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ic nose system for discrimination
of pathogenic bacterial volatile compounds

Thara Seesaard, a Chadinee Thippakorn, b Teerakiat Kerdcharoenc

and Sumana Kladsomboon *d

A hybrid electronic nose comprising an array of three organic–inorganic nanocomposite gas sensors [zinc

tetra tert-butyl phthalocyanine (ZnTTBPc), zinc tetra-phenyl porphyrin (ZnTPP), and cobalt tetraphenyl-

porphyrin (CoTPP)] coupled with three commercial metal-oxide semiconductor gas sensors (TGS 2444,

TGS 2603 and TGS 2620) was developed to discriminate bacterial volatile compounds. Each type of gas

sensor had its own strengths and weaknesses in terms of its capability to detect complex odors from the

five different bacterial species tested. Bacterial samples were controlled at a fixed initial bacterial

concentration by measuring the optical density at 600 nm of the culture suspensions. A comparative

evaluation of the volatile compound fingerprints from five bacterial species grown in Luria–Bertani

medium was conducted to identify the optimal incubation time for detection of volatile biomarkers to

discriminate among bacteria. The results suggest that the hybrid electronic nose was indeed able to

discriminate among the bacterial species and culture media, with a variance based on contributions of

92.4% from PC1 and 7.2% from PC2, at an incubation time of 6 hours. Furthermore, the results of

hierarchical cluster analysis showed that bacterial odor data formed two major bacterial groups, with the

maximum cluster distance close to 25. Intra-group similarity was demonstrated as the two bacterial

species (E. cloacae and P. aeruginosa) from among the Gram-negative bacteria had a greater similarity

with a cluster distance close to 4. Finally, the minimum distance between E. cloacae and S. Typhi was

approximately 1, at an equal distance from E. coli and S. aureus.
1. Introduction

Bacterial infection is one of the most important human health
problems. It can not only happenmore oen in people with pre-
existing illnesses, but can also occur in a healthy person. Most
species of pathogenic bacteria are found as contaminants in the
environment, such as in recreational water,1 slum areas2 and
industrial lands.3 Bacterial pathogens are oen spread through
urine and feces. They may infect the skin and underlying so
tissue, as does Staphylococcus aureus.4 There are several types of
Gram-negative pathogenic bacteria, including Pseudomonas
aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Enterobacter
cloacae (E. cloacae) and Salmonella Typhi (S. Typhi). For
example, P. aeruginosa can cause opportunistic human infec-
tions such as septicemia and pneumonia,5 and E. coli can cause
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serious food poisoning or toxicity.6 E. cloacae can cause urinary
tract infection or pneumonia,7 while S. Typhi causes gastroin-
testinal infection.8

The rapid and accurate identication of the cause of an
illness is considered the heart of disease diagnosis. The detec-
tion of pathogenic organisms allows intervention to prevent or
limit tissue invasion. The precise identication of bacterial
species is extremely important in patients because it guides to
the most appropriate treatment. Many researchers have tried to
develop methods for the early detection of pathogenic bacteria.9

Using traditional approaches, the identication of bacterial
species takes an average of 16–72 hours with techniques such as
bacterial culturing,8 molecular methods,10 microscopic obser-
vation11 and biochemical testing.12 Microbiological culturing is
one of the primary diagnostic methods in microbiology.12

Bacterial culturing of body uids from patients and from envi-
ronmental specimens remains the gold standard in the diag-
nosis of most bacterial infections.13 A revolutionary method,
matrix-assisted laser desorption/ionization-time of ight mass
spectrometry (MALDI-TOF MS)14 provides the rapid identica-
tion of bacteria and is now popular in advanced clinical labo-
ratories. However, some of these identication methods have
not been entirely successful for some bacterial strains.
Furthermore, in some remote areas acquiring expensive
Anal. Methods, 2020, 12, 5671–5683 | 5671
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equipment is not possible. But for laboratories conducting
high-throughput detection (e.g., a daily analysis of at least 100
strains), it can be considered a very cost-effective investment.

The development of one alternative method to identify
bacterial species has been conducted based on detection of
bacterial volatile organic compounds (VOCs).15 In recent
decades, the application of the gas chromatography-mass
spectrometry (GC-MS) technique combined with special statis-
tical approaches has been proposed to identify specic bacterial
VOC proles.16 As summarized in Table 1, many studies have
found that there are seven groups of VOCs that are released
during bacterial growth, namely, volatile sulfur compounds
(VSCs), aldehydes, acids, ketones, hydrocarbons, alcohols and
volatile nitrogen compounds (VNCs).17,18 These growth stage-
specic volatile compounds have proles which are distinct
for different species of bacteria. For example, VSCs, aldehydes,
acids, ketones, hydrocarbons, alcohols and VNCs are normally
produced by P. aeruginosa, while ketones and alcohols are
observed with E. cloacae.16,19,20 Thus, four species of Gram-
negative bacteria and one species of Gram-positive bacteria
can produce unique VOC proles (see Table 1). Although the
GC/MS technique is a non-invasive diagnostic tool, the method
is complex and the hardware is expensive.21 Thus, the
Table 1 The normalized concentrations of VOCs from bacteria in cultu

VOC

Gram-negative

E. cloacae E. coli

Volatile sulfur compounds (VSCs)
Dimethyl sulde, hydrogen
sulde and methyl mercaptan

