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Automation is a reality in everyday life, including in the chemical synthesis environment. It relegates time-

consuming and repetitive tasks to machines, saving time for other activities that provide more value to sci-

entists. The development of intelligent feedback controls applying novel algorithms with real-time reaction

analysis and their combination with automation bring new opportunities for discovery, process optimization

and work-up processes, that until now have been conducted using traditional manual procedures. Further-

more, the current trend is to increase the autonomy of automated platforms that can guide the optimiza-

tion process with minimal human intervention (self-optimization). This article highlights recent progress in

continuous flow self-optimizing platforms. Monitoring techniques, intelligent algorithms, as well as the

autonomous platforms utilized are discussed.

Introduction
Synthetic chemistry and Industry 4.0

The digitization of manufacturing processes, within the so-
called Industry 4.0,1 involves the leverage of smart factories
where systems are connected and communicate with each
other to make decisions without human intervention. In prin-
ciple, as machines receive access to more and more data,
they can evolve and become much more efficient and produc-
tive. Computerization and simple process automation was
considered disruptive in Industry 3.0, now it is time to opti-
mize or refine this by the use of intelligent cyber-physical sys-
tems that connect production with logistics, based on data
collection, storage and machine learning (ML).2

The innovative chemical industry is no exception and has
adopted many of these principles in areas such as smart sup-
ply chain, safety in production and logistics.3 In other areas
such as the research and development space, automation in
chemical synthesis can be applied in several domains. For
synthetic route planning, chemists together with engineers
and IT scientists have developed computer-assisted solu-
tions4 and the field is rapidly growing.5 In the case of optimi-
zation of synthetic conditions for a particular chemical trans-
formation, this remains a largely analog process but new
approaches to build smart systems are being developed, spe-
cifically with the aid of powerful automated continuous flow
process tools.6 Governmental bodies such as DARPA in the
US (through several initiatives, including Make-It program7

and Battlefield Medicine programs)8 or the EPSRC via the
Dial-a-molecule Grand Challenge in the UK9 are examples of
collaborative efforts towards developing artificial intelligence
approaches to plan and optimize molecule synthesis.

Self-optimizing continuous flow platforms

Continuous flow chemistry is an ideal technology for the
computer-controlled optimization of chemical reactions due
to its inherent benefits, such as precise control of reaction
times, temperatures and composition. The setup of different
process conditions can be programmed upfront, the output
of each one automatically analysed and the protocol itera-
tively repeated (Scheme 1).

To the best of our knowledge, existing reviews10 focus on
the monitoring aspects of the self-optimization techniques in
flow. In this review, we aim to provide an overview of the
monitoring methods, algorithms, optimization functions, as
well as bibliography of the state-of-the-art platforms.11

Monitoring techniques

A great number of automated analytical approaches have
been developed in order to meet the requirements of science
in industry and academia. They speed up routine operations
and frees human resources. These approaches have also
aided the fast automatic synthesis of molecules by providing
quick analysis for monitoring processes and characteriza-
tion.12 The progress in the field of the implementation of
inline or online13 monitoring tools for self-optimizing plat-
forms has been reviewed at the end of 2015.10b Only more re-
cent examples will be mentioned below.

Online HPLC. Online HPLC is by far the most used tech-
nique due to its high versatility, low implementation time
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and readily availability of the offline version in almost every
synthetic laboratory. An interesting recent example from
Bourne and coworkers describes the self-optimization of the
last step of the synthesis of Osimertinib (AZD9291),14 an irre-
versible epidermal growth factor receptor (EGFR) kinase in-
hibitor using the SNOBFIT algorithm. (Scheme 2). A filtered
aliquot of the reaction mixture is sent to the HPLC through a
sample loop without quenching or dilution.

