Volume 9 Number 4 21 February 2025 Pages 895-1132 ## Sustainable Energy & Fuels Interdisciplinary research for the development of sustainable energy technologies rsc.li/sustainable-energy ISSN 2398-4902 #### **PAPER** Guigang Zhang, Kazuhiko Maeda et~al. Light-intensity dependence of visible-light ${\rm CO_2}$ reduction over Ru($_{\rm II}$)-complex/Ag/polymeric carbon nitride hybrid photocatalysts ## Sustainable Energy & Fuels ## **PAPER** View Article Online View Journal | View Issue Cite this: Sustainable Energy Fuels, 2025. 9. 947 Received 25th October 2024 Accepted 30th November 2024 DOI: 10.1039/d4se01488j rsc.li/sustainable-energy # Light-intensity dependence of visible-light CO₂ reduction over Ru(II)-complex/Ag/polymeric carbon nitride hybrid photocatalysts† Ryuichi Nakada,^a Chao Zhang,^b Jo Onodera,^a Toshiya Tanaka,^a Megumi Okazaki, ^b Guigang Zhang ^b * and Kazuhiko Maeda ^b * and Kazuhiko Maeda ^b * and Kazuhiko Maeda b an Photocatalytic CO_2 reduction over Ru(III)-complex/Ag/polymeric carbon nitride (PCN) was studied with respect to light intensity and the type of Ru(III) complex. In experiments using two different Ru(III) complex cocatalysts, the reduction potential of the Ru complex was found to balance efficient CO_2 reduction on the Ru complex with electron transfer from Ag/PCN. This balance avoided the formation of H_2 as a byproduct, minimized charge accumulation in Ag/PCN, and maximized the apparent quantum yield for CO_2 -to-HCOOH conversion. #### Introduction CO₂ is an important source of C1 chemicals in organic synthesis¹⁻³ and biosynthesis.⁴ Photocatalytic CO₂ reduction is another promising approach because it produces value-added chemicals (*e.g.*, HCOOH and CO) using inexhaustible sunlight. Metal-complex (photo)catalysts are highly active toward the reduction of CO₂ with high selectivity. However, the photo-oxidative ability of the metal-complex photocatalysts is insufficient to achieve artificial photosynthetic reactions using water as an electron donor. By contrast, semiconductor photocatalysts generally exhibit good photo-oxidation power but low selectivity for CO₂ reduction. To further exploit the advantages of both metal-complex and semiconductor photocatalysts while minimizing their weakness, researchers have intensively studied metal-complex/semiconductor hybrid photocatalysts over the past decade.⁵⁻⁸ One of the most studied metal-complex/semiconductor hybrid photocatalysts is based on a polymeric carbon nitride (PCN) absorber modified with a mononuclear metal complex cocatalyst (Scheme 1). PCNs functionalized with trans(Cl)-[Ru^{II}(bpyX₂)(CO)₂Cl₂] (bpyX₂ = 2,2'-bipyridine with substituents X in the 4-positions; X = PO₃H₂, CH₂PO₃H₂), represented as **RuP** and **RuCP** hereafter, can reduce CO₂ into HCOOH with 80–90% selectivity under visible light in the For heterogeneous photocatalysts, especially those for water splitting or $\rm H_2$ evolution reactions, investigating the dependence of the photocatalytic activity on the light intensity has been shown to provide mechanistic insights into the bottlenecks in the associated photocatalytic reactions. ¹⁹⁻²⁴ By contrast, such studies involving heterogeneous photocatalysts for $\rm CO_2$ reduction are rare. In the conversion of $\rm CO_2$ to $\rm CH_4$ by a P25 $\rm TiO_2$ photocatalyst, the rate of $\rm CH_4$ formation has been reported to increase in proportion to the square root of the light intensity; however, the origin of the $\rm CH_4$ remains unclear because of a lack of $\rm ^{13}CO_2$ isotope experiments. ²⁵ Shangguan [†] Electronic supplementary information (ESI) available: Additional characterization and reaction data. See DOI: https://doi.org/10.1039/d4se01488j Scheme 1 Schematic of photocatalytic CO₂ reduction over Ru complex/Aq/PCN. presence of triethanolamine (TEOA) as an electron donor.