
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
C

ig
gi

lta
 K

ud
o 

20
20

. D
ow

nl
oa

de
d 

on
 1

7/
07

/2
02

5 
6:

51
:3

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
DP4-AI automate
Centre for Molecular Informatics, Departme

Lenseld Road, Cambridge CB2 1EW, UK. E-

uk

† Electronic supplementary information
the program, the full results from the
DP4-AI processed and assigned spectr
experimental values. All DFT and MM cal
at https://doi.org/10.17863/CAM.47721. Se

Cite this: Chem. Sci., 2020, 11, 4351

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 23rd January 2020
Accepted 2nd March 2020

DOI: 10.1039/d0sc00442a

rsc.li/chemical-science

This journal is © The Royal Society o
d NMR data analysis: straight from
spectrometer to structure†

Alexander Howarth, Kristaps Ermanis * and Jonathan M. Goodman *

A robust system for automatic processing and assignment of raw 13C and 1H NMR data DP4-AI has been

developed and integrated into our computational organic molecule structure elucidation workflow.

Starting from a molecular structure with undefined stereochemistry or other structural uncertainty, this

system allows for completely automated structure elucidation. Methods for NMR peak picking using

objective model selection and algorithms for matching the calculated 13C and 1H NMR shifts to peaks in

noisy experimental NMR data were developed. DP4-AI achieved a 60-fold increase in processing speed,

and near-elimination of the need for scientist time, when rigorously evaluated using a challenging test

set of molecules. DP4-AI represents a leap forward in NMR structure elucidation and a step-change in

the functionality of DP4. It enables high-throughput analyses of databases and large sets of molecules,

which were previously impossible, and paves the way for the discovery of new structural information

through machine learning. This new functionality has been coupled with an intuitive GUI and is available

as open-source software at https://github.com/KristapsE/DP4-AI.
Introduction

Structural elucidation of molecules is a challenging problem in
both synthetic organic and natural product chemistry. Struc-
tural near isomers (for example regioisomers and protecting
group localisation) and diastereomers usually exhibit only
subtle differences in their 1D NMR spectra, making determi-
nation of structure and relative stereochemistry very difficult.
This can be addressed by additional NMR experiments such as
nOeSY spectra or synthesizing isomers of the natural product
and comparing the resulting observed NMR spectra with those
published. Both approaches are very expensive and time
consuming.

An attractive and now established alternative1,2 is to use
computational NMR prediction. This process uses DFT to
calculate NMR shis for all the diastereomers of the uncertain
structure and compare these predications with the published
spectra using parameters such as, correlation coefficient, mean
absolute error (MAE), corrected mean absolute error (CMAE).3

DP4 analysis is particularly powerful as it not only predicts the
relative stereochemistry and other variations of the molecule,
but also using Bayes theorem gives a probability that each
nt of Chemistry, University of Cambridge,
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candidate molecule is the correct one (assuming one of the
provided or generated structures is correct).3,4 DP4 has been
successfully used to determine the stereochemistry of many
natural product like molecules, synthetic intermediates, natural
product fragments and also pharmaceutical compounds.5–10

and has been explored further in DP4+ and J-DP4 analyses.11,12

Since its publication, the calculation of DP4 has been
streamlined and user input minimized as all calculations are
now automatically managed by the Python program PyDP4.11–13

Only a structure of the molecule with undened stereochem-
istry and assigned experimental 1D 13C and 1H NMR spectra are
required as inputs from the user. The most user intensive part
of relative stereochemistry elucidation using this program is
now the assignment of the NMR spectra. This is not only very
time consuming but also oen laborious and error prone.14

Automated interpretation of NMR spectra has been amajor goal
of analytical chemistry for many years.15 Much of this work has
been focused on developing CASE (Computer Aided Structure
Elucidation) soware16–18 for automated 2D structure determi-
nation and dereplication rather than automated assignment of
atoms in a known structure. Typically a number of 2D NMR
spectra in addition to the 1D NMR spectra must be provided.19

A small number of commercial soware packages offer
expert-guided NMR assignment algorithms for 1H NMR spectra,
notably Mestrelab Mnova.20 This soware has focused on aiding
a user to interpret NMR spectra as opposed to automated pro-
cessing and assignment of raw NMR data.