N/A 6–100a (ref. 17 and

Aldehydes
Acetaldehyde, butanal,
formaldehyde and 3-methylbutanal

N/A z6a (ref. 17 and 1

Acids
Acetic acid and isovaleric acid N/A N/A

Ketones
Acetone, 2-cyclopentenone
and 2-pentanone

15–20b (ref. 20) z9a (ref. 17)

Hydrocarbons
1-Undecene and isoprene N/A N/A

Alcohols
Methanol, ethanol, propanol
and 1-butanol

40–100b (ref. 20) 1–16a (ref. 17, 18 a
5–25b (ref. 38)

Volatile nitrogen compounds (VNCs)
Ammonia, acetonitrile,
hydrogen cyanide, trimethylamine,
indole and 2-aminoacetophenone

N/A 0–6a (ref. 18, 40 an
25–100b (ref. 38)

a Normalization using the min–max normalization [100 � ((Xi � XMinimum
b Normalization using the internal standard (IS) N/A ¼ not available.

5672 | Anal. Methods, 2020, 12, 5671–5683
development of bacterial identication tools, which are accu-
rate, rapid, easy to use and cost-effective, is very challenging.

In recent decades, researchers have revealed that an elec-
tronic nose is considered to be a non-invasive tool to assess
bacterial volatile compounds using gas sensor arrays.22 An
electronic nose (e-nose) system was reported which used an
array of highly sensitive metal-oxide semiconductor (MOS) gas
sensors for classication of bacteria into groups. This was based
on the class and growth phase of three potentially pathogenic
micro-organisms, E. coli, S. aureus and Klebsiella oxytoca (K.
oxytoca).23,24 Moreover, a multisensory bacterial volatile
compound (BVC) detection system is widely used in the food
industry for the detection and monitoring of bacterial
contamination.25 Recent publications have reported the devel-
opment of e-nose instruments based on measures obtained
from multiple sensors in the design of hybrid systems. Exam-
ples include MOS sensors combined with GC/MS,26 metal–
organic frameworks combined with MOS sensors,27 a quartz
crystal microbalance (QCM) combined with MOS sensors28 and
a metal oxide semiconductor eld effect transistor (MOSFET)
combined with MOS sensors.29 These hybrid gas-sensor array
systems have good sensitivity and the ability to detect VOCs and
other gases, providing a wide range of possible applications.
re media

Gram-positive

P. aeruginosa S. Typhi S. aureus

18) 17–100a (ref. 18) N/A 59–91a (ref. 18)

8) z93a (ref. 18) N/A z53a (ref. 18)

5–25b (ref. 38) 5–25b (ref. 38) z100a (ref. 19),
25–100b (ref. 38)

1–16b (ref. 20 and 38) 5–25b (ref. 38) 5–25b (ref. 38)

z 21a (ref. 16 and 19),
16–17b (ref. 20)

N/A N/A

nd 39), z30a (ref. 17–19),
25–100b (ref. 38)

5–25b (ref. 38) 0a (ref. 18, 19 and 40),
5–25b (ref. 38)

d 41), 0–58a (ref. 17–19),
1–25b (ref. 38)

1–25b (ref. 38) z3a (ref. 17),
1–5b (ref. 38)

) � (XMaximum � XMinimum)
�1)], where X is the concentration of VOCs.42

This journal is © The Royal Society of Chemistry 2020
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There are many kinds of systems that can detect bacterial
volatile compounds to a certain extent and do not require Gram
staining for identication. But these methods oen do not
consider the impact of such variables as temperature and stage
of the bacterial growth cycle, and so these methods cannot be
applied in the medical eld as a scanning tool to detect the
smell of bacteria growing on or in the body.

At present, there are no reports demonstrating selectivity
using organic–inorganic nanocomposite gas sensors coupled
with MOS gas sensors in a hybrid e-nose system. Recently,
advances have been made with a new method, differential
mobility spectrometry (DMS) classication of bacteria.30

It successfully classies all bacterial species and distin-
guishes Gram status. The publication of this research has yiel-
ded many useful rapid bacterial identication technologies,
allowing timely initiation of the most appropriate therapy.
However, the sensor has limitations in distinguishing bacteria
of the same genus. At present, there are no reports demon-
strating selectivity using organic–inorganic nanocomposite gas
sensors coupled with MOS gas sensors in a hybrid e-nose
system. Therefore, our research work will extend the demon-
strated functionality of electronic sensing technology beyond
the existing landscape. Moreover, our system is aimed at
utilizing consumer electronics which are available, affordable
and easy-to-use. In this research, we developed a hybrid e-nose
system which utilizes two types of gas sensors: (i) three organic–
inorganic nanocomposite gas sensors [zinc tetra-tert-butyl
phthalocyanine (ZnTTBPc), zinc tetra-phenyl porphyrin
(ZnTPP), and cobalt tetraphenyl-porphyrin (CoTPP)], coupled
with (ii) three MOS gas sensors (TGS 2444, TGS 2603 and TGS
2620). These organic dyes, namely metallo-porphyrin (MP) and
metallo-phthalocyanine (MPc), are frequently used as gas
sensors based on optical sensing principles because they have
delocalized p-systems. These are proven to have high perfor-
mance as electron transport materials that leads to changes in
their optical properties.31 Recently, organic–inorganic dyes were
used as sensor materials forming an integral part of an optical
gas sensing system for classication of bacterial species.32

