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Design, System, Application statement

Field-theoretic simulations (FTS) and self-consistent field theory (SCFT) are powerful tools for probing the
phase behavior of multi-component polymer systems, but their efficiency and stability is highly sensitive to
the choice of numerical relaxation coefficients used to evolve auxiliary fields. In this work, we introduce a
Bayesian optimization framework to systematically identify optimal relaxation coefficients that accelerate
convergence and improve numerical stability. By combining field-based polymer models with surrogate
modeling and adaptive parameter tuning, our approach dramatically reduces simulation cost, even in high-
dimensional systems with ten or more distinct components. We demonstrate broad utility across both SCFT
and FTS, including systems with explicit solvents and complex chain architectures. Our workflow is broadly
applicable to polymer physics, biomolecular design, and coarse-grained modeling efforts where field-based
methods are used. Looking forward, this approach enables high-throughput exploration of chemically spe-
cific systems and introduces a general framework for intelligent parameter tuning in field-based simulations
of systems that are otherwise challenging or impossible to simulate.
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Journal Name

Accelerating multi-species field-theoretic simulations us-
ing Bayesian optimization†

Ritvind Suketana,a Andrew Golembeski,a and Joshua Lequieua‡

Field-based simulations can be challenging in multi-component polymer systems and are highly sen-
sitive to the choice of relaxation coefficients (λλλ ) used in the field update algorithms. Judiciously
chosen relaxation coefficients are critical for both the stability and convergence of field-based simu-
lations, yet their selection is challenging when the number of unique chemical species in the system
is large. In this work, we develop a new method to automatically and efficiently locate optimal
relaxation coefficients in systems with large numbers of species. We begin by analyzing the ef-
fects of relaxation coefficients in two- and three-species systems and demonstrate that regions of
high-performance are both narrow and system-specific. Based on these findings, we next develop a
method based on Bayesian optimization that automatically locates relaxation coefficients that are
stable and exhibit good performance. We demonstrate that our method is considerably faster than
naive search methods and becomes particularly efficient as the system complexity increases. This
work demonstrates that Bayesian optimization can be used to stabilize and accelerate field-based
simulations that contain many different chemical species.

1 Introduction
Simulations based on polymer field theory are widely used to ex-
amine the properties of polymeric materials. In these methods, a
particle-based model is first converted into a statistical field the-
ory and is subsequently analyzed using numerical simulation1–3.
The mathematical structure of statistical field theories are par-
ticularly well-suited for the simulation of polymers and so field-
based simulations tend to become more efficient as the polymers
become long and as the system density increases1. The math-
ematical structure of these methods also enable direct access to
the free energy4 and can efficiently handle long-ranged Coulom-
bic interactions without requiring Ewald-based methods5,6. As a
consequence, field-based simulations can be many orders of mag-
nitude faster than particle-based simulations, despite giving iden-
tical results7,8. The two most common variants of these methods
are self-consistent field theory (SCFT), which invokes a mean-
field approximation, and field-theoretic simulations (FTS), which
directly sample the statistical field theory without any simplifying
approximations.

Most prior studies using field-theoretic simulations have em-
ployed models that contain only two species or bead types, typi-
cally denoted by A and B. In the majority of these past models,

a Department of Chemical and Biological Engineering, Drexel University, Philadelphia,
Pennsylvania, 19104, United States.
† Supplementary Information available: [details of any supplementary information
available should be included here]. See DOI: 00.0000/00000000.
‡ E-mail: lequieu@drexel.edu

these two species interact through a Flory-Huggins parameter χ

and require two auxiliary fields to decouple the pairwise interac-
tions: a pressure-like field w+ and an exchange field w−. Field-
theoretic simulations of these models have been extensively used
to examine the self-assembly of homopolymers, block polymers
and blends thereof5,9–17. Another commonly employed model
instead permits these two monomers to carry charges and to in-
teract through Coulombic interactions6,18–20. Field-theoretic sim-
ulations of this model have been used to examine a variety of
polyelectrolytes and polyampholytes and also require two fields:
an auxiliary field w to decouple the excluded volume interactions
and an electrostatic field ϕ to decouple the electrostatic interac-
tions.

In recent years, there has been a considerable effort to extend
field-theoretic simulations to systems that contain more than two
species. One of the primary motivations for these efforts is that
multi-species FTS can incorporate more chemical specificity than
traditional two-species FTS. For example, whereas each species
in traditional FTS typically represents a monomer or collection
of monomers, each species in a multi-species FTS can now repre-
sent a collection of atoms or distinct chemical groups. This allows
multi-species FTS to incorporate more chemical information and
can result in models that are increasingly predictive. Fredrick-
son, Shell and co-workers have recently developed a powerful
approach to parameterize molecularly informed field theories us-
ing atomistic particle-based simulations21,22. Multi-species field-
based simulations parameterized using this approach have been
used to examine surfactant phase behavior23, the critical micelle
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concentration of intrinsically disordered proteins24, cellulose ac-
etate solubility25, and block copolymer solution self-assembly26.
Independent work by Pert et al. have also used multi-species field-
based simulations to examine the morphologies formed by mRNA
encapsulating nanoparticles27.

One of the major challenges with multi-species field-based sim-
ulations is that they can be difficult to numerically stabilize. Most
existing multi-species field-based simulations rely on the frame-
work developed by Düchs, Delaney and Fredrickson28 where the
pairwise interaction matrix is diagonalized in order to determine
the fields that will decouple the interactions within the model. A
challenge with this approach is that most polymeric models result
in a spectrum of eigenvalues that is very broad, which can lead
to numerical challenges in the resulting simulations. The most
common solution to this problem is to empirically tune the rate
at which different fields are updated so that the fields associated
with different eigenvalues are updated more or less quickly28,29.
While this empirical tuning can be tolerated if a small number of
species are present, it becomes increasingly burdensome as the
number of species within the system grows larger. Other strate-
gies for handling these numerical difficulties are to ignore the ef-
fects of fluctuations by only focusing on SCFT23–26, or to avoid
numerical simulations altogether and to analyze multi-species
field theories analytically21,22. As a consequence of these nu-
merical challenges, past work on fully-fluctuating FTS with many
different species is still relatively rare8,27.

In this paper, our first objective is to explore why multi-species
field-based simulations are difficult to stabilize numerically. To
explore this question, we build on past work28,29 that focused on
tuning the relaxation coefficients of the different auxiliary fields
in order to enhance simulation performance. We first compre-
hensively examine a two-species system to examine the effects
of polymer connectivity (e.g. diblocks vs homopolymer blends),
morphology (e.g. lamellar vs gyroid phases), and fluctuations
(e.g. SCFT vs FTS). Our analysis shows that the qualitative effects
of relaxation coefficients are generally conserved across these dif-
ferent systems. We next extend our analysis to multi-species sys-
tems and show that the effect of relaxation coefficients depends
strongly on the interactions between the different species. No-
tably, we show that even if the eigenvalues of the interaction ma-
trix are identical, the underlying effect of relaxation coefficients
can still be quite different.