In this work a system for fully automatic robust processing and
assignment of both 1H and 13C NMR spectra is presented (Fig. 1). A
schematic of this program is displayed in Fig. 2. It provides
Chem. Sci., 2020, 11, 4351–4359 | 4351
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Fig. 1 (a) The structure of DP4-AI. This system affords fully automated stereochemistry elucidation, only the raw NMR data is a required input
from the user. (b) Example structures with stereochemistry correctly predicted fully automatically using DP4-AI integrated in PyDP4.
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automated relative stereochemistry and structural ambiguity
prediction using 1D 1H and 13CNMR spectra. Chemical shi values
are calculated using the DFT GIAOmethod. Shi prediction by this
method can also be performed using only free and open source
soware such as NWChem21 and Tinker22 making this method
more accessible than any other soware currently available.
Fig. 2 The overall structure of DP4-AI. Raw NMR data is processed in a
integrals. The program then takes shifts calculated using DFT for each a
assignment is then used to calculate a DP4 probability for each diastere

4352 | Chem. Sci., 2020, 11, 4351–4359
The automation DP4-AI affords is exciting as it will allow
high-throughput DP4 analysis of databases and large sets of
molecules, which was previously impossible. In addition,
automatic processing and assignment of NMR spectra will
reduce the time constraints of synthesis, allowing for more
opportunities in chemical discovery. Moreover, this system will
series of stages to yield experimental multiplet shift values and their
tom in the molecule and assigns them to the experimental peaks. This
omer.

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Figure illustrating the gradient peak picking process. Peaks are
picked if they are below a threshold in the second derivative (orange)
and above an intensity threshold (blue). The final picked peaks are
highlighted in green.
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also provide a framework for the development of automated
interpretation of more complex NMR experiments in the near
future and could be used in conjunction with CASE soware to
solve structural elucidation problems from analytical data.

Computational methods

The calculation of DP4 was performed following previous
works.3,11–13 All molecular mechanics calculations were per-
formed using MacroModel (Version 9.9). All conformational
searches were performed in the gas phase utilizing the MMFF
force eld23–28 and a mixture of Low Mode following and Monte
Carlo search algorithms.29,30 The step count for MacroModel was
set so that all low energy conformers were found at least 5 times.

Quantum mechanical calculations were carried out using
Gaussian09. NMR shielding constants were found using the
GIAO method.31–33 The functional mPW1PW91 (ref. 34) was
chosen with the 6-311G(d) basis set35 for NMR shi prediction
as this has been shown to be optimal for DP4 calculation.12 For
molecules containing iodine, the basis set def2-SVP36,37 was
chosen. All DFT calculations were performed using the implicit
PCM solvent model.38 The molecular geometries were also
optimized at the DFT level of theory, this was performed using
the B3LYP functional39,40 with the 6-31G(d) basis set. Finally,
single-point energies were separately calculated using M06-2X
functional and def2-TZVP basis set.

The calculations were managed by the PyDP4 Python script
written in Python 3.7 which is now part of DP4-AI. DP4-AI is
available from http://www-jmg.ch.cam.ac.uk/tools/nmr/ and
GitHub https://github.com/KristapsE/DP4-AI/. Some elements of
NMR processing was performed using the package NMRglue.41

Program description

Automated NMR processing would remove the need for the user
to laboriously write an NMR description, radically increasing
the productivity of the process. In order to assign atoms in
a molecule to peaks in an NMR spectrum, peak locations and
integral values must be extracted from the raw NMR data as
shown in Fig. 2. Fully automated processing and analysis of
NMR data is a complex problem as all NMR spectra are different
and each stage in the processing can affect subsequent stages.
DP4-AI has been designed to process NMR data as robustly and
reliably as possible in spite of these challenges. An overview of
this section of the program is given below, a more detailed
description is given in the ESI (Section S2.1†).

Aer performing a Fourier transform the spectrum may
display phasing errors which must be corrected prior to further
processing. Unfortunately, none of the existingmethods phased
the test set of spectra as reliably as required. To alleviate this
issue, a hybrid method combining, the signal classication
method developed by Wang et al.,42 the entropy based objective
function of the phasing algorithm ACME43 and the robust
framework of weighted linear regression approach (WLR)
developed by Zorin et al.44 was employed.