However, low electrical conductivity of organic–inorganic dyes
is an issue in the design and fabrication of electrical gas
sensors. The efficiency of electrical conductivity in nano-
composite gas sensors is enhanced by embedding carbon
nanotubes (CNTs).33 In addition, adding CNTs can improve the
ability to transfer electrons between the conducting network
and VOCs adsorbed onto the sensing surface. The increased
aggregate surface area increases the percentage of the sensor
response.32 Thus, nanocomposite gas sensors based on
organic–inorganic dyes and carbon nanotubes may detect
bacteria and microbial odors in many applications, such as
quality control of food products,34 safety and security,35 envi-
ronmental monitoring36 and medical diagnosis.37

The objective of this research was to develop a hybrid e-nose
system based on different organic–inorganic materials for
bacterial identication. MOS and organic–inorganic based gas
sensors were fabricated and installed into the system. This
hybrid e-nose system was tested for performance and efficiency
on many volatile organic compounds, which represent bacterial
This journal is © The Royal Society of Chemistry 2020
volatile compounds such as acetic acid, acetone, ammonia,
ethanol, ethyl acetate, formaldehyde and H2O. In addition,
characteristic odors, produced as metabolites of different
combinations and quantities of bacteria, were detected and
correlated with the Gram stain classication of the bacteria.
Five bacterial species, namely E. coli, E. cloacae, P. aeruginosa, S.
Typhi and S. aureus, were distinguished based on their odorants
using statistical methods [principal component analysis (PCA)
and hierarchical cluster analysis (CA)].
2. Experimental section
2.1. Fabrication of the organic–inorganic dye/multiwall
carbon nanotube composite gas sensor

Organic–inorganic dyes, namely zinc-2,9,16,23-tetra-tert-butyl-
29H,31H-phthalocyanine (ZnTTBPc), zinc-5,10,15,20-tetra-
phenyl-21H,23H-porphyrin (ZnTPP) and cobalt-5,10,15,20-tet-
raphenyl-21H,23H-porphine (CoTPP), were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

The multiwall carbon nanotubes (MWCNTs) were synthe-
sized using an infusion chemical vapor deposition method
from Chiang Mai University.43 First, ZnTTBPc, ZnTPP and
CoTPP were dissolved in a chloroform solution at a concentra-
tion of 5 mg ml�1 to prepare organic–inorganic dye solutions,
while MWCNTs were dispersed in chloroform by means of
sonication at a concentration of 2 mg ml�1. Then the MWCNT
solution was blended into each organic–inorganic dye solution
in order to obtain high electrical conductivity with a ratio of
percent loading for the MWCNT solution to dye solution of
50 : 50. Each organic–inorganic dye solution, with MWCNTs
dispersed in it, was stirred for 15 min, followed by 30 min of
continuous ultrasonic vibration at 25 �C. This was repeated
three times to ensure uniformity and homogeneity. [The
molecular structures of ZnTTBPc, ZnTPP and CoTPP are shown
in Fig. 1(a)]. Finally, three organic–inorganic dye/multiwall
carbon nanotube composite mixtures (i.e. ZnTTBPc/MWCNT,
ZnTPP/MWCNT and CoTPP/MWCNT solutions) were spin-
coated onto interdigitated Cr/Au electrodes at 1000 rpm for 30
seconds to produce gas sensor devices, as shown in Fig. 1(b).
The interdigitated electrodes (IDEs) were fabricated by E-beam
evaporation of Cr/Au thin lms deposited on alumina
substrates.44 The thicknesses of the Cr and Au lm layers were
50 nm and 200 nm, respectively. The IDEs were an important
component of the organic–inorganic dye/MWCNT gas sensor,
functioning as the sensing area (the surface area was approxi-
mately 0.1 � 1 mm2).
2.2. Metal-oxide semiconductor gas sensors

Three commercial metal-oxide semiconductor (MOS) gas
sensors, namely TGS 2444, TGS 2603 and TGS 2620, were
purchased (Figaro USA Inc., IL, USA). These MOS gas sensors
respond to the VOCs in each target gas and other hazardous
organic compounds.45,46 The metal oxide gas sensing materials
used with n-type metal oxide semiconductors for bacterial gas
sensing are tin oxide (SnO2)47 and tungsten trioxide (WO3).48

The structures of the single sensing elements are comprised of
Anal. Methods, 2020, 12, 5671–5683 | 5673
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Fig. 1 (a) Structures of ZnTTBPc, ZnTPP and CoTPP, and (b) the fabrication process of the organic–inorganic dye/MWCNT composite gas
sensor.
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a metal oxide semiconductor layer formed on the alumina
substrate of a sensing chip together with an integrated heater.
Aer applying a heating voltage, reducing or oxidizing gases are
applied to the sensing layer. The electrical resistance (R) of
MOS-type gas sensors changes due to the change in adsorbed
oxygen concentration.48
2.3. Testing of the hybrid gas sensor arrays

The details of the gas sensor arrays used in our hybrid electronic
nose system are listed in Table 2. Organic–inorganic nano-
composite gas sensors can operate in a room-temperature
environment, while the MOS gas sensors commonly operate
at a high temperature, ranging from 150 �C to 400 �C which
requires a heating element. TGS 2444 was highly selective for
ammonia gas and had some response to hydrogen sulde.45

TGS 2603 was sensitive to low concentrations of the amine-
series, air contaminants, and sulfurous vapors, such as tri-
methyl amine, hydrogen sulde, hydrogen and ethanol (ethyl
alcohol).46 TGS 2620 was highly selective for general organic
solvents such as alcohol, methanol and carbon monoxide.46 In
addition, organic–inorganic dye/multiwall carbon nanotube
Table 2 Details of the gas sensor arrays used in the hybrid electronic n