From these findings, we then turn to our second objective
where we seek an automated strategy that can optimize the stabil-
ity and performance of multi-species SCFT and FTS. We demon-
strate that Bayesian optimization (BayesOpt) is particularly well-
suited for this task and can be used to efficiently locate both
stable and high-performing relaxation coefficients for SCFT and
FTS. A key finding from our analysis is that tuning our BayesOpt
implementation is critical for achieving good performance: the
choices of surrogate model initialization, kernel, acquisition func-
tion and objective function all have a significant impact on over-
all performance. Nonetheless if these subtleties are accounted
for, BayesOpt can lead to orders of magnitude improvements in
multi-species SCFT and FTS performance. In summary, the strat-
egy that we have presented here can both stabilize and accelerate

multi-species SCFT and FTS and is envisioned to be useful as field-
based methods are extended to systems with increased chemical
specificity.

2 Methods

2.1 Multi-species exchange model

To perform field-based simulations, we use a slightly modi-
fied version of the multi-species exchange model of Düchs, De-
laney and Fredrickson28 that includes both Gaussian regulariza-
tion30,31 and discrete polymer chains. Our models involves n total
polymer molecules in a volume V at temperature T . Each polymer
molecule of type m has nm indistinguishable copies and each poly-
mer molecule is composed of Nm covalently bonded beads. Each
bead is chosen from a total of S species types (or bead types)
within the system. In addition to bonded interactions, beads of
type i and j interact through a Flory-Huggins interaction param-
eter χi j, and a Helfand compressibility parameter ζ .

One key difference between our model and the multi-species
exchange model of Düchs, Delaney and Fredrickson28 is that we
regularize our model using a Gaussian smearing function30,31.
Formally, this approach involves a convolution of the density of
each species K with a Gaussian distribution function, ΓK(rrr) =
(2πa2

K)
−3/2 exp[−r2/(2a2

K)], in order to convert the microscopic
species density ρ̂K(rrr) into a smeared microscopic species density
ρ̆K(rrr) =

∫
drrr′ ΓK(rrr−rrr′)ρ̂K(rrr′′′) = ΓK ⋆ ρ̂K , where K = {1, ...,S} and ⋆

denotes a spatial convolution. Once these smeared densities have
been defined, the non-bonded energy within the system becomes

βUnb =
1

2ρ0

S

∑
i, j=1

∫
V

d3r ρ̆i(rrr)χi jρ̆ j(rrr)

+
ζ

2ρ0

∫
V

d3r

(
S

∑
j=1

ρ̆ j(rrr)−ρ0

)2

(1)

where β = 1/kbT , kb is the Boltzmann constant and ρ0 =

∑
M
m nmNm/V is the total density of the system. Bonded interactions

are represented using harmonic bonds so that the total bonded
energy of the system is

βUb =
M

∑
m=1

nm

∑
i=1

Nm−1

∑
j=1

3
2b

(
r(m,i)

j, j+1

)2
(2)

where r(m,i)
j, j+1 is the spatial separation between the j and j+1 bead

of the ith copy of molecule type m and b is the statistical segment
length corresponding to that bond.

By following the approach described in Ref.28, this model can
exactly be converted into a field theory,

Z = Z0

∫
Dµµµ exp(−H[µµµ]) (3)

where µµµ = {µ1,µ2, ...,µS} contains S newly introduced auxiliary
fields and the prefactor Z0 is slightly modified from the expres-
sion in Ref28 to account for our use of discrete Gaussian chains3,8.

2 | 1–15Journal Name, [year], [vol.],

Page 3 of 17 Molecular Systems Design & Engineering

M
ol

ec
ul

ar
S

ys
te

m
s

D
es

ig
n

&
E

ng
in

ee
ri

ng
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ph

at
a 

20
25

. D
ow

nl
oa

de
d 

on
 2

02
5-

08
-1

0 
08

:5
4:

42
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5ME00100E

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5me00100e


H[µµµ] is a field-theoretic Hamiltonian given by

H[µµµ] =C

[
−

S

∑
i=1

(ζ N)−
1
2

2Λi

∫
Ṽ

d3r µ
2
i (r)−

S

∑
i, j=1

O ji

Λi(ζ N)−
1
2

×
∫

Ṽ
d3r µi(r)−Ṽ

M

∑
m=1

φ̄m

αm
lnQm[ΩΩΩ]

] (4)

where C = ρ0R3
g/N is a reduced chain density, Ṽ = V/R3

g is a re-
duced volume, φ̄m = nmNmV/ρ0 is the volume fraction of molecule
m, αm = Nm/N is a normalized chain length, and Rg = b((N −
1)/6)1/2 is the unperturbed radius of gyration of a chain consist-
ing of N beads and statistical segment length b. In this equation,
Λi are eigenvalues of the S×S matrix X =

(
χχχN(ζ N)−

1
2 +(ζ N)

1
2 111
)

where 111 is a S× S matrix with all entries equal to 1. The eigen-
values of X are contained in the columns of the S× S matrix O
with elements Oi j and correspond to the linear transformation
from the exchange fields µµµ to the species fields ΩΩΩ. In this work,
we only consider matricies X where all eigenvalues are non-zero
and non-degenerate. For zero-valued or degenerate eigenvalues,
extra considerations are required3,8,28.

The final term to be specified in Eq. 4 is Qm, the single-chain
partition function of molecule m. Qm is a functional of the species
fields ΩΩΩ = {Ω1,Ω2, ...,ΩS}

ΩK(r) = ΓK ⋆
S

∑
j=1

OK jµ j(r) (5)

for K = 1, ...,S and is defined as

Qm[ΩΩΩ] =
1
Ṽ

∫
Ṽ

d3r qm,Nm(rrr; [ΩΩΩ]). (6)

In this expression, qm, j(rrr) is the propagator corresponding to the
statistical weight for a molecule m at bead index j at position rrr for
fields ΩΩΩ and is calculated from a Chapman-Kolmogorov equation
as described elsewhere1,3.

To sample the field-based partition function in FTS, field con-
figurations for each exchange field µi(r) are evolved in fictitious
time t using complex Langevin32,33 (CL) dynamics,

∂ µi(r, t)
∂ t

=−λiγ
2
i

δH[µµµ]

δ µi(r, t)
+ γiηi(r, t) (7)

where

γi =

{
1, Λi < 0
√
−1, Λi > 0

and ηi(r, t) is Gaussian white noise with moments ⟨ηi(rrr, t)⟩= 0 and
⟨ηi(rrr, t)ηi(rrr′, t ′)⟩ = 2λiδ (rrr− rrr′)δ (t − t ′). Eq. 7 can also be used to
locate mean-field configurations (i.e. SCFT) by setting ηi = 0. The
parameter λi in Eq. 7 corresponds to the real relaxation coefficient
of the ith field.

An important aspect of Eq. 7 to emphasize is that the CL dy-
namics are not physical and simply correspond to a numeric
scheme to sample field configurations µµµ according to the weights
exp(−H[µµµ]). As a consequence, the relaxation coefficients λλλ =

{λ1,λ2, ...,λS} are not constrained to any specific physical val-
ues and can instead be tuned to obtain optimal sampling per-

formance. One of the central objectives of this work is to develop
tools that can automatically tune these relaxation coefficients for
systems with many components. This approach will be discussed
extensively in Section 3.