^{9,11} The activity of the Ru(II) complex/PCN hybrid is further enhanced through modification of the PCN component with Ag nanoparticles, which promote charge separation followed by electron transfer to the Ru complex.^{17,18} [&]quot;Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. E-mail: maeda@chem.sci.isct.ac.jp b"State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. E-mail: guigang.zhang@fzu.edu.cn Research Center for Autonomous Systems Materialogy (ASMat), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan et al. have reported that Au nanoparticles photocatalyze the reduction of CO2 to CO with the aid of H2O as a result of interband transitions of Au driven by visible light and that the rate of CO production increases almost linearly with increasing light intensity.26 For homogeneous systems, Ishida et al. have reported the light-intensity dependence of photocatalytic CO₂ reduction using a mixed system of trans(Cl)-Ru(bpy)(CO)2Cl2 and [Ru(bpy)₃]²⁺ as a catalyst and a photosensitizer, respectively, with the aid of 1-benzyl-1,4-dihydronicotinamide as an electron donor.27 According to their study, the ratio of CO/ HCOOH products increased with increasing light intensity. Because some derivatives of trans(Cl)-Ru(bpy)(CO)2Cl2 have been used as active molecular cocatalysts for CO2 reduction with PCN, studying the light-intensity dependence of visiblelight CO2 reduction over Ru complex/PCN hybrid photocatalysts, which has not been reported thus far, would be intriguing. In the present study, we focused on the three-component hybrid photocatalysts RuP (or RuCP)/Ag/PCN and investigated the light-intensity dependence of the CO₂ photoreduction quantum yield and the product selectivity. The significant effect of the reduction potential of the Ru complexes on CO₂ photoreduction quantum yield and product selectivity with respect to the incident light intensity is reported. #### Results and discussion PCN and Ag/PCN were synthesized according to a previously reported method.¹⁷ Some essential characterization results, including the results of X-ray diffraction, UV-visible diffusereflectance spectroscopy, electron microscopy, and X-ray photoelectron spectroscopy experiments, are shown in the ESI (Fig. S1-S3†). The syntheses of RuP and RuCP were conducted in accordance with a previous report.28 As reported elsewhere, PCN absorbs visible light with wavelengths as long as ~420 nm,17 whereas RuP and RuCP basically do not absorb visible light.11 The detailed procedures and materials characterization results can be found in the corresponding literature. First, the CO2 reduction reaction over RuP/Ag/PCN was carried out in a CO2-saturated mixed solution of N,N-dimethylacetamide (DMA) and TEOA (4:1 v/v) under 400 nm monochromatized light with different light-intensity conditions. In this work, the wavelength of 400 nm was employed because PCN absorbs 400 nm light, while RuP and RuCP do not.11 Here, the apparent quantum yield (AQY) for HCOOH generation was calculated using an equation adopted from a previous report:24 $$AQY(\%) = \frac{A \times \text{number of product molecules}}{\text{number of incident photons}} \times 100$$ where A represents the coefficient of the reaction (here, A = 2). Number of product molecules $$[h^{-1}] = \nu [\mu mol \ h^{-1}] \times N_A \ [mol^{-1}] \times 10^{-6}$$ where ν and N_A are the rate of reaction rate and Avogadro's constant, respectively. Number of incident photons [h⁻¹] $$= \frac{\lambda \quad [m] \times I \quad [mW \ cm^{-2}] \times S \ [cm^{2}]}{h \quad [J \ s] \times c \ [m \ s^{-1}]} \times 3.6$$ where I, S, h, and c are the wavelength of the incident light, the light intensity (measured by a spectrophotometer; LS-100, Eko