Code Sensor class Sensor type (ta

S1 ZnTTBPc/MWCNT Nanocomposite
S2 ZnTPP/MWCNT Nanocomposite
S3 CoTPP/MWCNT Nanocomposite
S4 TGS 2444 MOS (ammoni
S5 TGS 2603 MOS (amine-se
S6 TGS 2620 MOS (alcohol a

a Typical detection range obtained from the study (see Table 4). b Typical

5674 | Anal. Methods, 2020, 12, 5671–5683
(MWCNT) composite gas sensors, namely ZnTTBPc/MWCNT,
ZnTPP/MWCNT and CoTPP/MWCNT, were used for detection of
general organic solvents such as alcohol, acetone, and acetic
acid.32,49

In this study, the sensitivity and selectivity of gas sensors
were tested with acetic acid, acetone, ammonia, ethanol, ethyl
acetate, formaldehyde and H2O. These VOCs have been
considered sensitive and specic biomarkers for bacteria. The
seven volatile organic compounds were purchased from Merck
KGaA (USA), while pure air (zero air) was purchased from
Rungcharoen Oxygen Co., Ltd. (Bangkok, Thailand). The details
of VOC preparation for testing are shown in Table 3. The
number of gas molecules contained in one cubic meter of an
ideal gas can be calculated using Loschmidt's number.50 In
addition, the volume of each VOC solution at a concentration of
1000 ppm was calculated based on its molecular weight (MW)
and density. A VOC solution was injected into a 1000 ml glass
bottle that was placed in a temperature-controlled water bath at
the evaporating temperature of that VOC. Each VOC was evap-
orated at a temperature from 25 �C to 100 �C which was related
to its boiling point. Moreover, an zero air carrier system was
ose system

rget compounds) Detection range (ppm)

gas sensor (organic solvents) >902a

gas sensor (organic solvents) >515a

gas sensor (organic solvents) >2433a

a and hydrogen sulde) 166a, 10–300b (ref. 45)
ries and sulfurous vapors) >236a, 1–10b (ref. 46)
nd organic solvents) >141a, 50–5000b (ref. 46)

detection range was reported by manufacturers of Figaro gas sensors.

This journal is © The Royal Society of Chemistry 2020
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Table 3 Preparation of VOCs at a concentration of 1000 ppm in pure air

VOC Evaporating temperaturea (�C) MW (g mol�1) Density (g ml�1) Volume of VOC solution in cylinder (ml)
Acetic acid (35%) 100 60.05 1.05 2.60
Acetone (100%) 56 58.08 0.79 3.29
Ammonia (29%) 25 17.03 0.91 0.84
Ethanol (100%) 78 46.07 0.79 2.62
Ethyl acetate (100%) 77 88.11 0.90 4.38
Formaldehyde (37%) 25 30.03 1.09 1.24
H2O (100%) 100 18.02 1.00 0.81

a Evaporating temperature depends on the boiling point of each VOC.
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installed inside the system to spread the VOC's vapor evenly
across the bottle and deliver it to the sensor chamber. Then, the
resistances of both the sensors were measured; the experiment
was repeated three times to obtain a consistent dimension.

2.4. Design of the hybrid electronic nose system

The hybrid electronic nose system was designed in a briefcase
form so it could be carried or easily moved. The system con-
sisted of three main components: (i) the gas sensor array unit,
(ii) odor-delivery unit, and (iii) data acquisition (DAQ) unit
[shown in Fig. 2(a)]. In the gas sensor array unit, there were six
different types of gas sensors (Table 2). Three MOS gas sensors
and three organic–inorganic dye/MWCNT nanocomposite gas
sensors were installed into the sides of the octagon-shaped
chamber which was made of Teon (PTFE) to prevent the
VOCs from sticking to the chamber. A schematic of the chamber
structure provides two views: the top view and side view
[Fig. 2(b)]. The center of the bottom plate of the sensor chamber
was pierced to make a gas inlet hole for delivering odors to the
electronic nose.

The odor-delivery unit had a solenoid valve for switching
between the odor sample (target odor) and zero air (reference
gas) for gas delivery into the sensor chamber. Zero air, produced
by mixing pure oxygen with pure nitrogen (21% oxygen and 79%
Fig. 2 (a) The physical structure of the hybrid electronic nose system an

This journal is © The Royal Society of Chemistry 2020
nitrogen), was purchased from the gas industry (Rungcharoen
Oxygen Co., Ltd., Bangkok). In the olfactory sensitivity testing,
zero air (pure air) was used as the carrier gas to deliver the odor
sample into the sensor chamber of the hybrid e-nose system. In
addition, any background odors contained in the chamber were
expelled by zero air ushing. Flow meters were used to monitor
the ow rate of the pure air stream in real time so it could be
controlled to 400 ml min�1. A data acquisition card (NI USB-
6008 of National Instruments, Singapore) with LabVIEW so-
ware was installed on a computer and used to convert the
analog voltage into a digital signal. Then, the resistance change
of each gas sensor was calculated based on a voltage divider
concept and sent to the computer.