Other processes that use HPLC have also been reported by
Bourne et al., such as Claisen condensation,15 or SNAr reac-
tions with simultaneous optimization of multiple objectives
including productivity and environmental impact (E-factor)
or % impurity.16 Jensen et al. have integrated an online LC-
MS analysis with the on-demand creation of droplets, with
interchangeable reagents and catalysts, which reacted in a
fully automated microfluidic system17 (Scheme 3). They in-
corporated a refractive index sensor to timely sample and
injected a quenched aliquot through a loop into the HPLC. It
is interestingly useful to control the time for sample collec-
tion and analysis based on another detection method, espe-
cially in a flow setup where steady-state conditions are
targeted.

The same group also reported the generation of droplets
(∼15 μL) in a segmented flow reactor for a self-optimizing
platform of a photoredox reaction18 (Scheme 4).

Very recently, Jensen, Jamison and co-workers have lever-
aged the system to a reconfigurable, multi-purpose platform
capable of self-optimizing a plethora of chemical reactions19

including Buchwald–Hartwig cross coupling, Horner–
Wadsworth–Emmons olefination, reductive amination,
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Scheme 1 Typical elements of a closed-loop reaction optimization
platform. A material stream with reagents and solvents are pumped into
the reactor, where a chemical transformation occurs. The output of the
reactor is a crude reaction mixture stream that is analysed by a process
analytical technique (PAT). Sensors attached to the reactor and PAT
generate data that is stored and processed by a computer, which also
sends commands to the equipment according to the self-optimization
algorithm output that selects the next operating conditions.
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Suzuki–Miyaura cross-coupling, nucleophilic aromatic substi-
tution (SNAr), and a visible light photoredox reaction. Re-
markably, they have used this platform for a two-step process
(ketene generation followed by alkene cycloaddition) where
the product of the first reaction is of limited stability
(Scheme 5).

Gas chromatography. Gas chromatography (GC) has been
employed in cases where the high volatility of target mole-
cules does not permit the use of LC methods. In the case of
the work by Felpin et al. for the optimization of the Heck–
Matsuda reaction, an offline GC-MS analysis was carried out
after collecting samples in a fraction collector20 (Scheme 6).

In addition to offline GC, Cherkasov, Rebrov et al. de-
scribed the use of online GC analysis in several applications
of their OpenFlowChem platform for the self-optimization
of different hydrogenation reactions, using a standard

autosampler with a modified flow-through vial for
sampling.21

Lapkin et al. utilized an inline UV cell to detect flow seg-
ments subsequently triggering online GC analysis of the
aziridine products synthesized22 using model-based design of
experiments and self-optimization approaches in flow
(Scheme 7).

Online mass spectrometry (MS). Recent developments in
small-footprint mass spectrometers have enabled the moni-
toring of ion abundances of starting materials, intermediates
or products. Ley et al. have developed an internet-based reac-
tion monitoring system for the heterogeneous hydration of
3-cyanopyridine over manganese dioxide23 (Scheme 8).

Zare et al. have used the output of a mass spectrometer as
the optimization objective to develop their Deep Reaction Opti-
mizer by Reinforcement Learning.24 Four different type of reac-
tions have been optimized following this approach (Scheme 9).

Inline FTIR. Despite the great uptake of the use of infrared
radiation (IR) in the self-optimization space, given the
reported examples,10b this technique has had very limited use
in regard to self-optimization since 2015. Rueping et al. de-
scribed a self-optimizing reactor system for continuous-flow
photochemical Paternò–Büchi reactions using an FTIR flow
cell25 (Scheme 10).

Other monitoring techniques. Junkers et al. used online
SEC (size exclusion chromatography) for the analysis of final
product streams in the preparation of polymers with
predefined molecular weights in high accuracy.26 Felpin et al.
described the use of either online HPLC or inline benchtop
NMR for monitoring purposes depending on several parame-
ters discussed in their work, with an interesting comparison
of pros and cons of these two techniques.27 A self-optimized

Scheme 3 Concept diagram for on-demand preparation, reaction,
analysis and feedback in automated reaction flow screening.
Reproduced from ref. 17 with permission from the American Chemical
Society.