Instruments), the irradiation area, Planck's constant, and the speed of light, respectively. In this research, the irradiation area was fixed at 4.4 cm², and the light intensity was controlled by adjusting the output power of the Xe lamp. The maximum light intensity employed in this work was \sim 10 mW cm $^{-2}$ due to the power limit of the light source. Fig. 1a shows the AQY for visible-light-driven HCOOH production over RuP/Ag/PCN as a function of the incident-light intensity. The AOY recorded in the light-intensity range ≤ 5.0 mW cm⁻² was \sim 2.5% and almost independent of the light intensity. However, the AOY decreased sharply as the light intensity was increased beyond 5.0 mW cm⁻². The results confirmed that the turnover number for HCOOH formation (TON_{HCOOH}) was much larger than 1 in all cases (Table S1†), indicating that HCOOH formation was catalytically cycled. In previous work, we demonstrated that the generation of HCOOH over the RuP/Ag/PCN hybrid photocatalyst is stable until the TON_{HCOOH} reaches ~5800.17 In the present work, the recorded TON_{HCOOH} was at most \sim 300 because the reactions were conducted under relatively low-intensity visible light for 2 h. Therefore, the degradation of the activity of the RuP/Ag/PCN hybrid photocatalyst during the CO2 reduction can be regarded as negligible. The relationship between the rate of HCOOH production (v_{HCOOH}) and the incident-light intensity (I) is displayed in Fig. 1b. Fig. 1 (a) Apparent quantum yield, (b) HCOOH production rate, (c) HCOOH selectivity, and (d) rate of gas-phase product formation from RuP/Ag/PCN as function of the incident-light intensity. Reaction conditions: catalyst, 14 mg; reactant solution, DMA: TEOA mixture solvent (4:1 v/v, 14 mL); wavelength of light, 400 nm, Ag: 2.0 wt%, adsorbed amount of RuP: 2 μmol g⁻¹ The data plot in lower-light-intensity regions could be fitted by the equation: $$v_{\text{HCOOH}} = aI^b$$ The HCOOH production rate (ν_{HCOOH}) was almost proportional to the light intensity ($I^{0.97}$) in the region \leq 5.0 mW cm⁻² (Table S2†). However, in the region >5.0 mW cm⁻², the HCOOH rate remained almost unchanged. The HCOOH selectivity was also found to decrease (Fig. 1c), similar to the AQY results. The decrease in the HCOOH selectivity is attributed to the reaction order for the main gas-phase byproduct, H2, not changing with increasing light intensity (Fig. 1d). The corresponding H₂ evolution AQY was \sim 0.2%, independent of the light intensity. The reduction of CO2 over RuCP/Ag/PCN was similarly tested; the results are shown in Fig. 2 and Table S3.† Unlike the AQY achieved with RuP/Ag/PCN, that achieved with RuCP/Ag/ PCN decreased gradually with increasing light intensity (Fig. 2a). From Fig. 2b, the reaction order for light the intensity of RuCP/Ag/PCN was determined to be 0.72, which was lower than that for the RuP loading in the light-intensity regime of \leq 5.0 mW cm⁻² (0.97). The CO₂-to-HCOOH selectivity was 90-95% irrespective of the light intensity (Fig. 2c). The rate of H₂ byproduct formation tended to increase with increasing light intensity (Fig. 2d). No CO was detected in the products generated over RuCP/Ag/PCN. The trend of CO2 reduction selectivity for RuCP/Ag/PCN with respect to light intensity was thus different from that for RuP/Ag/PCN. The results thus demonstrated that the behavior of Ru complex/Ag/PCN ternary hybrid photocatalysts toward CO2 reduction was dependent on the type of the Ru complex and the Fig. 2 (a) Apparent quantum yield, (b) HCOOH production rate, (c) HCOOH selectivity, and (d) rate of gas-phase product formation from RuCP/Ag/PCN as function of the incident-light intensity. Reaction conditions: catalyst, 14 mg; reactant solution, DMA: TEOA mixture solvent (4:1 v/v, 14 mL); wavelength of light, 400 nm, Ag: 2.0 wt%, adsorbed amount of RuCP: 2 μ mol g⁻¹. incident light intensity. In the light-intensity range ≤5.0 mW cm⁻², RuP/Ag/PCN gave a HCOOH generation reaction order close to unity with respect to light intensity (Fig. 1b). This result indicates that the overall reaction rate was determined by light absorption of the PCN component, as reported for other heterogeneous photocatalysts for water splitting. 