Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Microstructured photoelectrode morphologies can advantageously facilitate integration of optically absorbing electrocatalysts with semiconducting light absorbers, to maintain low overpotentials for fuel production without producing a substantial loss in photocurrent density. We report herein the use of arrays of antireflective, high-aspect-ratio Si microcones (μ-cones), coupled with light-blocking Pt and Co–P catalysts, as photocathodes for H2 evolution. Thick (∼16 nm) layers of Pt or Co–P deposited onto Si μ-cone arrays yielded absolute light-limited photocurrent densities of ∼32 mA cm−2, representing a reduction in light-limited photocurrent density of 6% relative to bare Si μ-cone-array photocathodes, while maintaining high fill factors and low overpotentials for H2 production from 0.50 M H2SO4(aq). The Si μ-cone arrays were embedded in a flexible polymeric membrane and removed from the Si substrate, to yield flexible photocathodes consisting of polymer-embedded arrays of free-standing μ-cones that evolved hydrogen from 0.50 M H2SO4(aq).

Graphical abstract: Integration of electrocatalysts with silicon microcone arrays for minimization of optical and overpotential losses during sunlight-driven hydrogen evolution

Page: ^ Top