Many spectra also display baseline distortions which must
be removed. A modied version of the algorithm developed by
This journal is © The Royal Society of Chemistry 2020
Wang et al.42 was incorporated into the nal program (ESI
Section S2.1.4†). For 1H spectra, initially peak picking is per-
formed using rst and second derivatives of the spectrum.
Potential peaks are found as points that are simultaneously zero
in the rst derivative and minima in the second derivative.
These candidate peaks are picked if they are both, above an
amplitude threshold and below a second threshold in the
second derivative. These threshold values are adaptive as they
are set to multiples of the noise standard deviation values. Peak-
picking in this manner allows both threshold values to be set
very low, screening out as much noise as possible whilst
missing as few signals as possible. In addition, the use of
derivative ensures baseline independence. This process is
summarized in Fig. 3.

In 1H spectra signal peaks must be grouped together to
establish where the multiplet centers are located. The
maximum coupling constant expected to be seen between
protons in 1H spectra is around 18 Hz. Any peaks <18 Hz apart
can be grouped together as multiplets. To avoid missing any
signal peaks, the peak picking threshold for signal to noise ratio
is deliberately set very low. However, this increases the proba-
bility of noise peaks being mistaken for signal peaks and can
cause over grouping of peaks (ESI Section S2.1.6†).

To mitigate this issue an algorithm for removing noise
utilizing objective model selection was developed. Picked peaks
separated by less than 18 Hz are grouped together to dene
signal containing regions. For each region a line shape model is
constructed with multiple generalized Lorentzian line shape
functions.45 The parameters in the model of each region are
varied iteratively until the integral of the model converges to
Chem. Sci., 2020, 11, 4351–4359 | 4353
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within 1% of the corresponding region of the spectrum. To
avoid overtting, the groups of parameters describing each
peak are then tested for their information content. A newmodel
is constructed without each line shape function in turn. If the
Bayesian Information Criterion (ESI Section S2.1.6†) of the
model is lowered by more than a threshold value, these
parameters are assumed to describe a noise peak (as they do not
increase the information content of the model) and are deleted.
Once all of the peaks have been tested, the remaining signals
are regrouped to produce the nal multiplets.46 An example of
this modelling process is displayed in Fig. 4.

Using this modelling process, solvent peaks and other
contaminants can also be selectively removed. The solvent used
is dened by the user to adjust DFT solvent model. To identify
the solvent multiplet in the experimental data, each peak in the
region of the spectrum expected to contain the solvent is given
a score. This score takes into account how closely the pattern of
peak locations and amplitudes around each peak match that of
the expected solvent multiplet and also the distance from the
expected solvent location. The peaks that most closely match
those of the simulated solvent multiplet are removed from the
model and the spectrum is referenced (see ESI Section S2.1.9†).

Finally, the multiplets in 1H spectra must be integrated. Due
to the 100% abundance of the 1H isotope of hydrogen the
integrals of multiplets in the spectra are proportional to the
number of protons in each chemical environment. If this
constant of proportionality can be estimated, the assignment
algorithm (AA) can be told explicitly how many protons can be
assigned to each multiplet.

The algorithm for estimating this constant of proportionality
for 1H spectra incorporated into the program has been devel-
oped from previous work in this area.20 The premise of this
algorithm is to iterate this constant k from the minimum
possible number of protons in the spectrum (the number of
protons in the structure minus the number of labile protons) to
Fig. 4 An example multiplet (blue) and deconvolved model (orange).
The signal peaks are highlighted in cyan, the peaks determined to be
noise are highlighted in red.

4354 | Chem. Sci., 2020, 11, 4351–4359
a maximum value (which has been set to twice the total number
of protons in the ambiguous structure) and calculate a score
based on how integer like the corresponding set of integrals are
(the integrals of the multiplets are calculated using the model
spectrum as described by Schoenberger et al.45). The value of k
producing the highest score is taken as the constant of pro-
portionality, and is used to normalize the integrals (ESI Section
S2.1.10†). This scoringmethod is particularly advantageous as it
accounts for deviations from integer integral values that are
oen observed due to, the choice of shimming parameters or
incomplete relaxation for example. Peak-picking of 13C spectra
is performed using a similar algorithm. The most intense peak
in the spectrum is picked and simple Lorentzian function is
tted to it to create an initial model, this is repeated for the next
most intense peak. This process continues until all the
unpicked peaks fall within three times the standard deviation of
the noise of the tted model. This algorithm has been chosen as
it effectively discards noise peaks whilst identifying low inten-
sity signal peaks such as quaternary carbons.
Assignment algorithm

The nal challenge in the development of DP4-AI is the
assignment algorithm (AA) which assigns the atoms in each
diastereomer of the molecule to observed peaks in the spectra.
This assignment is made using the GIAO predicted shis.