Scheme 4 Photoredox iridium–nickel dual-catalyzed decarboxylative
arylation cross-coupling. Reproduced from ref. 18 with permission
from the American Chemical Society.

Scheme 5 Substrate scope of the auto-optimized ketene generation
and [2 + 2] cycloaddition. Reproduced from ref. 19 with permission
from American Association for the Advancement of Science.

Scheme 2 Automated flow reactor with adaptive feedback control
and optimization algorithm. Reproduced from ref. 14 with permission
from the Royal Society of Chemistry
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[3,3]-Claisen rearrangement platform for the synthesis of an
intermediate of the natural product carpanone is depicted in
Scheme 11.

Intelligent algorithms

Today's automated platforms tend to incorporate intelligent
algorithms to guide the optimization process and reduce the

level of human intervention. This means that automation is
not only performed at a control level of the equipment and
monitoring of process variables; rather, closed loops and
feedback controls are incorporated to decide the next experi-
mental conditions for the reaction to optimize. This ap-
proach enables reduction of human bias in the process of re-
action optimization and, ideally, reduction of the number of
experiments required to reach the optimum by following the
most efficient decision path.

A variety of algorithms have been used in reaction self-
optimization examples. Depending on the algorithm, either a
local or a global optimal solution can be found. While a
global optimal solution is a feasible solution with a value for
the objective function that is as good or better than any other
feasible solutions, a local optimum is a feasible solution that
is better than neighboring solutions, but does not guarantee

Scheme 6 Optimization of a Heck–Matsuda reaction using a Nelder–
Mead simplex method. Reproduced from ref. 20 with permission from
the American Chemical Society.

Scheme 7 Schematics of the automated continuous-flow system
used for model development and “black-box” sequential optimization.
Reproduced from ref. 22 with permission from Beilstein-Institut.

Scheme 8 a) 3-Cyanopyridine was converted to its amide over MnO2

as a demonstration of simple experiment automation, b) the mass
spectrometer response collected by LeyLab when a single plug of
reagent solution was passed through the packed column (the blue line
corresponds to the starting material, while the orange line represents
the product). Reproduced from ref. 23 with permission from the
American Chemical Society.

Scheme 9 Optimization of different chemical reactions with deep
reinforcement learning. Reproduced from ref. 24 with permission from
the American Chemical Society.

Scheme 10 Self-optimizing photo-flow Paternò–Büchi reaction setup
with two HPLC pumps and on-line ReactIR. Reproduced from ref. 25
with permission from Elsevier.
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to be the best within the entire design space (Fig. 1). Fre-
quently, a target value for the objective function is specified
and when the algorithm finds conditions that yield this value
the optimization process terminates. Alternatively, termina-
tion is defined when two consecutive solutions are closer
than a predefined tolerance, or when a maximum number of
iterations is reached. It is also important to consider how the
experimental error affects the efficiency of the algorithm.
That is, if there is noise in the data or if there is an outlier,
will the algorithm deviate from the local optimum, or rather,
will the algorithm self-correct its path to yield the local
optimum.

Classical optimization methods base the search in a point-
by-point approach (one solution is modified to a different
one in each iteration).28 In the gradient-free direct (or pat-
tern) search method, only the objective function and
constrained values guide the search. However, gradient-based
methods use first- and/or second-order derivatives of the
objective function and/or constraints. While gradient-based
methods offer rapid convergence, gradient-free methods are
widely applicable to both continuous and discrete functions.
Nelder–Mead simplex is a gradient-free method, while the
steepest descent (or ascent) and the conjugate gradient are
gradient-based.29

Nelder–Mead simplex (Nonlinear Simplex)30 – and its dif-
ferent versions – is probably the most used gradient-free
method in reaction self-optimization together with the
SNOBFIT algorithm. The algorithm forms a simplex with n +
1 (ref. 32) vertices and reshapes at each iteration depending
on the new function evaluation value after ordering the verti-
ces (Fig. 2). It is efficient for problems with fewer than ten
design variables. This algorithm leads to local optima, but
coupled with multiple point restarts can lead to the global
optimum. It is also able to self-correct the path to a local op-
timum even if there are outliers present in the data.31