2.5. Bacterial odor measurement and data processing

Fig. 3 shows a schematic diagram of the hybrid e-nose system
for bacterial odor-sensing using two distinct types of gas
sensors. In order to test the chemical sensing of the hybrid e-
nose, dynamic ow measurements were conducted by switch-
ing between the bacteria's odor sample for 2 min and pure air
(zero air) for 3 min. This process was repeated for 4 cycles. The
temperature was controlled at around 37 �C for bacterial
samples and at evaporation temperatures (see in Table 3) for
VOC samples. The base-line resistance and the changing
d (b) the schematic of the chamber structure; top view and side view.

Anal. Methods, 2020, 12, 5671–5683 | 5675
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Fig. 3 Schematic diagram of the hybrid e-nose system for detection of bacterial odors.
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resistance with time of the gas sensors were recorded every 1
second. The sensor response from each of the six sensors is
dened as the difference between the maximum resistance-
change (the resistance change upon absorption of the sensed
gas) and the baseline resistance (the resistance from zero air).
These responses from the sensor arrays were then analyzed
based on pattern recognition by principal component analysis,
a simple and effective method to recognize patterns in the data
by visualizing them in 2-dimensional or 3-dimensional plots.51

Each experiment was conrmed by analyzing bacterial odor
information using a combination of principal component
analysis and hierarchical cluster analysis (CA).52

The sensor response (S) from each of the six gas sensors was
described as the sensitivity of a gas sensor to different gases.
Sensitivity (%) was dened by eqn (1) as follows:

Sensitivity ð%Þ ¼ DR

R0

� 100 (1)

where R0 is the initial resistance of each sensor without the
sample vapor (baseline resistance) and DR is the difference in
resistance detected by the sensor between the bacterial odor
and pure air.
2.6. Bacterial sample preparation

The ve bacterial pathogens investigated in this study were
Enterobacter cloacae subsp. cloacae (ATCC 13047), Staphylo-
coccus aureus subsp. aureus (ATCC 29213), Escherichia coli
(ATCC 25244), Pseudomonas aeruginosa (ATCC 27853) and
Salmonella enterica subsp. enterica serovar Typhi or S. Typhi
(ATCC 19430). Each of these selected bacteria can cause noso-
comial infection, some are found in the natural environment,
and all tend to be resistant to disinfectants and antibiotics. The
strains were obtained from the Faculty of Medical Technology,
Mahidol University, Thailand. Briey, the bacteria were grown
in sterile nutrient media at 37 �C for cell recovery and then
single isolated colonies were sub-cultured in Luria–Bertani (LB)
5676 | Anal. Methods, 2020, 12, 5671–5683
liquidmedium at 37 �C in a shaking incubator (180 rpm) for 9 h.
Cloudy media aer cultivation were observed and measured for
bacterial growth characteristics. The initial concentration of
bacteria was determined using optical density (at 600 nm).
Bacterial growth cultures were optimized and adjusted until an
OD600 of 0.3 was reached. Then, a batch culture was prepared
by transferring 25 ml of each bacterial culture into 25 ml of LB
broth to control the initial bacterial number in the sample
bottles for odor detection.

These bacterial cultures were then grown at a constant
incubation temperature (IT) of 37 �C. Culture samples were
removed at intervals and the number of viable bacteria was
counted via the increasing turbidity as observed at OD600. A
logarithmic growth curve for each bacterial strain was plotted.
Finally, the OD600 value and gas sensing response to each
bacterial culture were collected every 3 hours.
3. Results and discussion
3.1. Bacterial growth curve analysis

The growth phase of ve bacterial species in liquid culture
media was measured using the optical density at 600 nm
(OD600) of the culture suspensions with a UV-visible spectro-
photometer. The initial cell concentration of the ve bacterial
species was standardized by using the same value of optical
density (OD600 nm). The growth curve of the bacteria was
plotted by measuring OD600 values from 0 to 12 h incubation
(Fig. 4).

Growth curves were obtained using the polynomial regres-
sion equation, i.e. Y¼ A1 + (A2 + A1)(1 + 10

[(log X0 � X) � P]), where X
is time, Y is optical density and A1, A2, and P are constant values.
The cell density of all cultures increased slightly during the rst
2 h of incubation and then rapidly during hours 3–8. The
stationary phases (no further increase in cell density) of the ve
bacterial species were observed aer 9 h of incubation. There
was a different logarithm of living bacterial cells for each of the
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 The optical densities of E. cloacae, E. coli, P. aeruginosa, S.
aureus and S. Typhi in liquid culture media were obtained in triplicate
samples.
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ve pathogens, and each had a high R-squared (R2) value. At the
exponential (log) phase (6 h incubation), S. aureus had the
greatest cell density when compared with those of E. cloacae, E.
coli, S. Typhi and P. aeruginosa (the coefficient of determination;
R2 values of 0.99415, 0.99857, 0.99998, 0.99929 and 0.99003,
respectively). A typical four-phase pattern of bacterial growth
was seen in this study for each species. However, S. aureus and
E. cloacae entered log phase growth quicker than E. coli, S. Typhi
and P. aeruginosa which each displayed a prolonged lag
period.20 The unique growth behaviors of different pathogens
might have been related to species-specic odor-releasing
processes.
3.2. Sensor performance and calibration at elevated VOC
concentrations

In order to evaluate the performance of the self-built hybrid e-
nose system for bacterial identication, seven volatile organic
compounds (VOCs), produced by bacteria as waste products,
were selected to further evaluate the sensor performance based
on sensitivity and specicity. Specically, acetic acid, acetone,
ammonia, ethanol, ethyl acetate, formaldehyde and H2O at
a concentration of 1000 ppm were utilized in the assessment.