19,21,23,24 Of course, at least ~90% of the photogenerated carriers were unused for the surface reaction because of recombination. When the light intensity was greater than 5.0 mW cm⁻², light absorption by PCN was no longer the rate-determining step. Increasing the light intensity above 5.0 mW cm⁻² resulted in a monotonic decrease in the AQY for HCOOH generation and a concomitant increase in H2 evolution, suggesting that there is a critical CO₂-reduction bottleneck other than light absorption and charge migration in PCN. The RuCP/Ag/PCN photocatalyst showed a different lightintensity dependence of photocatalytic CO2 reduction, giving a dependence of $I^{\sim 0.7}$ in the entire examined light-intensity range (Fig. 2b). We speculate that the difference in the lightintensity dependence of CO2 reduction originates from the difference in the reduction potential of the Ru complexes. The reduction potential of RuCP has been shown to be 0.1 V more negative than that of RuP.11 Therefore, compared with RuP, RuCP exhibits greater difficulty in receiving an electron from Ag/PCN from the viewpoint of thermodynamics, but has a higher driving force for CO₂ reduction. It should be also noted that the catalytic Ru center in RuCP is more distant from Ag/ PCN than RuP because of the presence of methylene spacer, which would adversely affect the efficiency of electron transfer.29 That is, RuP is disadvantageous over RuCP in terms of the driving force for CO2 reduction, which could become the ratedetermining step under high-light-intensity conditions. For a homogeneous CO₂ photoreduction system composed of trans-(Cl)-[Ru(5,5'-diamide-2,2'-bipyridine)(CO)₂Cl₂]-type catalysts and $[Ru(bpy)_3]^{2+}$ as a photosensitizer, Ishida et al. have reported that the turnover frequency for CO2 reduction increases exponentially with a negative shift of the potential of the catalyst complex until the potential reaches the reduction potential of [Ru(bpy)₃]²⁺.30 Notably, the rate of H₂ byproduct formation during the CO₂ reduction over RuP/Ag/PCN increased with a reaction order of \sim 0.9. Because the Ag on the PCN can act as a H2 evolution cocatalyst,31 we speculate that the electrons in Ag/PCN, which had nowhere else to go because RuP no longer functioned properly, participated in H2 generation on the loaded Ag. We also note that Ag/PCN alone (i.e., without RuP or RuCP) gave AQYs of ~0.2% and <0.1% for H₂ and HCOOH generation, respectively, at 5.0 mW cm $^{-2}$. That is, the selectivity of Ag/PCN to HCOOH was at most \sim 35%, which is much lower than the selectivities recorded using the RuP- or RuCP-loaded analogues. Thus, when the outlet for CO2 reduction is blocked, the HCOOH generation AQY decreases drastically, whereas H2 production becomes relatively dominant (although the H2evolution AQY remains approximately the same). Because of the greater CO₂ reduction driving force for RuCP, the CO₂ reduction process on the RuCP is not a critical bottleneck. However, a certain degree of charge accumulation in Ag/ PCN occurred even in combination with RuCP because electron transfer from Ag/PCN to RuCP is less efficient than that to RuP, 11 as previously mentioned. That is, the greater the difficulty of the terminal reduction reaction, the more pronounced the charge accumulation in the PCN and the lower the reaction quantum yield. In this regard, we conducted the H₂ evolution reaction under the same reaction conditions as CO2 reduction but with PCN modified with a Pt cocatalyst, which is one of the most effective promoters of H₂ evolution for PCN.