Ley et al. demonstrated the use of a modified version of
the simplex algorithm (called Complex) in several reaction ex-
amples.23 The system required 12 experiments to find opti-
mal conditions in a 3D32 problem and 30 experiments in a
5D problem. Felpin et al. modified the simplex algorithm
adapting it to constrained optimizations in multi-
dimensional space.20 They demonstrated the flexibility of the
algorithm by applying it to different objective functions; 14
experiments were required to maximize yield (Fig. 3), 13 to
maximize throughput, and 18 experiments to minimize pro-
duction cost. Another publication from the same author in-
cludes, in addition to the simplex method, a golden section
search to handle 1D boundary searches where the Nelder–
Mead algorithm fails.27 They demonstrated its use in a four-
step synthesis where all discrete steps were optimized for
product yield within 66 experiments. Rueping et al. showed
the robustness of the Simplex algorithm, which was able to
continue the optimization process and achieve convergence
in 25 experiments, regardless of casual experimental errors
that occurred.25

SNOBFIT (Stable Noisy Optimization by Branch and FIT),
developed by Huyer and Neumaier, combines global and lo-
cal search by branching and local fits.33 While sampling/di-
rect search methods work by generating a sequence of points,
modelling methods try to approximate the function over a re-
gion by a model function. The algorithm generates points
widely distributed across the defined chemical space to in-
crease the chances of finding a global optimum.

Scheme 11 Reproduced from ref. 27 with permission from the
American Chemical Society.

Fig. 1 Global versus local optimum: a) minimum, b) maximum.
Gradient vector points in the direction of maximum function value
change: c) steepest descent, or d) steepest ascent.

Fig. 2 Graphical representation of the simplex algorithm: a) reflection,
b) expansion, c) outside contraction, d) inside contraction, e) shrinking.
The blue line represents the original simplex. Nomenclature of
vertices: xh, worst; xl, best; xs, second best; xr, reflected; xc,
contracted; xe, expanded; c, centroid.

30c
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Using the SNOBFIT algorithm Bourne et al. were able to
optimize a multistep process within 42 experiments in 26 h
run for 4 variables (temperature and flowrate of three
streams) to maximize yield calculated as the ratio of percent
area of product to percent area of an internal standard
(Fig. 4).14 Bourne et al. used the same algorithm to optimize
a minor product yield, changing values of four variables in
70 experiments, and subsequently fitted the data to surface
response models, which allowed them to obtain different re-
action metrics without further experimentation.15 Jensen
and Jamison et al. applied the SNOBFIT algorithm to differ-
ent reaction chemistries and reached convergence within

30–45 experiments for 3–5 manipulated variables (tempera-
tures, flowrates and catalyst percent) to optimize yield.19

Cherkasov, Rebrov et al. performed 3D optimization, mini-
mizing an objective function that incorporated squared
product yield (calculated through selectivity to product and
substrate conversion) and substrate flowrate, reaching con-
vergence in 61 experiments.21

The majority of self-optimizing platforms target a single-
objective function, usually embedding several variables
throughout an equation and adding penalty terms to account
for multiple performance criteria. For example, Jensen, Rob-
inson et al. introduced a residence time term in the defini-
tion of productivity, calculated as product yield/residence
time to penalize long reaction times.18 However, the single-
objective approach does not identify trade-offs between op-
posing performance variables and the stability of the solution
may depend on the equation used. Moreover, the determina-
tion of weight factors for each term in the objective function
is difficult and often requires additional experimentation.
For instance, Ley et al. compared two different objective func-
tions for a 5D optimization that included terms for through-
put, conversion and reagent consumption.23 The first objec-
tive function combined conversion and consumption into the
same term, whereas the second considered three terms with
different weight factors. The two-term objective function pro-
duced an oscillatory response, whereas separation of the eval-
uation function into three terms produced a more stable re-
sponse that led to an optimal solution in 30 iterations.