In analytical chemistry, researchers calculate the limit of
detection (LOD)53: the smallest amount or concentration of an
Table 4 Limit of detection (LOD) of gas sensor arrays for seven VOCs
(ppm)

VOCs S1 S2 S3 S4 S5 S6

Acetic acid 902 578 5713 369 329 174
Acetone 3282 1233 9380 466 1502 339
Ammonia 4108 1041 6075 166 441 152
Ethanol 1297 7362 5786 755 3782 141
Ethyl acetate 1554 515 2433 490 236 164
Formaldehyde 1341 840 10 194 2143 1444 219
H2O 105 138 96 284 243 550 583 2225 345

This journal is © The Royal Society of Chemistry 2020
analyte gas in the test sample that can be reliably distinguished
from pure air or the blank. The LODs of seven VOCs with six
different gas sensors are presented in Table 4. The LOD is
dened according to eqn (2) as follows:

LOD ¼ 3� SDblank

slope
(2)

where SDblank is the standard deviation of the blank signal (or
sensor signal under pure air ow) and slope is the slope of the
sensitivity curve which is measured in the concentration range
of 1000–3000 ppm. The concentration of each VOC was
measured three times to check reproducibility.

Choosing the most appropriate gas sensors for detection of
each bacterial odor used volatile testing in the dynamic system
in order to achieve optimal detection and sensitivity of each
sensor. It was found that six hybrid gas sensor arrays, three
organic–inorganic nanocomposite gas sensors (ZnTTBPc,
ZnTPP and CoTPP) coupled with three commercial metal-oxide
semiconductor (MOS) gas sensors (TGS 2444, TGS 2603 and TGS
2620), under dynamic gas ow testing showed excellent sensi-
tivity (Fig. 5). The sensitivity for the three organic–inorganic
nanocomposite gas sensors was expected to be in the range of
approximately 0.002% to 1.41% at 1000 ppm. The three
commercial MOS gas sensors had a wide sensitivity range (from
1.86% to 99.03%) as well as a quick response and short recovery
time. The MOS gas sensors provided greater sensitivity than the
organic–inorganic nanocomposite gas sensors. However, each
sensor showed a signicantly different pattern of specic vola-
tile organic compounds.

Among the organic–inorganic nanocomposite gas sensors,
the CoTPP/MWCNT gas sensor (S3) showed the highest sensi-
tivity to ethyl acetate, which is found in volatile bacterial
metabolites.54 The ZnTPP/MWCNT gas sensor (S2) demon-
strated a striking response when detecting acetic acid, mainly
related to the growth of P. aeruginosa, S. Typhi and S. aureus.19,38

Moreover, the bar chart (Fig. 5) also shows that water elicited
negligible responses from all sensors and so should not have
any signicant inuence on the accuracy of the analytical
results.55 Therefore, we conclude that these sensors, fabricated
from porphyrin and phthalocyanine, are well suited for use as
sensor arrays for volatile biomarkers in bacterial odors. Among
the MOS gas sensors, the TGS 2603 gas sensor (S5) yielded its
highest response to acetic acid, and then, in decreasing order,
to formaldehyde, ethanol and acetone. The TGS 2620 gas sensor
(S6) showed the second highest responses to acetic acid,
ethanol and acetone. In contrast, the TGS 2444 gas sensor (S4)
showed similar minor responses to all seven VOCs tested.
However, inclusion of the full set of sensors (S1–S6) in this
hybrid e-nose system was necessary to generate the odor-
specic patterns which detected and identied the bacteria-
specic odors. Study of the practical considerations in gas
sensor performance not only demonstrates excellent sensitivity
and outstanding selectivity to the target gas molecules, but also
the stability aer being used for a long time. Long-term stability
experiments were conducted on six gas sensors toward pure air
(without gas) over a total period of 30 days, as shown in Fig. 6.
The standard deviation (SD) of baseline resistance for each of
Anal. Methods, 2020, 12, 5671–5683 | 5677
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Fig. 5 Average sensitivity (%) for (a) organic–inorganic nanocomposite gas sensors and (b) commercial metal-oxide semiconductor (MOS) gas
sensors toward seven VOCs at a concentration of 1000 ppm under dynamic gas flow testing (400 ml min�1).

Fig. 6 The relationship between the long-term stability of the baseline resistance and the aging time for three organic–inorganic nano-
composite gas sensors (S1–S3) and three commercial metal-oxide semiconductor (MOS) gas sensors (S4–S6).
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the six gas sensors (S1–S6) was 0.05, 6.16, 2.60, 14.98, 27.05 and
22.28%, respectively. It is clearly shown that the SDs of the
baseline resistance for the three organic–inorganic nano-
composite gas sensors (S1–S3) were each less than 10% toward
pure air, which revealed the great stability of the sensors, while
the SDs of the three commercial metal-oxide semiconductor
(MOS) gas sensors (S4–S6) were each more than 10% toward
pure air, which revealed their poor stability.
3.3. Detection and analysis of bacterial volatile organic
compounds