The core of the AA calculates the assignment probability
matrixM. The elements of this matrixMij give the probability of
calculated shi i corresponding to experimental peak j. The
matrix M is used to nd the most probable assignment by the
Hungarian linear sum minimization47 method as shown in
Fig. 5.

The value M is calculated using a statistical model (ESI
Section S2.2†) that takes into account the distribution of DFT
prediction errors observed for the chosen computational
conditions and, in the case of 13C NMR, also the amplitudes of
the experimental peaks.

GIAO shi predictions are subject to systematic errors that
vary depending on position within the spectrum and the
computational conditions.12,48 These systematic errors must be
corrected prior to calculation of M. Classical DP4 alleviates this
problem by performing an internal scaling process.3 It is not
possible to use this method in this program as the assignments
are unknown.

To mitigate this issue, the assignment process is performed
in three stages. In the rst round of assignment, prior to
calculation of M a linear scaling is performed using known
external scaling factors (ESI Section S2.2.1†). Aer the rst
assignment has been completed, the assigned shis and peaks
are used to calculate internal linear scaling factors in a similar
fashion to DP4. The calculated shis are then rescaled and the
assignment repeated.

In 13C the number of experimental peaks may not be equal to
the number of carbon atoms in the molecule. The GIAO shi
predictions may also not reect the degeneracy seen in the
spectrum. The 13C is provided with additional exibility to
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Figure illustrating how calculated shifts can be assigned to
experimental peaks using the assignment probability matrix M. (a) The
peaks in the simulated calculated spectrum (blue) are assigned to
those in the experimental spectrum (orange). (b) The matrix M is
calculated and the optimum assignment (cyan) calculated. (c) The final
assignment found in this example.

Fig. 6 Peaks (left) are grouped by amplitude, depending on the
minima in the second derivative of the amplitude probability density
function (right) they fall between (dashed lines). In this simulated
example, the number of carbon atoms in the structure is nine. The
cumulative sum of peaks above each groups lower boundary is
calculated, the weight assigned to each group is the number of carbon
atoms in the structure divided by this value. The weights are then
normalized to fix the largest weight to one.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
C

ig
gi

lta
 K

ud
o 

20
20

. D
ow

nl
oa

de
d 

on
 1

7/
07

/2
02

5 
6:

51
:3

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
assign peaks in the spectrum multiple times, using a penalty
system given by eqn (1).

Penaltyi ¼
�
1

8

�kiti

(1)

The multiple assignment penalty for experimental peak i ki
depends on the amplitude KDE group peak i is in. A value of k¼
1 is given to the group containing themost intense peaks, then k
¼ 2 to the group with the second most intense peak etc. The
value of t represents the number of times the peak has already
been assigned.

Bi ¼

8>><
>>:

max
�
A

0
unassigned

�
Aassigned

i
; if . 1

1; otherwise

(2)

The bias for shi i is given above. Where A
0
unassigned is a vector

containing the amplitudes of all unassigned peaks within
�10 ppm of the peak assigned to calculated shi i and
Aunassigned

i is the amplitude weight of the peak assigned to
calculated shi i

The 13C algorithm also takes into account the amplitudes of
experimental peaks. Each element of M, Mij is multiplied by
a weight Aj derived from the amplitude of experimental peak j.
This has been incorporated to prioritise the assignment of more
intense peaks over thosemore likely to be noise. The peaks in 13C
spectra typically fall into three groups which can be
This journal is © The Royal Society of Chemistry 2020
distinguished by amplitude: noise, 1-atom signals and signals
corresponding to multiple equivalent carbon atoms. In order to
capture this variation the probability density function of peak
amplitudes in the spectra is estimated,49 the peaks are grouped
by which minima in the second derivative of this function their
amplitudes fall between. The amplitude weights are then calcu-
lated using the number of peaks in each group and the expected
number of carbon atoms in the structure as shown in Fig. 6.

The 13C AA is also able to bias the assignment towards
position or amplitude information (ESI Section S2.2.2†) by
considering the distribution of peak intensities and positions in
the local environment around each calculated shi. Aer the
second round of assignment, the unassigned peaks within
10 ppm of the experimental peak assigned to each calculated
shi are analyzed. The bias for calculated shi i is given by eqn
(2). Any shis with biases above a value of one are reassigned in
order of bias to unassigned experimental peaks within 10 ppm
in order of amplitude.