In order to numerically integrate equation 7 we use a Euler-
Maruyama Predictor-Corrector (EMPEC) algorithm which has
second order accuracy in fictitious time. The EMPEC algorithm
first conducts a predictor step which calculates a preliminary
guess for the update field at time t̃. This is followed by a cor-
rector step which refines the field update by averaging the forces
evaluated at the current step the predicted step. The same noise
ηi(t) is used in both steps28,29

µi(r, t̃) = µi(r, t)−λi∆tγ2
i

δH[µµµ]

δ µi(r, t)
+ γiηi(r, t) (8)

µi(r, t +∆t) = µi(r, t)−
λi∆tγ2

i
2

(
δH[µµµ]

δ µi(r, t)
+

δH[µµµ]

δ µi(r, t̃)

)
+ γiηi(r, t)

(9)
where ∆t is the timestep. In this expression, the product λi∆t
governs the rate at which exchange field µi is updated. In our
convention, we have chosen a constant timestep ∆t for all fields,
and have varied the λi for each field individually.

For all simulation in this work we use ζ N = 100, smearing
length a = 0.15Rg, reference chain length N = 100, chain number
density C = 10, and statistical segment length b = 1. The timestep
∆t is held fixed at 1.0 for SCFT and at 0.02 for FTS. All SCFT and
FTS were performed using an in-house software called OpenFTS.

2.2 Quantification of SCFT/FTS Performance

Throughout this work, one of our central objectives is to quantify
the performance of SCFT and FTS and how this performance can
be optimized by tuning the relaxation coefficients λλλ . In SCFT,
performance is quantified by the number of timesteps required
to converge the field configuration to a saddle point within an
error of δH[µµµ]/δ µi < 10−5 for i = {1, ...,S}. Since the dynamic
evolution of the fields in SCFT is typically unimportant, optimal
performance in SCFT is achieved by locating a saddle point in as
few timesteps as possible.

In FTS, the objective of the simulation is to instead stochasti-
cally sample field configurations so that time averages of field-
based operators converge to their equilibrium values. Since field-
based operators at subsequent timesteps will typically be corre-
lated, optimal performance in FTS is achieved by minimizing the
number of timesteps required to obtain decorrelated samples of
different field-based operators. Throughout this work, we quan-
tify the performance of FTS by measuring the autocorrelation
time of the excess chemical potential operator (Fig. S2). Shorter
values of the correlation time in FTS correspond to better simula-
tion performance. In the discussion of our results below, we de-
note both the performance of SCFT (i.e. timesteps to converge to
a saddle point) and the performance of FTS (i.e. autocorrelation
time) as P(λλλ ), where the dependence of simulation performance
on the relaxation coefficients λλλ is explicit.

In both SCFT and FTS, the performance will depend on the field
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configurations used to initialize the simulation. For SCFT, we use
initial field configurations from a converged simulation at slightly
different interaction parameters χχχ. For consistency throughout
the many systems considered in this work, we evaluate SCFT per-
formance using interactions parameters χχχN that are multiples of
five using initial field configurations obtained using interaction
parameters that are multiples of four. For example, when evaluat-
ing the performance of a simulation at χχχN = {5,15,20} we initial-
ize these simulation using converged fields for χχχN = {4,12,16}.
When initializing FTS, we first converge fields using SCFT for
the given interaction parameters and then perform FTS on those
fields until all operators reach their equilibrium values. Once
equilibrium is reached, we then calculate the correlation time.

All SCFT calculations, excluding those for the double gyroid,
are performed in a one-dimensional (1D) box with a length of 6
Rg and 64 plane waves (M). The double gyroid simulations are
run in a three-dimensional (3D) cubic box with length 9.6 Rg and
M=643. SCFT is run until the summation of field forces over all
fields is below 10−5 or for a maximum of 1,500,000 time steps
— 1.5 times the steps required for the slowest relaxation coeffi-
cients to converge. FTS is run in a 3D cubic box with a length
of 6 Rg and M = 483. Only macrophase separating homopolymer
blend systems are explored using FTS. When evaluating different
relaxation coefficients, each λi is selected from 30 logarithmically
spaced points ranging from 0.001 to 100. Further details are pro-
vided in the Supporting Information.

2.3 Bayesian Optimization

We use Bayesian optimization (BayesOpt) to automatically tune
the relaxation coefficients λλλ in order to achieve optimal SCFT
and FTS performance. In our BayesOpt implementation, we use
a Gaussian process regression surrogate model and an expected
improvement acquisition function34,35. Our objective function
is defined as (P(λλλ ))−1 and is normalized to the range of zero
to unity using the minimum and maximum measured values of
(P(λλλ ))−1. Since optimal performance of SCFT/FTS corresponds
to small values of P(λλλ ), we seek to maximize this objective func-
tion.

While BayesOpt is a widely applied method, our specific ap-
plication of BayesOpt led to some challenges that warrant addi-
tional discussion. The first challenge is that many values of the
relaxation coefficients, λλλ , result in simulations that are divergent
or that do not converge (see Fig. 1 and Fig. 2). Since a non-
convergent simulation corresponds to performance P(λλλ )≈ ∞, the
objective function is rugged and contains many sharp features.
We find that it can be challenging to approximate these sharp
features with a Gaussian process surrogate model. A related chal-
lenge is that the optimal relaxation coefficients λλλ

∗ are often in the
immediate vicinity of these non-convergent regions and so the in-
corporation of these sharp features into the surrogate model are
critical for good BayesOpt performance. By empirically varying
many aspects of our BayesOpt implementation, we find that both
these challenges could be addressed by using a suitably tuned
Matérn kernel36, an acquisition function that favored exploita-
tion37, and a dynamically adjusted penalty associated with non-

convergent trajectories (see Supporting Information).

We also faced challenges with our BayesOpt implementation
when we extended it to systems containing large numbers of
species. In our BayesOpt implementation, the memory required
to evaluate the acquision function scales exponentially with the
number of species in the system. As the number of species be-
comes large, this scaling can result in memory requirements ex-
ceeding 100GB that preclude the use of our typical computational
hardware. In order to overcome the memory requirements of
these systems, we use an adaptive BayesOpt scheme where the
resolution and range of the surrogate model is dynamically up-
dated as the optimization proceeds (see Supporting Information).
We find that our adaptive BayesOpt performs similarly to our
original BayesOpt implementation despite using a fraction of the
required memory (Fig. S7). Throughout this work, we use our
adaptive BayesOpt for systems containing more than five species.

We also find that the relaxation coefficients λλλ used to initialize
the surrogate model are extremely important for BayesOpt per-
formance. Notably, the performance of BayesOpt suffered when
it was initialized with conventional schemes such as randomly se-
lected or space-filling relaxation coefficients. After trying numer-
ous initialization schemes, we found that choosing relaxation co-
efficients that were proportional to the square root of the absolute
value of that field’s eigenvalue tended to give the best BayesOpt
performance. Specifically, the initial relaxation coefficients are
λi = α|Λi|1/2, where Λi is the eigenvalue defined in Eq. 4 and α

is a randomly selected proportionality constant that is the same
for all fields i. One of the primary advantages of this approach
is that the initial relaxation coefficients are chosen along a one-
dimensional line, even if the overall dimension of the search space
for λλλ is much larger. By initializing our surrogate model in this
way, we are able to efficiently locate convergent relaxation co-
efficients that can be subsequently refined using BayesOpt. Ad-
ditional details of our BayesOpt implementation are provided in
the Supporting Information.