Only very recent and few publications include multi-
objective self-optimization. In 2017 Lapkin et al. applied a
black-box sequential optimization using a Multi-Objective Ac-
tive Learner (MOAL) algorithm to optimize a C–H activation
in flow.22 With cost and yield as evaluation functions, the
process required 11 iterations, five of which comprised the
training set. In 2018 Lapkin, Bourne et al. used the Thomp-
son sampling efficient multi-objective (TSEMO) algorithm to
self-optimize the conflicting productivity and environmental
objectives simultaneously with fewer iterations than genetic
algorithms,28 generating a Pareto front for the trade-off of ob-
jectives (Fig. 5).16

Many research publications deal with optimization of con-
tinuous or quantitative variables, but very few include dis-
crete or qualitative variables. Reizman and Jensen published
in 2016 a strategy to optimize simultaneously both discrete
and continuous variables.17 They use a DoE-based adaptive
response surface algorithm that removes poor-performing
discrete variables as experiments progress and use a
G-optimal strategy for the continuous variables. Based on a
fractional factorial design, the solution for the best solvent
converged in 67 experiments, validated by a gradient-based
quasi-Newton method for the remaining variables. Later,
Jensen, Robinson, et al.18 followed a similar approach:
starting with a minimal D-optimal set of experiments, creat-
ing quadratic-based response surface models for each dis-
crete variable, and following a G-optimal strategy for the
remaining continuous variables. The algorithm reached

Fig. 3 3D optimization using the simplex algorithm. a) Evolution of
response with iteration number; b) 3D representation of variables
optimized to maximize yield. Reproduced from ref. 27 with permission
of the American Chemical Society.

Fig. 4 4D optimization using the SNOBFIT algorithm. The size of the
point represents the molar eq. of NEt3, and the colour represents the
product yield. The optimal conditions are highlighted by the star.
Reproduced from ref. 14 with permission of the Royal Society of
Chemistry.
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convergence after 22 experiments (13 for D-optimal and 9 for
G-optimal strategies).

More recently, Zare et al. applied deep reinforcement
learning35 to self-optimize chemical reactions by combining a
policy gradient model with an efficient exploration strategy
based on probability distributions.24 This algorithm learns
from past experience and the model is updated with the new
experimentally-generated data. The authors compare its per-
formance through simulations with the Nelder–Mead sim-
plex, SNOBFIT, and covariance-matrix adaptation-evolution
strategy (CMA-ES)36 showing a 71% reduction in iterations.

Autonomous platforms

To date, many of the platforms have been developed using
commercial software such as LabVIEW37 for automation of
equipment and data management, and Matlab®,38 most fre-
quently to implement optimization algorithms. Both plat-
forms are integrated to create feedback loops between pro-
cess analytics and the optimization algorithm, which
generates new conditions for evaluation. This is the case
of Reizman and Jensen,17 Jensen, Robinson et al.,18 and
Rueping et al.25 Felpin et al. used Matlab® to develop an
adapted Nelder–Mead algorithm but do not report integrated
feedback control in this publication.20 In very few cases a sin-
gle programming platform, such as Matlab®, has been used
to both automate equipment control and implement the opti-
mization algorithm.14–16,27

Most automated self-optimization platforms are designed
and developed for a specific application. Creating general,
fully automated systems integrating equipment from differ-
ent vendors to operate in an autonomous way reducing the
amount of human intervention is a challenge. Frequently, the
equipment we have in laboratories use different communica-
tion protocols for its control, the monitoring devices log data
in different formats, and in many cases both are restricted to

the vendor's software for their control from a computer. There
is an increasing effort to create modular or plug-and-play sys-
tems not only from the hardware viewpoint but also from the
software viewpoint. This includes not only equipment control,
but also data management from collection through monitor-
ing devices to storage, processing, and visualization in a reli-
able and consistent manner. Having access to platforms that
facilitate automation integration of different hardware com-
ponents from different vendors in a modular and generalized
manner reduces the time for process development and lowers
the barriers for unexperienced users that otherwise would re-
quire additional expertise on the field.