³² The characterization data for Pt/PCN are included in Fig. S1-S3.† Fig. S4† shows the H2 evolution AQY and rate as functions of the light intensity. As expected, nearly twofold higher AQY (4.5-5.5%) was obtained compared with that recorded in CO_2 reduction ($\sim 2.5\%$ at most, see Fig. 1a and 2a). The Pt/PCN gave a H2 evolution reaction order of ~ 0.8 for light intensity, which was higher than the CO₂ reduction order recorded using RuCP/Ag/PCN (\sim 0.7). From this result, one might expect that further improving the activity for CO₂ reduction over metal-complex/PCN hybrid photocatalysts could be realized if a suitable metal-complex cocatalyst with a more negative reduction potential not exceeding the conduction-band minimum of PCN is developed. ### Conclusions In conclusion, we observed unique light-intensity-dependent CO2 reduction over Ru complex/Ag/PCN hybrid photocatalysts under 400 nm visible light. Using RuP, which features a more positive reduction potential, we found two operational regimes: One regime is \leq 5.0 mW cm⁻², where the HCOOH production rate increased in proportion with the light intensity while a high CO_2 -to-HCOOH selectivity (\sim 95%) was maintained; that is, the AQY was independent of the light intensity. The other regime is >5.0 mW cm⁻², where the reaction order for the HCOOH rate decreased dramatically, accompanied by more pronounced byproduct formation of H2. However, a RuCP hybrid photocatalyst with a more negative reduction potential showed an $I^{\sim 0.7}$ dependence of CO₂ reduction to HCOOH with 90–95% selectivity in the entire examined light-intensity range. On the basis of these results, we concluded that, in RuP/Ag/PCN, light absorption dominates the overall CO₂ reduction rate at $I \le 5.0$ mW cm⁻², whereas CO₂ reduction over RuP is the ratedetermining step at $I \ge 5.0 \text{ mW cm}^{-2}$. In RuCP/Ag/PCN, electron transfer from PCN to RuCP is the bottleneck that determines the overall reaction rate. These results suggest that, under lower light-intensity conditions, molecular catalysts with a more positive reduction potential function better and give a greater reaction quantum yield than those with a more negative potential, although the absolute amount of CO2 reduction product becomes inevitably low. Thus far, the development of metal-complex/semiconductor hybrid photocatalysts has relied on the individual refinement of both the metal-complex and semiconductor parts, where CO₂ reduction occurs more quickly/selectively and charge recombination in relation to any back electron transfer reaction is minimal.6,8 The results of the present work based on the lightintensity dependence clearly provide more general insights into improving the CO2 reduction performance of metalcomplex/semiconductor hybrid photocatalysts. ## **Experimental** #### **Purification of solvent** DMA and TEOA were distilled before use. The distillation was performed according to our previous work.31 DMA was dried over 4 Å molecular sieves for several days and distilled under reduced pressure (10-20 torr). TEOA was distilled under reduced pressure (<1 torr). Distilled DMA and TEOA were kept under an Ar atmosphere before use. All other reagents were commercially available and used without further purification. #### Synthesis of PCN PCN samples were synthesized according to a previous method³³ by heating 12.0 g of urea (>99.0%, FUJIFILM Wako Pure Chemical) in air at a ramp rate of 2.2 K min⁻¹ to 823 K, maintaining that temperature for 4 h, then cooling without temperature control. Approximately 