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Radical-mediated C-glycosylation of pyranosides with the

2,3-trans carbamate group was investigated. C-Glycosylation

was achieved with high a-selectivity.

Glycoconjugates and oligosaccharides play important roles in

biological events, and are among the most structurally diverse

natural biopolymers.1 O-Glycosides are the most common

structures in glycoconjugates, but C-glycosides are also

found in natural compounds. For instance, C-linked protein

modification has been identified in many proteins as post/

co-translational modification,2 and C-glycosides are often

found in antibiotics, flavonoids and lignans.3 The C-glycosides

as pharmacophores may yield novel enzyme inhibitors.4

Furthermore, C-glycosides have been useful synthons in

natural product synthesis due to their multiple chiral centres.5

For these reasons, the synthesis of C-glycosides has been

studied.6,7

Radical mediated C–C bond formation is one of the most

common methodologies for C-glycoside preparation. Although

a-selectivities were observed in the glucosides cases,8 the

stereochemistry at the anomeric centre is significantly influenced

by the amino protecting group at the amino group in the case

of 2-deoxy-2-amino pyranosides.9 For example, the 2-acetamido

having a pyranoside shows a-selectivity under radical mediated

allylation reaction (Keck reaction) conditions,10 whereas a

2-phthalimide protected pyranoside shows b-selectivity under

the same reaction conditions. Recently, we and other groups

have demonstrated that the 2,3-trans-oxazolidinone protected

pyranosides show high 1,2-cis selectivity in O-glycosylation

reactions under various conditions.11 We are interested in

the influence of the five-membered carbamate ring on the

stereochemical outcome of radical C-glycosylation.

First, we investigated the effect of the protecting group at

the 6-position on the stereochemical outcome (Table 1). The

bromide 1a was subjected to the same reaction conditions as

reported by Bertozzi et al. (entry 1).9 Thus, a benzene solution

of 1a and allyltri-n-butylstannane was refluxed in the presence

of AIBN. The a-glycoside and b-glycoside were obtained as an

inseparable mixture in a ratio of 10 : 1.

The stereochemistry of compound 2a was determined from

the coupling constant between H-1 and H-2 (J = 5.1 Hz), and

a positive NOE enhancement between H-1 and H-2. Although,

the high a-selectivity was observed in the series of the

substrates 1a–1c, bulky protecting groups at the 6-position

reduced the yield (entries 2 and 3). In addition to products 2b

and 2c, the deacetylated by-products 3b and 3c were obtained

in significant amounts.

A significant substitution effect was observed in the chain

radical reaction using the combination of acrylonitrile–Bu3SnH–

AIBN (Table 2). The bromide 1a gave the C-glycoside 4a in

76% yield, but the a/b ratio was quite low (entry 1). More

bulky protecting groups such as Bn and TBDPS gave higher

a-selectivities (entries 2 and 3) up to 95 : 5 (a/b), but the

reduced by-products 5b and 5c were also obtained. From the

above results, it is clear that the substituent at the 6-position

influences the stereoselectivity at the anomeric position in

the C-glycosylation reaction. More bulky protecting groups

increased the selectivity, but decreased the yield.

Table 1 Substituent effect at the 6-position on the stereoselectivity
under Keck allylation conditions

Entry R1 Product Yield (%) a :b Yield of 3 (%)

1 1a Ac 2a 84 94 : 6 0
2 1b Bn 2b 56 93 : 7 19
3 1c TBDPS 2c 26 491 : 9 47

Substrate concentration is 0.2 M. The a/b ratios were determined by
1H-NMR integration.
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Next, we investigated the substituent effect at the nitrogen

atom of the carbamate group (Table 3). Under Keck conditions,

bromide 6a gave a complex mixture (entry 1). Fortunately,

the N-Ac protected bromide 6b and 6c showed complete

a-selectivity in good yield (entries 2 and 4). Even when

the amount of allyltri-n-butylstannane was reduced to two

equivalents (entry 3), complete stereoselectivity was again

observed, although the yield was reduced to 35%.

The methallylation of optimized substrate 6b also exhibited

complete a-selectivity (Scheme 1).

In addition to the glucosamine derivatives, galactosamine

derivative 9 also gave only the a-allyl adduct in 65% yield

(Scheme 2).

Since the N-acetyl group was found to be effective for

stereoselective C-glycosylation, the selectivity of the radical

chain reaction was investigated using N-acetyl substrates

(Table 4). The a-selectivity was high, especially when the

primary alcohol was protected as a benzyl group (entries 2

and 3). By synergistic effects of the protecting groups at the

N- and 6-positions, complete a-selectivity was observed in the

radical chain reaction employing acrylonitrile and methyl

acrylate (entries 2 and 3).

We report here the radical-mediated a-selective C-glyco-

sylation of pyranosides with the 2,3-trans carbamate group.

The selectivity is quite high when the carbamate nitrogen is

protected by an acetyl group. Although only simple C-glycosides

preparation is described in this communication, more complex

C-glycoside formation could be possible.7 Several reports

based on ESR spectra of a pyranoside radical have indicated

that the boat-like conformation of the pyranoside radical

is the origin of the a-selectivity in the radical-mediated

C-glycosylation.12 In order to enhance the interaction between

the half-occupied orbital at the radical centre and s* orbital of
the C–OR bond at the b-position of radical, the glucosides

have the boat-conformation. However, because the 2,3-trans

carbamate group locks the conformation of the pyranoside

into the 4C1 form,13 other factors for high a-selectivity must

exist.
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Table 2 Substituent effect at the 6-position on stereoselectivity under
chain radical conditions

Entry R1 Product Yield (%) a : b Yield of 5 (%)

1 1a Ac 4a 76 48 : 52 0
2 1b Bn 4b 52 91 : 9 22
3 1c TBDPS 2c 43 95 : 5 28

Substrate concentration is 0.2 M. The a/b ratios were determined by
1H-NMR integration.

Table 3 Substituent effect at the nitrogen atom on stereoselectivity
under Keck allylation conditions

Entry R1 R2 Product Yield (%) a :b

1 6a H Ac 7a o14 —
2 6b Ac Ac 7b 76 499 : 1
3a 6b Ac Ac 7b 35 499 : 1
4 6c Ac Bn 7c 41 499 : 1
5 1a Bn Ac 2a 84 94 : 6

Substrate concentration is 0.2 M. The a/b ratios were determined by
1H-NMR integration. a Two equivalents of allyltri-n-butylstannane

were used.

Scheme 1 The methallylation of compound 6b.

Scheme 2 Keck allylation reaction with galactosamine derivative 9.

Table 4 C-Glycosylation stereoselectivity with the N-acetylated
2,3-trans carbamate group under chain radical conditions

Entry X R1 Product Yield (%) a :b

1 CN 6b Ac 11a 56 92 : 8
2 CN 6c Bn 11b 60 499 : 1
3 CO2Me 6c Bn 11c 74 499 : 1

Substrate concentration is 0.2 M. The a/b ratios were determined by
1H-NMR integration.
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