMe and OBn ring 

substituents (coefficients for ALOGPs and ALOGPs-sq are fitted using all 

datapoints) Points coloured by enamine-substituent: black – NH, green – 30 

NH-Ph. Shape by ring-substituent: circle – OBn, triangle – OMe   

Taking only the OMe ring substituted compounds (20 of the 28 

alkyl compounds) results in the following lmer model and plot 

(Fig. 6). 

 35 

 

Fig. 6 lmer fit and model for the alkyl R type, OMe ring substituent  

(coefficients for ALOGPs and ALOGPs-sq are fitted using all datapoints) 

Points coloured by enamine-substituent: black – NH, green – NH-Ph 

 These models show that extending a hydrocarbon tail certainly 40 

has the classic parabolic behaviour on log P with the optimum 

value of log P (and the curvature) being a property of the 

membrane (so similar for many of the subsets). The effect of the 

other substituent (OMe) and (OBn) in changing the maximum 

value of Log(1/EC50) is demonstrated but we are less clear what 45 

is driving this effect and this will be a subject for further 

investigation. 

 Figure 7 shows that by defining several sub-groups of 

substituents (in terms of substituent location and chemical) type 

we are able to demonstrate the parabolic dependence on log P and 50 

begin to highlight the aspects that are a property of the membrane 

and those that depend on more specific interactions between the 

membrane and the tambjamine molecules. The optimal value of 

log P and the curvature of the parabolic dependence is a property 

of the membrane. However, each substituent series is shifted in 55 

the maximum effectiveness of transport which is evidence that 

leads us to suggest that for relatively simple substituents in 

certain locations on the tambjamine core, hydrophobic 

interactions dominate, but for others, more specific interactions 

are present that change the position of the membrane 60 

hydrophobicity parabolic envelope.  The functions illustrated in 

Figure 7 are presented in Table 4.  

Fig. 7 Quadratic fits for all types of compound grouping, excludes groups 

with less than 3 points, showing behaviour consistent with a parabolic 

dependence on log P but with differing optimum values of log P 65 

suggesting that other aspects of the mechanism may be more significant 

in these cases. Groups are classified by the following substituents; 

R4.R5.R6(R-type). 

Enamine 

substituent 
Intercept ALOGPs ALOGPs-sq 

NH -0.6255 
1.3728 -0.1560 

NH–Ph  -0.8531 

 
  

 

Enamine 

substituent 
Intercept ALOGPs ALOGPs-sq 

NH -0.9557 
1.6373 -0.1920 

NH–Ph  -1.3088 
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Table 4 Model equations and R2 values for quadratic fits of compound 

grouping shown in Fig.7 modelling for Log(1/EC50) 

Sub Group 

 

Equation Fit 

 

R2 

 

OBn.NH.Alkyl 
Y = -4.783 + 2.737 * ALOGPs – 0.2656 

* ALOGPs2 
0.84 

OBn.NH-Ph.Alkyl 
Y = -0.2663 + 0.7575 * ALOGPs  – 

0.06513 * ALOGPs2 
0.999 

OMe.NH.Alkyl 
Y = -0.8097 + 1.509 * ALOGPs – 

0.1707 * ALOGPs2 
0.97 

OMe.NH-Ph.Alkyl 
Y = 0.1699 + 1.088 * ALOGPs – 0.1456 

* ALOGPs2 
0.999 

OMe.NH-Ph.Halogen 
Y = -6.332 + 4.936 * ALOGPs  - 0.7501 

* ALOGPs2 
0.48 

OMe.NH-Ph.O-R’ 
Y = -13.52 + 9.364 * ALOGPs – 1.42 * 
ALOGPs2 

0.98 

  

Conclusions 5 

This study demonstrates the generality of lipophilicity as a crucial 

parameter governing the transmembrane transport activity of 

synthetic anionophores. Series of structurally similar compounds 

containing a common hydrogen bonding motif and a variety of 

substitutions patterns can be grouped in subsets according to 10 

structural parameters. Analysis of sub-groups of the set of 

molecules using some knowledge of the chemical properties of 

the substituents as an aid to classification uncovered very clear 

parabolic dependence on log P for several series of substituents 

(with the set of compounds with the highest parabola possing 15 

OMe and NHalkyl substitutents). Furthermore we have 

demonstrated that while the optimal value of log P and the 

curvature of the parabolic dependence is a property of the 

membrane (and so similar for the different series of substituents) 

each series is shifted in the maximum effectiveness of the 20 

transport. This suggests that for relatively simple substituents in 

certain locations on the tambjamine core, hydrophobic 

interactions clearly dominate, but for others, then more specific 

interactions are taking place that change the position of the 

membrane hydrophobicity parabolic envelope.  We have thus 25 

gained significant insight into how substitution affects the anion 

transport properties of this important class receptor. 
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