0.58 g of the PCN powder was obtained. #### Synthesis of Ag/PCN The Ag was loaded in the same manner as in our previous study.17 Ag species as promoters were loaded onto the surface of PCN by an impregnation method using AgNO₃ (>99.8%, Wako Pure Chemicals) as the precursor. PCN was dispersed in an aqueous AgNO3 solution (10 mL). The water content was slowly removed under reduced pressure at room temperature (\sim 298 K) using an evaporator in the dark. The resultant solid sample was heated under a H_2 stream (20 mL min⁻¹) at 473 K for 1 h. The Ag loading amount was 2.0 wt% (nominal value). #### Synthesis of RuP and RuCP Ru complexes (RuP and RuCP) were synthesized according to the procedures reported by Anderson et al.28 Briefly, Ru polymer $[Ru(CO)_2Cl_2]_n$ was refluxed in ethanol with $(PO_3Et_2)_2bpy$ (for **RuP**) or (PO₃Et₂CH₂)₂bpy (for **RuCP**) ligands and the obtained powders were refluxed in HCl aqueous solution (4 M) for the hydrolysis to obtain phosphonic (or methylphosphonic) acid anchors. #### Adsorption of Ru complex by Ag/PCN The adsorption of RuP (or RuCP) was conducted in a manner similar to that previously reported. 17,31,33 PCN was dispersed in methanol containing dissolved RuP. The suspension was stirred for 24 h at room temperature (\sim 298 K) in the dark under an Ar atmosphere to allow for adsorption/desorption equilibrium, followed by filtration. The amount of adsorbed RuP (or RuCP) was calculated on the basis of the UV-vis spectrum of the filtrate. In the present report, the amount of adsorbed Ru complexes was 2 μ mol g⁻¹. Typical UV-visible absorption spectra of the solutions before and after the adsorption procedure are shown in Fig. S5.† #### Synthesis of Pt/PCN Pt loading was carried out by impregnation followed by H₂ reduction, similar to the aforementioned method of Ag loading. Pt was loaded onto the PCN using H₂PtCl₆·6H₂O (>98.5%, Kanto Chemical) as the precursor. The water was subsequently removed slowly by heating. The resultant solid sample was heated under a H₂ stream (20 mL min⁻¹) at 473 K for 1 h. The Pt loading amount was 2.0 wt% (nominal value). #### Photocatalytic reaction Photocatalytic reactions were performed in a 30 mL Pyrex cuvette containing 14 mL of a mixed solution of DMA and TEOA (4:1 v/v) and 14 mg of photocatalyst, which was kept at room temperature using a water jacket. In this study, CO2 reduction was performed by RuP/Ag/PCN (or RuCP/Ag/PCN) and H2 evolution by Pt/PCN. Before irradiation, the suspension was purged with CO2 (>99.995%, Taiyo Nippon Sanso) for 25-30 min. The light source was a 400 W Xe lamp (Asahi Spectra, MAX-400D) equipped with a bandpass filter ($\lambda = 400 \text{ nm}$) that allowed the light intensity to be controlled. Some spectral irradiance data are displayed in Fig. S6.† The gaseous reaction products were analyzed using a gas chromatograph equipped with a thermal conductivity detector (GL Science, GC32 or Shimadzu, GC-2014; carrier gas, Ar). The HCOOH generated in the liquid phase was analyzed using a capillary electrophoresis system (Otsuka Electronics, Agilent-7100). The turnover number (TON) was calculated by the following equation: $TON = \frac{amount \ of \ producted \ HCOOH(\mu mol)}{amount \ of \ adsorbed \ Ru \ complex(\mu mol)}$ ## Data availability The data supporting this article have been included as part of the ESI.