The role of the bias is to assess whether any signal peaks
have been missed during the initial assignment. This is
particularly useful in spectra where a large amount of noise has
been carried through, as the AA typically favors assigning close
noise peaks rather thanmore distant intense signal peaks in the
rst pass.

In contrast the 1H AA does not require amplitude weighting,
biasing or the multiple assignment penalty as this AA can be
told explicitly howmany times each peakmay be assigned using
the integral information. The 1H AA also has an additional stage
Chem. Sci., 2020, 11, 4351–4359 | 4355
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for the assignment of methyl protons. Protons in methyl groups
consistently appear as equivalent in 1H NMR spectra and hence
should be assigned to the same peak. The 1H AA assigns these
protons in groups to peaks with sufficient integrals prior to the
assignment of the remaining protons.
Graphical user interface

DP4-AI may be run either from the command line to afford
a fully automated workow, or from the accompanying GUI.
Fig. 7 Figure illustrating the 47 molecules utilized to evaluate the perfor
corresponding 1H NMR data, all other molecules have both 1H and 13C NM
solvents methanol, benzene, DMSO and methanol respectively, whilst al
BYH1-2,52 JB1-13B,53,54 TP1-4 (personal correspondence), TS1-4 (person

4356 | Chem. Sci., 2020, 11, 4351–4359
The GUI allows the user to easily calculate DP4 probabilities,
visualize the assignments made by DP4-AI and investigate the
populated conformers and prediction errors.
Results

In order to evaluate the performance of NMR-AI a test set of 47
molecules (with an average of 3.49 stereocentres per molecule)
with a diverse range of carbon skeletons was constructed
(Fig. 7).50–55 This test set has been designed to include natural
mance of DP4-AI. Molecules, AT3, TS3A, TS4 and NL1A have only have
R data. The spectra for molecules JB7, JB11, JB5 and JB8 were taken in
l others were taken in CDCl3. Sources for the spectral data: AT1-3,50,51

al correspondence), OD1 (personal correspondence).

This journal is © The Royal Society of Chemistry 2020
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Fig. 8 The correct prediction rates for DP4-AI (orange) and the
pairwise AA (blue) at the three levels of theory tested for the
compounds in Fig. 7 (average number of stereocentres equal to 3.49).
These predictions were produced using the fitted 3 Gaussian cross
validated statistical model.

Fig. 9 DP4-AI processed and assigned 1H spectrum of molecule BYH1
(taken in chloroform).
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products, synthetic intermediates and natural product frag-
ments to represent a wide cross section of potential use cases
for DP4-AI. These molecules display challenging properties for
both the AA and DP4. Previous work12,13 has demonstrated that
exible structures, particularly ve-membered rings, and well-
separated stereocentres make spectral interpretation difficult.
All of these molecules are expected to present signicant chal-
lenges to DP4-AI. A dataset of smaller, rigid molecules would
have been much more straightforward to analyse. The corre-
sponding spectra have also been determined in a range of
solvents, some display very low signal to noise ratio and some
contain mixtures of compounds. The use of this test set repre-
sents a demanding test of the performance of DP4-AI.

To predict the relative stereochemistry of a molecule in the
current release of DP4, the user must provide an NMR
description. The minimum amount of information required in
the NMR description is, the experimental peak locations and
either a description of which atoms in the molecule are chem-
ically equivalent or the number of times each peak can be
assigned. With this information DP4 assigns the atoms in the
molecule in order of chemical shi to the peaks in the NMR
description. We call this approach “the pairwise AA” and it is
used as the benchmark for comparison with DP4-AI.

The pairwise AA was performed for all the molecules in the
test set. This was very hard work, as it required manual
analysis of all of the NMR spectra in order to break the signal
into individual peaks and their multiplicities. This is the
most time-consuming part of classical DP4, and also has the
potential for subjectivity and the introduction of errors. DP4
probabilities were calculated using three different sets of
computational conditions. The rst level of theory tested was
MM derived geometries with GIAO shi predictions utilizing
the mPW1PW91 functional, 6-311G(d) basis set (def2-SVP
was used for molecules containing iodine) and PCM solvent
model as recommend in previous work.11 DP4 calculations
were also performed aer optimizing the geometries at the
DFT level using the B3LYP functional prior to GIAO NMR
shi predictions. The highest level of theory tested utilized
the same DFT optimized geometries, with single point ener-
gies calculated using the M06-2X functional and def2-TZVP
basis set.