3 Results and Discussion

3.1 Effect of relaxation coefficients on SCFT/FTS perfor-
mance

To demonstrate the importance of the relaxation coefficients λλλ

on simulation performance, we first examine several simple two-
species systems consisting of either neat diblock copolymers or
homopolymer blends. We begin with these simple systems be-
cause the simulations are very efficient and enable us to exhaus-
tively examine the role of relaxation coefficients λλλ on SCFT/FTS
performance. We will consider systems of higher complexity in
subsequent sections.

We begin by examining the number of timesteps required
by SCFT to converge a diblock copolymer double gyroid phase
for different relaxation coefficients λλλ = {λ1,λ2} (Fig. 1A). In
these calculations, the A block fraction fA = 0.34, the segrega-
tion strength χN = 30, number of plane waves M = 643 and
the initial fields are obtained from a converged unit cell at χN
= 20 and fA = 0.37. From these calculations, we observe a
wide variation in timesteps to convergence with respect to the
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Fig. 1 Effect of relaxation coefficients λλλ = {λ1,λ2} on SCFT and FTS performance for various two-species systems. (A) SCFT performance for a
gyroid-forming diblock copolymer melt. (B) Comparison of SCFT performance for different polymer architectures (i.e. diblock vs. homopolymer
blends) and microphases (i.e. lamellar vs. gyroid). (C) FTS performance for a homopolymer blend. Detailed trajectories for two values of λλλ (red X
markers) are given in Fig. S2. (D) Stability boundaries of SCFT and FTS for a homopolymer blend. Dotted lines correspond to λ1 = λ2.

relaxation coefficients λλλ (Fig. 1A). The performance of SCFT
ranges from poorly performing relaxation coefficients that require
greater than 106 timesteps to the best performing relaxation coef-
ficients λλλ

∗ = {14.2, 14.2} that converge in 140 timesteps. More-
over, many relaxation coefficients never yield a converged SCFT
solution, either due to numeric instabilities (i.e. divergent tra-
jectories) or the inability to reduce field errors beneath the pre-
scribed threshold of 10−5. It is also noteworthy that the optimal
relaxation coefficients λλλ

∗ that give the best SCFT performance
are immediately adjacent to these non-convergent relaxation co-
efficients.

In order to understand whether our findings in Fig. 1A gen-
eralize to other systems and conditions, we also examine the
influence of relaxation coefficients on SCFT performance for a
lamellar-forming diblock copolymer melt ( fA = 0.5, χN = 30) and
a symmetric two component homopolymer blend with φ̄ = 0.5
and χN = 30 (Fig. 1B). These calculations are initialized from
converged SCFT simulations at χN = 20 and fA = 0.5 for the di-
block, and at χN = 20 and φ̄A = 0.5 for the homopolymer blend.

In general, our observations for the gyroid phase are very simi-
lar to our observations for the lamellar phase and the homopoly-
mer blend: the optimal relaxation coefficients λλλ

∗ are many orders
of magnitude faster than the poorly performing relaxation coeffi-
cients and the optimal relaxation coefficients λλλ

∗ are adjacent to
non-convergent relaxation coefficients. Furthermore, the general
shape of the convergent relaxation coefficients are essentially un-
changed across these three different systems (Fig. 1B). It is also
noteworthy that the general shape of the convergent relaxation

coefficients are minimally affected by the convergence tolerance
used in SCFT (Fig. S9).

We are also interested in how the choice of relaxation coeffi-
cients affect the performance of FTS (Fig. 1C). In our analysis,
we consider a homopolymer blend with φ̄A = 0.5, χN = 30 and
quantify the performance of FTS using the correlation time of the
chemical potential operator (see Methods). In order to obtain ac-
curate correlation time measurements when the relaxation coeffi-
cients λi are small, all simulations are run for 320,000 timesteps.
Additionally, to account for the stochastic nature of FTS, three
independent replicas are performed for every combination of re-
laxation coefficients and the mean correlation time is reported. If
one or more replicas diverge before completing the total number
of timesteps, then the corresponding relaxation coefficients are
classified as non-convergent.

The performance of FTS is qualitatively similar to our results
for SCFT in Fig. 1A-B. A notable difference between SCFT and FTS
is that FTS requires values of λλλ∆t that are approximately 50 times
smaller than for SCFT (∆t = 0.02 for FTS, 1.0 for SCFT). Another
difference is the less pronounced optimal region for FTS whereas
SCFT has a sharply peaked region of optimal performance. Both
of these differences associated with FTS are not surprising given
the numeric challenges associated with integrating the stochas-
tic CL dynamics in FTS, which require smaller timesteps and lead
to broader optimal parameter regions due to the increased sen-
sitivity to stochastic fluctuations as the relaxation coefficients in-
crease. Nonetheless, if the different timesteps required by SCFT
and FTS are accounted for, then the effects of λλλ on the stability
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of SCFT and FTS are largely in agreement (Fig. 1D).

A more subtle difference between SCFT and FTS is that equal-
valued relaxation coefficients λ1 = λ2 are generally convergent
in SCFT (Fig. 1A) but are unstable in FTS (Fig. 1C). It is also
noteworthy that the optimal relaxation coefficients generally oc-
cur when λ1 ≈ λ2 in SCFT, but for λ1 ̸= λ2 in FTS. This observa-
tion underscores the difficulty of running efficient FTS compared
to SCFT and is reasonable given the presence of fluctuations in
FTS.

Taken together, our results in Fig 1 demonstrate that tuning
the relaxation coefficients λλλ is critical for both SCFT and FTS per-
formance and that the choice of optimal relaxation coefficients
λλλ
∗ can lead to simulations that are orders of magnitude faster.

We also demonstrate that the general effects of relaxation coeffi-
cients on simulation performance are qualitatively similar across
different systems and simulation techniques. This overarching
similarity suggests that an approach to optimize the relaxation
coefficients in one context will likely be applicable to other con-
texts as well. In particular, it motivates a general-purpose strategy
for optimizing the relaxation coefficients in SCFT/FTS. The goal
of this paper is to describe such a strategy that can efficiently lo-
cate these optimal relaxation coefficients λλλ

∗. However, before we
do this, it is useful to consider how the optimal relaxation coeffi-
cients λλλ

∗ change as the number of species in the system increase
beyond two.

3.2 Challenges in systems with many species

Now that we have established the importance of the relaxation
coefficients λλλ in two-species systems, we turn to more complex
systems that contain additional species. As we will demonstrate,
for systems that contain three or more species, there are several
additional complexities that make it more challenging to locate
the optimal relaxation coefficients λλλ

∗. In the analysis and dis-
cussion that follows, we will focus on systems that contain three
species but our findings are anticipated to be generally applicable
to any systems whose total number of species exceed two.

One of the most obvious complexities that emerges from a
three-species system is that three distinct exchange fields are now
necessary to decouple the non-bonded interactions in the model.
This now results in three relaxation coefficients λλλ = {λ1, λ2, λ3}
and thus a higher dimensional space to search over in order to
locate the optimal relaxation coefficients λλλ

∗. A more subtle, but
nonetheless important, consequence of moving to three-species
systems is that the mapping from the exchange fields µµµ to species
fields ΩΩΩ now depends on the interaction matrix χχχ. In order to
illustrate this dependence, is is helpful to first consider a two
species system where χ = χ12. For this two species system, the
X matrix becomes

X =

(
(ζ N)1/2 (ζ N)1/2 +χN(ζ N)−1/2

(ζ N)1/2 +χN(ζ N)−1/2 (ζ N)1/2

)
(10)

whose eigenvectors are the columns of O where

O =
1√
2

(
−1 1
1 1

)
. (11)

A noteworthy feature of this two species system is that the eigen-
vectors contained in O are independent of interaction parameters
χχχ. Since O corresponds to the linear transform between the ex-
change fields µµµ and the species fields ΩΩΩ, this independence means
that the definition of the species fields in a two species system are
always the same, independent of how the different species inter-
act. This is one reason why the effects of the relaxation coeffi-
cients λλλ on system performance for the two species system are
largely independent of interaction parameters (Fig. 1).