† ## Author contributions K. M. designed/supervised the project and wrote the manuscript draft with R. N. and M. O. R. N. conducted photocatalytic reactions and main characterization. J. O. and T. T. synthesized Ru complexes with R. N. C. Z. and G. Z. performed TEM and XPS measurements. All authors reviewed the manuscript and approved its submission. #### Conflicts of interest There are no conflicts to declare. ## Acknowledgements This work was supported by a Grant-in-Aid for Transformative Research Areas (A) "Supra-ceramics" (JP22H05148) and a bilateral collaboration program (JPJSBP120237406) Acknowledgement is also extended to a grant from the National Natural Science Foundation of China (22311540011). #### Notes and references - 1 J. H. Ye, T. Ju, H. Huang, L. L. Liao and D. G. Yu, Acc. Chem. Res., 2021, 54, 2518-2531. - 2 M. He, Y. Sun and B. Han, Angew. Chem., Int. Ed., 2022, 61, e202112835. - 3 L. Wang, C. Qi, W. Xiong and H. Jiang, Chin. J. Catal., 2022, 43, 1598-1617. - 4 Y. Amao, Sustain. Energy Fuels, 2018, 2, 1928-1950. - 5 S. Sato, T. Arai and T. Morikawa, Inorg. Chem., 2015, 54, 5105-5113 - 6 K. Maeda, Adv. Mater., 2019, 31, e1808205. - 7 K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel and E. Reisner, Chem. Rev., 2019, 119, 2752-2875. - 8 A. Nakada, H. Kumagai, M. Robert, O. Ishitani and K. Maeda, Acc. Mater. Res., 2021, 2, 458-470. - 9 K. Maeda, K. Sekizawa and O. Ishitani, Chem. Commun., 2013, 49, 10127-10129. - 10 J. Lin, Z. Pan and X. Wang, ACS Sustainable Chem. Eng., 2013, 2, 353-358. - 11 R. Kuriki, K. Sekizawa, O. Ishitani and K. Maeda, Angew. Chem., Int. Ed., 2015, 54, 2406-2409. - 12 J. J. Walsh, C. Jiang, J. Tang and A. J. Cowan, Phys. Chem. Chem. Phys., 2016, 18, 24825-24829. - 13 G. Zhao, H. Pang, G. Liu, P. Li, H. Liu, H. Zhang, L. Shi and J. Ye, Appl. Catal., B, 2017, 200, 141-149. - 14 C. Cometto, R. Kuriki, L. Chen, K. Maeda, T. C. Lau, O. Ishitani and M. Robert, J. Am. Chem. Soc., 2018, 140, 7437-7440. - 15 S. Roy and E. Reisner, Angew. Chem., Int. Ed., 2019, 58, 12180-12184. - 16 B. Ma, G. Chen, C. Fave, L. Chen, R. Kuriki, K. Maeda, O. Ishitani, T. C. Lau, J. Bonin and M. Robert, J. Am. Chem. Soc., 2020, 142, 6188-6195. - 17 K. Maeda, D. An, C. S. Kumara Ranasinghe, T. Uchiyama, R. Kuriki, T. Kanazawa, D. Lu, S. Nozawa, A. Yamakata, Y. Uchimoto and O. Ishitani, J. Mater. Chem. A, 2018, 6, 9708-9715. - 18 N. Sakakibara, K. Kamogawa, A. Miyoshi, K. Maeda and O. Ishitani, Energy Fuels, 2024, 38, 2343-2350. - 19 S. Tabata, H. Ohnishi, E. Yagasaki, M. Ippommatsu and K. Domen, Catal. Lett., 1994, 28, 417-422. - 20 T. Torimoto, Y. Aburakawa, Y. Kawahara, S. Ikeda and B. Ohtani, Chem. Phys. Lett., 2004, 392, 220-224. - 21 T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458-21466. - 22 P. Ketwong, S. Yoshihara, S. Takeuchi, M. Takashima and B. Ohtani, J. Chem. Phys., 2020, 153, 124709. - 23 R. Han, M. A. Melo, Z. Zhao, Z. Wu and F. E. Osterloh, J. Phys. Chem. C, 2020, 124, 9724-9733. - 24 K. Maeda, T. Maeda, C. Suppaso, S. Nishioka, Y. Kamakura, S. Yasuda and T. Yokoi, Sustain. Energy Fuels, 2024, 8, 36-42. - 25 M. Dilla, A. Mateblowski, S. Ristig and J. Strunk, ChemCatChem, 2017, 9, 4345-4352. - 26 W. Shangguan, Q. Liu, Y. Wang, N. Sun, Y. Liu, R. Zhao, Y. Li, C. Wang and J. Zhao, Nat. Commun., 2022, 13, 3894. - 27 Y. Kuramochi, J. Itabashi, K. Fukaya, A. Enomoto, M. Yoshida and H. Ishida, Chem. Sci., 2015, 6, 3063-3074. - 28 P. A. Anderson, G. B. Deacon, K. H. Haarmann, F. R. Keene, T. J. Meyer, D. A. Reitsma, B. W. Skelton, G. F. Strouse and N. C. Thomas, Inorg. Chem., 1995, 34, 6145-6157. - 29 S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka and T. Kajino, J. Am. Chem. Soc., 2011, 133, 15240-15243. - 30 Y. Kuramochi, K. Fukaya, M. Yoshida and H. Ishida, Chem.-Eur. J., 2015, 21, 10049-10060. - 31 R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata, O. Ishitani and K. Maeda, J. Am. Chem. Soc., 2016, 138, 5159-5170. - 32 K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti and K. Domen, J. Phys. Chem. C, 2009, 113, 4940-4947. - 33 M. Shizuno, K. Kato, S. Nishioka, T. Kanazawa, D. Saito, S. Nozawa, A. Yamakata, O. Ishitani and K. Maeda, ACS Appl. Energy Mater., 2022, 5, 9479-9486.