DP4 also requires a statistical model describing the NMR
shi prediction error probabilities. As the prediction error
distribution is expected to change with computational condi-
tions, a different model is required for each set of conditions
used. Four different statistical models were tested (ESI Section
S3.1†), it was found that the highest performance was obtained
utilizing a single region 3 Gaussian model tted to an empirical
prediction error distribution derived from the test set. As this
statistical model was constructed using the molecules in the
test set and also used to calculate DP4 probabilities for the same
test set, a cross validation study was also completed to assess if
any overtting was occurring. This cross-validation study was
performed in a leave-one-class-out fashion for each group of
molecules denoted in Fig. 7 by their initials.

DP4-AI was tested at all three levels of theory described with
each statistical model (ESI Section S3†). A comparison of DP4-AI
This journal is © The Royal Society of Chemistry 2020
and the pairwise AA for the highest level of theory and most
reliable statistical model is presented in Fig. 8.
Discussion

DP4-AI, at the highest level of theory tested, interprets spectra
with a similar reliability to the traditional, labour intensive,
pairwise AA, which requires a highly-trained chemist to pre-
process the spectra (Fig. 8). This is an impressive result given
the challenging nature of the dataset. The probability of
correctly assigning the stereochemistry this effectively in this
data set is about 3 � 10�8, indicating DP4-AI is very reliably
performing better than chance (ESI Section S3†). Most impres-
sively DP4-AI correctly assigned the relative stereochemistry of
molecules NP1 and NP2 out of the 32 and 64 diastereomers. The
pairwise AA represents the upper limit of DP4-AIs performance
in this study as the NMR descriptions used by the pairwise AA
have been meticulously written to remove any errors. In reality
errors are oen incorporated into NMR descriptions and
Chem. Sci., 2020, 11, 4351–4359 | 4357
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Fig. 10 NMR-AI can process a molecule for DP4 calculation in around
oneminute, a task that previously would require roughly 8 hours of the
users time. This corresponds to a �60 fold increase in the number of
molecules that can be processed per day.
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assignments, in these cases it would be possible for NMR-AI to
outperform the pairwise AA.

The performance of DP4-AI, relative to pairwise AA, increases
with the level of theory (Fig. 8). As in previous work13 shows that
as the level of theory is increased in the DP4 calculation, the
correct prediction rate of the pairwise AA also increases. DP4-AI
shows a greater sensitivity to the level of theory. This is because
both the assignment and the DP4 calculation are dependent on
the accuracy of the NMR shi calculations. Therefore, it can be
concluded that when using DP4-AI, the conditions that produce
the most accurate shi predictions should always be used.

DP4-AIs performance could be improved even further by
robustly addressing some of the remaining challenges in the
GIAO NMR prediction, including conformational exibility,
specic solvent interactions and the presence of heavy atoms.
The performance may be improved further by adding explicit
support for spectra containing mixtures of compounds (such as
IP2 see ESI Section S3.2†). These issues will be addressed in
future developments of DP4-AI. An example of a spectrum
assigned by DP4-AI is given in Fig. 9 (All the processed and
assigned spectra are provided in the ESI, Section S4†).

Conclusion

DP4-AI – a robust system for automatic resolution of structural
uncertainty utilizing automatic processing and assignment of
raw 13C and 1H NMR spectra has been developed and released
as open source soware. This automation will allow rapid DP4
analyses of databases and large set of molecules, which was
previously impossible (Fig. 10). DP4-AI maintains the same high
rate of correct structure elucidation as DP4 utilizing NMR
descriptions written by an expert chemist. Moreover, this
system can reliably process and assign an NMR spectrum
around 60 times faster, releasing time for experimentation and
discovery. In addition, this new system provides a robust
framework for developing new functionality in the future such
as J value analysis, 2D NMR assignment, assigning spectra of
complex mixtures and aiding conformational analysis. DP4-AI
is available as open source soware at https://github.com/
KristapsE/DP4-AI.
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29 I. Kolossváry and W. C. Guida, J. Comput. Chem., 1999, 20,

1671–1684.
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