For systems with three or more species, this independence is
lost and the mapping between the exchange fields µµµ and the
species fields ΩΩΩ will now depend on the interaction parameters χχχ.
As a direct consequence of this interdependence, the relaxation
coefficients λλλ will now depend on the interaction parameters χχχ.
This means that it is generally more challenging to identify stable
relaxation coefficients λλλ in systems with three or more species
than in systems that contain only two.

In order to illustrate these challenges, we first examine a three-
component homopolymer blend consisting of polymers A, B and
C, with volume fractions φ̄A = φ̄B = 0.33, φ̄C = 0.34, and interac-
tion parameters χABN = 15, χBCN = 20 and χACN = 15. To keep
calculations computationally tractable, our analysis will focus on
SCFT, however, we expect qualitatively similar results if the anal-
ysis were instead performed using FTS (c.f. Fig. 1D). In order
to visualize the impact of relaxation coefficients λλλ for this sys-
tem, we plot two different orientations of the complete three-
dimensional data (Fig. 2A) and several two-dimensional slices
at fixed values of λ2∆t (Fig. 2B). At least qualitatively, the ef-
fect of relaxation coefficients λλλ for this three species system is
similar to our results for two species systems discussed above
(Fig. 1). As with the two species system, the performance of
SCFT varies widely with respect to λλλ , with poor performing λλλ

requiring close to 106 timesteps for convergence, while the op-
timal λλλ

∗ = {9.2, 13.7, 32.3} converges in just 80 timesteps. The
stable λλλ space also narrows as λi values increase, resulting in a
small region of optimal performance with the optimal relaxation
coefficients λλλ

∗ located immediately adjacent to non-convergent
regions. It is also noteworthy that most λλλ values fail to yield a
converged SCFT solution.

Yet beyond these qualitative similarities to the two species sys-
tems, this three species system also contains additional complex-
ities that make it more challenging to identify efficient relaxation
coefficients λλλ . For example, in contrast to the two species system
discussed in Fig 1, this three species system does not converge
if all relaxation coefficients are equal λ1 = λ2 = λ3 (Fig. 2A, dot-
ted black line). This suggests that the tuning of relaxation co-
efficients for different exchange fields is essential for achieving
stable SCFT/FTS of systems with more than two species. Another
complexity is that the region of optimal relaxation coefficients is
much narrower (Fig 2B) and only exists for a small range of relax-
ation coefficients λλλ . This narrow region of optimal performance
can result in over an order of magnitude increase in performance
(e.g. Fig 2B, λ2∆t = 0.08 versus λ2∆t = 13.7) and so there is a
considerable computational benefit if this narrow region can be
found.

Lastly, and perhaps most significantly, the performance of dif-
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Fig. 2 Effect of relaxation coefficients λλλ = {λ1,λ2,λ3} on SCFT performance for a three-species homopolymer blend. (A) Complete three-dimensional
representation of SCFT performance for interaction parameters χABN = 15, χBCN = 20 and χACN = 15. Two different orientations of the performance
space are presented. The dotted black line denotes points where λ1 = λ2 = λ3. (B) Representative two-dimensional slices of SCFT performance for
fixed values of λ2∆t. Note that the colors of the cross-sections correspond to the marker colors in the complete representation. The white star denotes
points where λ1 = λ2 = λ3. (C) For different interaction parameters χABN = 5, χACN = 10 and χBCN = 15, the three-dimensional representation of SCFT
performance (left) and corresponding two-dimensional slices of SCFT performance for fixed values of λ2∆t. Changes to the interaction parameters
affect the performance of relaxation coefficients λλλ and therefore the location of their optimal value λλλ

∗.
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ferent relaxation coefficients in this three species system now
depends on the interaction parameters χχχ. To illustrate this de-
pendence, we have recomputed the performance of SCFT for this
same three species system with slightly different interaction pa-
rameters χABN = 5, χACN = 10 and χBCN = 15 (Fig. 2C). This
change in interaction parameters has a significant effect on the
role of different relaxation coefficients and where the optimal re-
laxation coefficients might be found.

These results and the others presented in Fig. 2 collec-
tively demonstrate the challenges of locating stable and high-
performing relaxation coefficients in systems that contain three
(or more) unique chemical species. In our treatment so far, we
were able to locate these optimal relaxation coefficients through
brute force sampling: we discretized the range of relaxation coef-
ficients, explicitly performed simulations at each of these differ-
ent relaxation coefficient values and then quantified the simula-
tion performance. Since the overall search space increases expo-
nentially with the number of species, this brute force approach
quickly becomes intractable as the number of species increases
beyond three. It is therefore of great interest to develop methods
that can locate these optimal relaxation coefficients without brute
force sampling.

One particularly attractive strategy would be to use a closed-
form expression to determine the optimal relaxation coefficients
from the interaction parameters χχχ. For example, Düchs, Delaney
and Fredrickson28 previously suggested that the eigenvalue mag-
nitude |Λi| might be related to the optimal relaxation coefficient
λ ∗

i of that field. Yet, Düchs, Delaney and Fredrickson28 also
demonstrated that non-linear couplings between different fields
through the lnQm term in Eq. 4 makes this scheme too simplistic
to yield optimal relaxation coefficients in practice. We also ex-
amined the possibility of closed-form predictions of the optimal
relaxation coefficients but were unable to identify any general
purpose approach that reliably worked for multi-species systems.
In our analysis, we found that the closed-form prediction of re-
laxation coefficients is complicated by the fact that the optimal
relaxation coefficients can vary for systems with different interac-
tion parameters χχχ but equivalent eigenvalues ΛΛΛ (Fig. S5), and
for systems with equivalent interaction parameters χχχ, but dif-
ferent molecular architectures (Fig. 1B). Our conclusion is thus
consistent with Düchs, Delaney and Fredrickson28 that numeric
schemes are needed to determine the optimal relaxation coeffi-
cients λλλ

∗. In the following section, we demonstrate that Bayesian
optimization is particularly well-suited for locating optimal relax-
ation coefficients in complex polymeric systems containing many
chemical species.

3.3 Bayesian optimization for relaxation coefficient selec-
tion

Bayesian optimization (BayesOpt) is a method for maximiz-
ing objective functions that are both expensive to evaluate and
whose derivatives are not known34. The two key components of
BayesOpt are (1) a probabilistic surrogate model that is used to
approximate the objective function and (2) an acquisition func-
tion that leverages this surrogate model to decide the next point

to sample. A particularly advantageous feature of BayesOpt is
that the method can be used to maximize virtually any objective
function, even if the underlying functional form is not known or
does not exist. BayesOpt is also well-suited for objective functions
that are expensive to evaluate since the objective function is only
evaluated for points that the surrogate model predicts to be most
useful.