Fig. 7 shows the sensing signals on an organic–inorganic
nanocomposite gas sensor (CoTPP/MWCNT; S3) and
a commercial metal-oxide semiconductor gas sensor (TGS 2620;
S6) recorded as changes in resistance as a function of time of
the ve types of bacterial odors at 6 h incubation. The dynamic
ow measuring was performed by switching between the
baseline detection of pure air (zero air) for 3 min and the
detection of the sample bacteria's odor for 2 min. This cycle was
repeated four times.
5678 | Anal. Methods, 2020, 12, 5671–5683
Aer three seconds, we observed an abrupt change in the
resistance values of the CoTPP/MWCNT gas sensor (S3) when
exposed to each bacterial volatile compound [Fig. 7(a)]. In
contrast, for the same samples the resistance values of the TGS
2620 gas sensor (S6) decreased abruptly to reach its lower
resistance [Fig. 7(b)]. These results showed that the organic–
inorganic nanocomposite gas sensors (S1–S3) were n-type
semiconductors, whereas the MOS gas sensors were p-type
semiconductors, increasing and decreasing the resistivity
under oxidizing gas conditions.56 The resistance changes during
gas sensing of the two types of gas sensors were different, in
accordance with their distinct sensing mechanisms. The
differences between the signals from the bacterial odor and
pure air (base line) were used as features in the PCA and CA
analyses.51,52

The ZnTPP/MWCNT (S2) and TGS 2603 (S5) gas sensors were
specically required for detection of acetic acid vapor. This
vapor was found at high levels from Gram-positive bacteria (S.
aureus) but was not found in vapors of two of the Gram-negative
bacteria (E. coli and E. cloacae) (see Table 1). These sensors have
This journal is © The Royal Society of Chemistry 2020
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Fig. 7 The sensing signals of the (a) CoTPP/MWCNT gas sensor (S3) and (b) TGS 2620 gas sensor (S6) in response to five types of bacterial odors
after 6 h incubation as measured using the self-built hybrid electronic nose.
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also been tested with other volatile biomarkers (ammonia, ethyl
acetate and water) and were found to have less sensitivity for
them.

The graphs in Fig. 5 and 8 show the sensitivities of each
sensor (S1–S6) when tested for seven volatile compounds in ve
bacterial odor samples. It was found that the TGS 2603 (S5) and
TGS 2620 (S6) gas sensors were the most sensitive for detecting
E. cloacae odor. These results were consistent with the amounts
of acetic acid, formaldehyde, ethanol, acetone and ethyl acetate
forming the volatile constituents of each bacterial odor. In
addition, the CoTPP/MWCNT (S3) and ZnTPP/MWCNT (S2) gas
Fig. 8 The sensitivity of the organic–inorganic nanocomposite gas se
sensors (S4–S6) obtained upon exposure to volatile biomarkers from fiv

This journal is © The Royal Society of Chemistry 2020
sensors demonstrated striking responses when detecting E.
cloacae and P. aeruginosa, respectively.

The p-value approach to hypothesis testing with a signi-
cance level of 95% was used to compare the sensitivity of each
sensor to each bacterial odor from four Gram-negative and one
Gram-positive bacterial sample released aer 6 h of incubation
at 37 �C. Their statistical signicances (p-value in parentheses)
were S1 (0.03), S2 (0.01), S3 (0.00), S4 (0.01), S5 (0.30) and S6
(0.03). This revealed that the TGS 2603 gas sensor (S5) showed
no statistically signicant difference in its sensitivity to Gram-
negative and Gram-positive bacteria. However, the sensitivities
nsors (S1–S3) and the commercial metal-oxide semiconductor gas
e different species of bacteria at an incubation period of 6 h at 37 �C.

Anal. Methods, 2020, 12, 5671–5683 | 5679
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of the other ve sensors (S1, S2, S3, S4 and S6) were signicantly
different based on the Gram staining results.

The effect of incubation duration on the bacterial growth
and metabolic activity of the ve species of pathogenic bacteria,
and their yield of volatile biomarkers allowing species
discrimination, was investigated through sniffing every 3 h.
Principal component discrimination analysis score plots were
created in order to nd odor patterns which enhanced
discrimination. The odors produced by the ve species of
bacteria (E. cloacae, E. coli, P. aeruginosa, S. Typhi and S. aureus)
and culture media aer different lengths of incubation were
distinguished and grouped using ellipses based on 95% con-
dence.57 The odor patterns shown in Fig. 9(a) and (d) show that
the clusters of the ve species of bacteria and culture media
during the lag (3 h) and stationary (12 h) phases were not clearly
separated. This implies that each bacterial sample's odor
during these incubation phases had few differences.

Discrimination of odor components was seen at 6 h of
incubation of E. cloacae, E. coli, P. aeruginosa, S. Typhi and S.
aureus and culture media (Fig. 9(b)). PC1 and PC2 account for
92.40% and 7.20% of the variance, respectively, which
completely separated the odor data of each bacterial species
and culturemedia. Therefore, it seems certain that the results of
bacterial odor discrimination were not inuenced by culture
media odor. The growth curves (see Fig. 4) showed that the 6 h
Fig. 9 Schematic diagrams of principal component analysis (PCA) of cult
self-built hybrid e-nose measurements at (a) 3 h, (b) 6 h, (c) 9 h and (d)

5680 | Anal. Methods, 2020, 12, 5671–5683
time points occurred during the log phase of the bacterial
growth cycles, the time when the cells were dividing and
doubling in number. This is the phase when metabolic activity
is high, and DNA, RNA, cell wall components, and other
substances necessary for growth are generated to support divi-
sion.41,58 Therefore, the hybrid e-nose had the ability to identify
unique odor patterns associated with each bacterial species
when their metabolism made these prominent and thus useful
for further diagnostic applications.