In 2018 Jensen and Jamison et al. presented a
reconfigurable system with modules for heating, cooling,
mixing and photochemical capabilities, compatible with dif-
ferent monitoring systems and able to perform self-
optimization of different reactions (Scheme 12). Automation
is based on LabVIEW integrated with Matlab® and uses the
SNOBFIT algorithm for reaction self-optimization.19

Today, there is a growing trend to use open-source alterna-
tives and cloud-based systems enabling remote control and
monitoring. Often, authors share the code within the com-
munity through platforms such as GitHub.39

In 2016 Ley et al. developed an Internet-based modular
software system (called LeyLab) with remote control and
monitoring, self-optimization based on the simplex algo-
rithm, and communication between server-equipment and
server–server based on the TCP/IP protocol (Scheme 13).23

The system is comprised of four modules: graphical interface

Fig. 5 An example of a system with two competing minimization
performance criteria A and B. It is infeasible to find the utopian point
where both A and B are at their optimal values. The points on the
Pareto front are non-dominated solutions, as A or B cannot be im-
proved without having a detrimental effect on the other. Reproduced
from ref. 16 under the Creative Commons Attribution License.34

Scheme 12 Plug-and-play, reconfigurable, continuous-flow chemical
synthesis system. (A) General four-step protocol for using the system.
(B) Representative configuration of the components in the system. (C)
CAD (computer-aided design) representation of the LED reactor;
shown is a view of the end that attaches to a universal bay on the sys-
tem. (D) Schematic representation of the configuration shown in (B)
and available modules. Reproduced from ref. 19 with permission from
American Association for the Advancement of Science.
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(accessed through the Internet), database, equipment com-
munication module, and equipment command module.

Cherkasov and Rebrov et al. published an open-source
flexible platform (called OpenFlowChem) based on LabVIEW
and cloud-based data transfer interacting with Matlab for
SNOBFIT optimization (Scheme 14).21 Using this platform,
new automated systems can be created or modified with min-
imal efforts within hours.

ChemOS is a modular software package developed by
Aspuru-Guzik et al. that includes different structured layers
to operate an autonomous laboratory: interaction with re-
searchers, databases, robots, characterization, analysis, and
artificial-intelligence-based learning procedures for autono-
mous operation.40

Although not specific to self-optimization in flow, it is
worth mentioning the efforts in the field of open-source soft-
ware for automation by Van der Made,41 S. Ley42 and R.
Ingham,43 and the recent modular robotic platform devel-
oped by Cronin et al.44

Summary and future outlook

Automation is an attractive field for discovery chemistry, pro-
cess development and optimization as demonstrated by the
latest advancements published in the literature. While in the
past the automated platforms followed a deterministic ap-
proach with scheduled tasks and protocols, the trend today is
to increase the level of autonomy through intelligent algo-
rithms that provide these systems with the ability to learn,
make decisions and take actions depending on the different
scenarios that arise.

In the development of autonomous platforms, there is an
increasing focus on multi-variate and multi-objective optimi-
zation algorithms, together with the design of modular, flexi-

ble and connected systems that facilitate components inte-
gration with the aim of reducing process development times.

We envision that an ideal fully automated system would
take as input the molecule to synthesize and the system
would perform all the subsequent necessary actions from dis-
covery to process development and scale-up. Although we
have focused this mini-review on flow systems, application of
automation to batch systems has already been widely
implemented as high-throughput screening platforms. The
current tendency is also to combine it with artificial intelli-
gence algorithms that are able to learn from past data to
guide the experimentation.

The vast majority of self-optimization work published has
been developed in academia to date. It is obvious that indus-
try is also working in this area and in the near future, it is
expected a further increase in industry uptake of these meth-
odologies driven by market demand for greater innovation
speed and cost-reduction initiatives.
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