In order to explore whether BayesOpt could be used to opti-
mize the performance of SCFT and FTS, we now return to the
simple two species homopolymer blend previously considered in
Sec. 3.1. In particular, we are interested in whether BayesOpt can
automatically locate the optimal relaxation coefficients λλλ

∗ that
we previously located using brute force sampling. Fig. 3A shows
a representative evolution of a BayesOpt-driven search. We find
that BayesOpt quickly locates the region of optimal performance
in approximately 10 iterations and then samples this region un-
til the globally optimal relaxation coefficients λλλ

∗ are found. In
order to quantify the performance of BayesOpt, we compare the
best performing λλλ found by BayesOpt to those obtained using
random sampling (Fig. 3B). We see that BayesOpt reliably locates
high-performing relaxation coefficients λλλ

∗ in 20 evaluations and
results in SCFT simulations that are 30 times faster than λλλ chosen
at random.

While the performance achieved using BayesOpt is quite im-
pressive, it is important to emphasize that the choice of hyperpa-
rameters can have a significant effect on BayesOpt performance.
In general, we found that the performance of naive BayesOpt
implementations were quite poor and that good performance re-
quired the careful tuning of the surrogate model kernel, the ac-
quisition function and the objective function. The details of our
specific BayesOpt implementation are described in Sec. 2.3 and in
the Supporting Information. It is also important to note that there
are many strategies that could be used to generate relaxation co-
efficients in addition to BayesOpt and random sampling. We have
chosen to compare these two methods in order to give a base-
line measure of performance and not an exhaustive comparison
of different methods.

3.4 Bayesian optimization in systems with many species

Based on these promising initial results for BayesOpt in a two-
species system, we next analyze whether BayesOpt can be used to
optimize the relaxation coefficients in systems with many species.
Specifically, we consider homopolymer blends containing two,
three, four and five unique chemical species and examine how
BayesOpt selects their relaxation coefficients in SCFT (Fig. 4).
Even though this is a relatively simple system only capable of
macrophase separation, we expect that our results will generalize
to other systems of higher complexity where microphase separa-
tion is present (c.f. Fig. 1B). The specific interaction parameters
χχχ for these systems are given in the Supporting Information.

In order to quantify the performance of BayesOpt for these dif-
ferent systems, we once again examine the best performing λλλ

found by BayesOpt relative to random at each SCFT evaluation
(Fig. 4A,B,C,D). For each of these systems, the relaxation coeffi-
cients optimized by BayesOpt converge considerably faster than
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Fig. 3 Selection of relaxation coefficients λλλ = {λ1,λ2} using Bayesian optimization (BayesOpt) for SCFT of a two-species homopolymer blend. (A)
BayesOpt rapidly identifies optimal regions of relaxation coefficients λλλ in fewer than 10 iterations and subsequently focuses its sampling in this region
to locate the best performing λλλ . (B) Comparison of BayesOpt and random sampling. BayesOpt locates relaxation coefficients that are considerably
faster than those found with random sampling. The shaded regions are 95% confidence intervals.

those obtained with random sampling. In general, we find that
the advantages of BayesOpt tend to increase with the number of
species, with a 190-fold performance improvement of BayesOpt
relative to random for the five-species system. This result indi-
cates that BayesOpt can efficiently navigate the complexities of
systems that contain many species and that it can continue to lo-
cate relaxation coefficients with good SCFT performance.

Another metric that we use to quantify BayesOpt’s performance
is the fraction of total SCFT simulations that are non-convergent.
As demonstrated in Fig. 1 and Fig. 2, it is common for the vast
majority of relaxation coefficients λλλ to not yield a convergent
SCFT solution. Thus in addition to finding λλλ that have good
SCFT performance (Fig. 4A,B,C,D), BayesOpt quickly finds λλλ that
are able to converge. While random sampling tends to find λλλ of
which > 75% are non-convergent, BayesOpt is able to focus its
sampling on λλλ of which < 30% are non-convergent on average
(Fig. 4E,F,G,H). It is also noteworthy that the fraction of non-
convergent simulations tends to decrease throughout the course
of a BayesOpt-driven search, resulting in simulations where only
≈ 10% are non-convergent for a five-species homopolymer blend.
Thus, in addition to finding relaxation coefficients with good per-
formance, BayesOpt is also able to focus sampling on those relax-
ation coefficients that yield convergent SCFT solutions.

We next examine whether BayesOpt can be used to opti-
mize the relaxation coefficients λλλ in FTS for systems with many
species (Fig. 5). As we observed for SCFT, BayesOpt performs
well for two- to five-species systems and results in 7- to 21-
fold performance improvements relative to random sampling
(Fig. 5A,B,C,D). BayesOpt also similarly locates convergent re-
laxation coefficients much more efficiently than random, with
non-convergent fractions of ≈ 40% in BayesOpt on average versus
> 85% for random (Fig. 5E,F,G,H).

It is also illustrative to compare the performance of BayesOpt
between SCFT (Fig. 4) and FTS (Fig. 5). In general, BayesOpt
leads to more significant performance gains relative to random
in SCFT than in FTS. One reason for this difference is a super-

ficial artifact from how we have defined the correlation time of
non-convergent trajectories in FTS. Since these three-dimensional
FTS are considerably more expensive than these one-dimensional
SCFT, we set the maximum number of timesteps to be consider-
ably lower in FTS than in SCFT (5× 104 versus 1.5× 106). One
direct consequence of this choice is that the maximum stable
correlation time possible in our FTS is 1250 timesteps and non-
convergent FTS trajectories are therefore assigned a correlation
time of 1250 timesteps (see Sec. 2 and Supporting Information).
Furthermore, for computational efficiency, relaxation coefficients
with correlation times exceeding this threshold are labeled as
non-convergent. This choice limits the amount of information
that BayesOpt can gain from each evaluation of FTS, and also
sets a ceiling for the maximum correlation time which leads to
more modest improvements in FTS (e.g. 7-21x) than in SCFT
(e.g. 30-190x) relative to random. While we could increase the
maximum number of timesteps in FTS, we feel that our choice
is computationally prudent because it avoids wasting resources
on relaxation coefficients with correlation times are exceedingly
large. In summary, our choice to truncate inefficient relaxation
coefficients improves the absolute performance (i.e. walltime) of
BayesOpt FTS at the expense of penalizing the relative perfor-
mance of BayesOpt FTS compared to random.

Another important difference between BayesOpt in SCFT and
FTS is the role of stochasticity in the evaluation of simulation
performance. In SCFT, simulation performance is quantified by
the number of timesteps to convergence, which is a deterministic
quantity. In contrast, simulation performance in FTS is quantified
using correlation time which is a stochastic quantity that will de-
pend on the realization of the random noise described in Eq. 7.
We anticipate that accounting for this noise in our BayesOpt im-
plementation could improve performance34,35, but for simplicity
we do not pursue these improvements here.