Although the bacterial odors from the ve species at 9 h of
incubation (shown in Fig. 9(c)) were separated into ve groups
on the PCA plots, they stood quite close to each other on the
PCA axis and overlapped with the culture media. PC1 and PC2
contributed 91.9% and 7.6% of the total variance, respectively.
As a matter of fact, in the stationary phase the number of
dividing cells equals the number of dying cells59 and results in
no overall population growth. The cells become less metaboli-
cally active and less volatile biomarkers are released from
cultures.41

Gram staining helps to differentiate bacterial species,
allowing the diagnosis of infections and identication of which
species gives a food it's fantastic character. Gram staining is
a common technique used to differentiate two large groups of
bacteria based on the structure of their cell walls.60 The two key
features that lead to the differentiation of Gram-positive and
ure media and five species of pathogenic bacteria in culture media with
12 h incubation times.

This journal is © The Royal Society of Chemistry 2020
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Fig. 10 (a) 2D principal component analysis (PCA) and (b) cluster analysis (CA) performed on bacteria odor data between the Gram-negative
group and Gram-positive group.
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Gram-negative species are the thickness of the peptidoglycan
layer and the presence or absence of an outer lipid membrane.61

Though both groups of bacteria can cause diseases, their
respective treatments differ. For bacterial infections, Gram
staining helps determine what kind of medication is needed for
the best results. In this research, discrimination between Gram-
positive and Gram-negative bacteria may be performed accu-
rately by using the e-nose. Volatile compounds of four Gram-
negative and one Gram-positive bacterial species, aer 6 h of
incubation, were identied and clustered separately using
pattern recognition methods based on principal component
analysis and hierarchical cluster analysis (Fig. 10).

The results of PCA and CA analyses [shown in Fig. 10(a) and
(b)] revealed that the bacterial odor patterns from the group of
Gram-negative bacteria (black ellipse) were clearly separated
from those of the Gram-positive species (green ellipse), p < 0.05.
Furthermore, this suggested that some volatile constituents in
the bacterial odor of each species were obviously different. The
interpretation of the results of CA was that bacterial odor data
formed two major groups: odors from E. cloacae, E. coli, P.
aeruginosa and S. Typhi (all Gram-negative bacteria) and from S.
aureus (a Gram-positive bacterium). The maximum distance
between the two comparative bacterial groups was signicantly
different.25 Intra-group similarity was demonstrated as two
bacterial odor samples from the Gram-negative group (E.
cloacae and P. aeruginosa) showed a single-linkage (nearest
neighbor) distance of close to 4. The minimum distance
between E. cloacae and S. Typhi was approximately 1, which was
at an equal distance between E. coli and S. aureus. Therefore,
while the Gram-negative bacterial odors were all different from
each other, they were each distinct from the Gram-positive
bacterial odor. This was conrmed by analyzing bacterial odor
information by a combination of principal component and
hierarchical cluster analyses.
4. Conclusions

A self-built hybrid electronic nose prototype which combined
three organic–inorganic nanocomposite gas sensors and three
This journal is © The Royal Society of Chemistry 2020
commercial metal-oxide semiconductor gas sensors was devel-
oped. The three nanocomposite gas sensors were successfully
fabricated from a combination of carbon nanotube and
organic–inorganic dyes, i.e. ZnTTBPc, ZnTPP and CoTPP. The
gas sensor arrays provided an acceptable limit of detection and
sensitivity when assaying seven volatile organic compounds
released from bacterial cultures. Combined with PCA analysis,
the hybrid electronic nose discriminated the odors from E.
cloacae, E. coli, P. aeruginosa, S. Typhi and S. aureus (aer 6 h of
incubation) with 99.7% of the total variance. Based on the CA
analysis, four Gram-negative bacteria (i.e., E. cloacae, E. coli, P.
aeruginosa and S. Typhi) were completely separated from one
Gram-positive bacteria (S. aureus) with an approximate distance
of 25. According to the results, we conclude that this hybrid
electronic nose prototype has high potential to identify bacterial
species as a non-invasive, pathogenic bacterial monitoring
system and has several advantages such as being easy to use,
cost effective, rapid and non-destructive.
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T. Lehtimäki, N. Oksala and A. Roine, Future Microbiol.,
2020, 15, 233–240.

31 D. M. Guldi and S. Fukuzumi, J. Porphyr. Phthalocyanines,
2002, 6, 289–295.

32 S. Kladsomboon, C. Thippakorn and T. Seesaard, Sensors,
2018, 18, 3189.

33 T. Sarkar, S. Srinives, S. Sarkar, R. C. Haddon and
A. Mulchandani, J. Phys. Chem. C, 2014, 118, 1602–1610.

34 S. Cui, L. Yang, J. Wang and X. Wang, Sensor. Actuator. B
Chem., 2016, 233, 337–346.

35 T. Seesaard, S. Seaon, C. Khunarak, P. Lorwongtragool and
T. Kerdcharoen, 11th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications
and Information Technology, 2014.

36 A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. D. Malhotra and
S. Bhansali, Chem. Rev., 2015, 115, 4571–4606.

37 T. Eamsa-ard, T. Seesaard, T. Kitiyakara and T. Kerdcharoen,
9th Biomedical Engineering International Conference
(BMEiCON), 2016.

38 J. Zhu, H. D. Bean, Y.-M. Kuo and J. E. Hill, J. Clin. Microbiol.,
2010, 48, 4426–4431.

39 L. D. J. Bos, P. J. Sterk and M. J. Schultz, PLoS Pathog., 2013,
9(5), 1–8.
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