As an additional test for our BayesOpt implementation we con-
sider two different systems. These systems represent the most
complex systems we have examined thus far and serve to rig-
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SCFT evaluation index SCFT evaluation index

SCFT evaluation index SCFT evaluation index SCFT evaluation index SCFT evaluation index

190x
70x

4 component 5 component

30x 50x

(E) (F) (G) (H)

3 component2 component

2 component 5 component4 component3 component

(A) (B) (C) (D)

SCFT evaluation index SCFT evaluation index

Fig. 4 BayesOpt enhances SCFT performance in multi-species homopolymer blends. (A) Comparison of BayesOpt and random sampling for two-species,
(B) three-species, (C) four-species and (D) five-species homopolymer blends. BayesOpt substantially outperforms random sampling and achieves a
190-fold improvement for the five-species homopolymer blend. This improvement is calculated at the first evaluation where BayesOpt is within 10% of
its best value. Cartoons above each panel depict the molecular composition of the corresponding systems. (E) Fraction of non-convergent relaxation
coefficients λλλ as a function of SCFT evaluation for two-species (F) three-species, (G) four-species and (H) five-species homopolymer blends. BayesOpt
reduces the sampling of non-convergent λλλ across all systems. In contrast, random sampling frequently samples non-convergent regions, especially as
the number of species increase. The shaded regions are 95% confidence intervals.

orously test whether BayesOpt can optimize relaxation coeffi-
cients under increased system complexity. For the first system, we
choose a five-component mixture containing homopolymer chains
with 100 or 150 discrete beads in an explicit solvent (details in
Supporting Information). The asymmetric chain lengths coupled
with the explicit solvent make it very difficult to obtain conver-
gent FTS relaxation coefficients.

As before, we compare BayesOpt to random sampling over
many independent replicas (Fig. 6A). Whereas the performance
of randomly sampled relaxation coefficients is relatively constant
near the maximum correlation time of 1250 timesteps, BayesOpt
identifies relaxation coefficients with correlation times < 100
timesteps after only 10 FTS evaluations. On average, this cor-
responds to a 33-fold performance improvement relative to ran-
dom. It is also noteworthy that convergent relaxation coefficients
are very difficult to locate for this system as > 95% of relaxation
coefficients sampled randomly are non-convergent (Fig. 6C). In
contrast, we find that BayesOpt is able to focus its sampling to-
wards more stable relaxation coefficients, typically achieving non-
convergent rates of ≈ 50% after its first 10 evaluations. Thus,
whereas randomly sampled relaxation coefficients are completely
ineffective at generating stable FTS for this system, BayesOpt is

able to robustly locate stable relaxation coefficients with good
performance.

For the second system, we examine a ten-component SCFT ho-
mopolymer blend in which each species is present at equal vol-
ume fraction and each homopolymer consists of 100 discrete
beads. This system represents the highest dimensional search
space considered in this study and poses a significant challenge
for our optimization method due to the rapid increase in possible
λλλ as the number of species increases. As the number of species
increases beyond five, the computational and memory demands
of BayesOpt become prohibitive due our Gaussian process regres-
sion surrogate model. This is because the number of potential
relaxation coefficients λλλ that BayesOpt needs to estimate grows
exponentially with the number of species. Without a more effi-
cient strategy for navigating the increasingly large search space,
BayesOpt is computationally intractable for this system due to
both time and memory constraints. To address these constraints,
we develop a modified BayesOpt workflow, referred to as Adap-
tive BayesOpt, where the resolution is lowered but the range of
the search space is dynamically updated as BayesOpt samples λλλ

(see Sec. 2 and Supporting Information).

We apply Adaptive BayesOpt to this system and compare its
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(B) (C) (D)

(F) (G) (H)
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21x

7x
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FTS evaluation index FTS evaluation index FTS evaluation index FTS evaluation index

FTS evaluation indexFTS evaluation indexFTS evaluation index

Fig. 5 BayesOpt enhances FTS performance in multi-species homopolymer blends. (A) Comparison of BayesOpt and random sampling for two-species,
(B) three-species, (C) four-species and (D) five-species homopolymer blends. BayesOpt significantly reduces correlation times compared to random
sampling, despite the inherent stochastic noise present in FTS. Cartoons above each panel depict the molecular composition of the systems. (E-F)
Fraction of non-convergent relaxation coefficients λλλ as a function of FTS evaluation for two-species (F) three-species, (G) four-species and (H)
five-species homopolymer blends. BayesOpt decreases the likelihood of evaluating non-convergent λλλ , while random sampling frequently evaluates
unstable regions, especially as number of species increase. The shaded regions are 95% confidence intervals.

performance to random sampling (Fig. 6B). As in the previous
examples, we track the best performing λλλ found after each eval-
uation. For random sampling, performance remains relatively
poor as new λλλ are evaluated, with the best performing λλλ yielding
only modest improvements in SCFT performance. In contrast,
Adaptive BayesOpt quickly identifies λλλ with substantially bet-
ter performance. Adaptive BayesOpt then refines and improves
performance over subsequent evaluations and ultimately locates
λλλ with a 125-fold improvement in simulation performance rel-
ative to random. As with the five-component system, this im-
provement is not only due to BayesOpt finding better performing
relaxation coefficients, but also due to a reduction in the frac-
tion of non-convergent evaluations. As shown in Fig. 6D, ran-
dom sampling continues to produce a high proportion of non-
convergent λλλ (> 80%), whereas Adaptive BayesOpt instead prior-
itizes sampling in convergent regions of the search space (< 10%).
Taken together, these results demonstrate that even in multi-
species settings where the search space becomes prohibitively
large, BayesOpt can still efficiently identify high-performing and

stable relaxation coefficients.

3.5 Transferability of relaxation coefficients

Another useful test for the relaxation coefficients obtained using
BayesOpt is to examine how these relaxation coefficients perform
for different systems and conditions. For example, when perform-
ing SCFT or FTS, it is typically of interest to perform simulations
for many different interactions parameters χχχ not just a single
value of χχχ as we have examined so far in this work. Moreover,
the benefits of our BayesOpt approach would be significantly di-
minished if a new BayesOpt calculation was required for every
new set of interaction parameters or system conditions. Thus it is
useful to examine how the relaxation coefficients obtained using
BayesOpt for a single χχχ perform for interaction parameters that
are different.

To investigate the transferability of our BayesOpt relaxation co-
efficients, we focus on the five-species homopolymer blend exam-
ined previously in Fig. 4D,H and Fig. 5D,H. The original interac-
tion parameters for this system used with BayesOpt are denoted
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Fig. 6 BayesOpt performance in systems of increased complexity. Comparison of BayesOpt and random sampling of (A) FTS for a five-component
system with homopolymer chains of varying length in explicit solvent and (B) SCFT for a ten-component homopolymer blend. Cartoons above each
panel depict the molecular composition of the systems. Even for these complex multi-species systems, BayesOpt effectively identifies high-performing
relaxation coefficients λλλ . (C) Fraction of non-convergent relaxation coefficients evaluated with FTS of the five-component system. BayesOpt reduces
the likelihood of sampling non-convergent relaxation parameters compared to random sampling, which maintains a consistently high failure rate close
to 100% across all evaluations. (D) Fraction of non-convergent relaxation coefficients evaluated with SCFT for the ten-component homopolymer
blend. Adaptive BayesOpt reaches a negligible non-convergent fraction while random sampling continues to frequently evaluate unstable relaxation
coefficients throughout the optimization process.

by χχχ0N and are given in Table S5. In order to calculate the trans-
ferability of the optimal λλλ

∗ found by BayesOpt, we first define a
perturbation magnitude ε that parameterizes the deviation of the
new interaction parameters χ̃χχN, relative to their original values
χχχ0N. Specifically, χ̃χχN is obtained by multiplying each element
of χχχ0N by a random factor between 1− ε and 1+ ε. When ex-
amining a range of different ε, we select values of χ̃χχN that are
unique to a specific value of ε and that cannot be generated using
other values. In order to obtain statistics for different values of
ε, we choose five different values of λλλ

∗ obtained from indepen-
dent BayesOpt calculations and generate 40 random realizations
of χ̃χχN.

We first examine whether the optimal λλλ
∗ yield convergent

SCFT simulations for different values of ε (Fig. 7A). The frac-
tion of non-convergent trajectories is observed to increase with ε

and suggests a rather poor transferability of λλλ
∗, especially when

ε is large. We hypothesize that this low transferability emerges
because the optimal relaxation coefficients located by BayesOpt

are deep inside the narrow optimal performance region discussed
previously for two- and three-species systems in Fig. 2A and
Fig. 3A, respectively. Though this optimal performance region
results in exceptional performance for χχχ0N (Fig. 4D), it leads to
poor transferability to the new values of χ̃χχN.

One natural solution to this problem is to instead modify λλλ
∗ to

slightly decrease performance in order to improve transferability.
A simple approach to achieve this goal is to project λλλ

∗ onto the
vector given by the square root of eigenvalue magnitudes |Λi|1/2

for the unperturbed χχχ0N, compute the norm of this projection,
and multiply the unit vector corresponding to |Λi|1/2 for the per-
turbed χ̃χχN by half this norm. This procedure to obtain a projected
λλλ
∗ effectively uses the original λλλ

∗ to obtain a proportionality con-
stant that is then used to set the relaxation coefficients for the new
χ̃χχN. We observe that these projected λλλ

∗ exhibit excellent trans-
ferability and result in stable SCFT simulations even for ε = 1.
The performance of the projected λλλ

∗ are also comparable to the
performance obtained if the original λλλ

∗ are used (Fig. 7B). These
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(A) (B)5 component SCFT 5 component SCFT

(C) 5 component FTS 5 component FTS(D)

Fig. 7 Transferability of optimal BayesOpt relaxation coefficients λλλ
∗ to

different interaction parameters. (A) Fraction of non-convergent SCFT
simulations for different magnitudes of χχχN perturbation and (B) corre-
sponding SCFT simulation performance. (C) Fraction of non-convergent
FTS for different magnitudes of χχχN perturbation and (D) corresponding
FTS performance. The definition of ε and the procedure use to obtain
the projected λλλ

∗ are described in the text.

results indicate that our simple projection strategy is very effec-
tive at producing relaxation coefficients for SCFT that are both
high-performing and convergent for a wide range of different in-
teraction parameters.

We next examine how the FTS performance of the λλλ
∗ obtained

using BayesOpt transfer to different values of χ̃χχN. In contrast to
SCFT, we observe that the optimal λλλ

∗ result in a low fraction of
non-convergent FTS simulations across all values of ε (Fig. 7C).
Moreover, the correlation time in FTS only increases slightly with
respect to ε and still yields relatively low correlation times even
when ε is large (Fig. 7D). We attribute the excellent transferabil-
ity of λλλ

∗ in FTS to the relatively broad region of optimal perfor-
mance in FTS, especially relative to SCFT (c.f. Fig. 1A,C). Thus,
even though BayesOpt leads to more modest performance gains
in FTS relative to SCFT (Fig. 4, Fig. 5), the transferability of λλλ

∗

to different interaction parameters is quite good.

Taken together, the results presented in Fig. 7 demonstrate
that the relaxation coefficients obtained using BayesOpt can re-
sult in convergent and high-performing SCFT and FTS calcula-
tions at different values of interaction parameters. We have also
examined the transferability of relaxation coefficients to different
polymer volume fractions and observe similar results (Fig. S8).
These results demonstrate that a single BayesOpt calculation can
be used to obtain relaxation coefficients that are broadly useful
across a range of different systems and conditions.

Conclusions
This work introduces a general framework for optimizing relax-
ation coefficients (λλλ) in SCFT and FTS of multi-species polymer
systems. We show that simulation performance is highly sensitive
to relaxation coefficients, with optimal choices yielding orders of
magnitude improvements in performance. We also observe that
the effects of relaxation coefficients can be system-specific and
that they are difficult to anticipate or predict, especially as the
number of species increases.

To address these challenges, we develop a Bayesian optimiza-
tion (BayesOpt) workflow tailored to optimize SCFT and FTS.
Our results demonstrate that BayesOpt consistently outperforms
random sampling and rapidly identifies high-performing relax-
ation coefficients while avoiding non-convergent regions of the
search space. We show that our approach can optimize over high-
dimensional systems with ten or more species that would other-
wise be intractable. We also show that the relaxation coefficients
obtained using BayesOpt transfer reasonably well to different sys-
tems and conditions. Furthermore, our approach is easily ex-
tended to other field update algorithms29, alternative theoretical
frameworks for performing multi-species FTS38 and is compatible
with other recent numerical strategies for stabilizing FTS39.

Though our study has focused on BayesOpt, there are numer-
ous other optimization algorithms that could also be used to iden-
tify relaxation coefficients. While we have not examined alterna-
tives to BayesOpt in this work, there are several general criteria
that should be satisfied in order for an algorithm to be suitable
for relaxation coefficient optimization. The first and most im-
portant criteria is for the algorithm to minimize the number of
required evaluations, especially for FTS where each evaluation
can be very computationally expensive. Another criteria is for the
algorithm to be able to locate the optimal relaxation coefficients
despite their proximity to large non-convergent regions. These
two criteria suggest that any successful algorithm should exhibit
a multi-scale character: it should first make large changes to the
relaxation coefficients in order to locate the optimal region and
then it should focus on sampling this region despite the occur-
rence of non-convergent simulations. Our BayesOpt implementa-
tion is able to achieve this (c.f. Fig. 3A) and we expect that other
successful algorithms for relaxation coefficient optimization will
do the same.

It is also important to note that there are numerous meth-
ods to locate the SCFT field configurations other than solving
the fictitious dynamics (i.e. Eq. 7 with ηi = 0) used throughout
out this work. One prominent and powerful example is Ander-
son mixing40–42 which is implemented in the open-source PSCF
code43,44. Vigil, Delaney and Fredrickson recently compared the
performance of SCFT using either fictitious dynamics or Ander-
son mixing and observed that both methods had similar perfor-
mance so long as each method was properly tuned29. Since this
past work only considered two-species systems, it would be very
interesting to compare how the performance of our optimal relax-
ation coefficients compare to Anderson mixing when the number
of species become large.

Another interesting extension of our work would be to perform
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BayesOpt using a relatively loose convergence tolerance in SCFT.
Since our initial results suggest that the relative performance of
different relaxation coefficients is largely independent of conver-
gence tolerance (Fig. S9), it could be possible to identify λλλ

∗ more
quickly by first performing BayesOpt using a loose tolerance and
then performing production SCFT simulations with a tolerance
that is tighter. This could dramatically accelerate the 10–100
SCFT evaluations typically required for BayesOpt to find the opti-
mal relaxation coefficients, especially if three-dimensional SCFT
simulations are required.

Taken together, our work represents an advance in the automa-
tion and acceleration of field-based simulations, especially when
many species are present. By reducing the need for manual tun-
ing, our BayesOpt method broadens the practical scope of SCFT
and FTS and paves the way for high-throughput and chemically
specific simulations in soft matter and biomolecular physics.
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