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van der Waals atomically thin magnetic materials have been recently discovered. They have attracted
enormous attention as they present unique magnetic properties, holding potential to tailor spin-based
device properties and enable next generation data storage and communication devices. To fully under-
stand the magnetism in two-dimensions, the synthesis of 2D materials over large areas with precise thick-
ness control has to be accomplished. Here, we review the recent advancements in the synthesis of these
materials spanning from metal halides, transition metal dichalcogenides, metal phosphosulphides, to
ternary metal tellurides. We initially discuss the emerging device concepts based on magnetic van der
Waals materials including what has been achieved with graphene. We then review the state of the art of
the synthesis of these materials and we discuss the potential routes to achieve the synthesis of wafer-
scale atomically thin magnetic materials. We discuss the synthetic achievements in relation to the struc-
Received 3rd November 2020, tural characteristics of the materials and we scrutinise the physical properties of the precursors in relation
Accepted 8th January 2021 to the synthesis conditions. We highlight the challenges related to the synthesis of 2D magnets and we
DOI: 10.1039/d0nr07867k provide a perspective for possible advancement of available synthesis methods to respond to the need for
rsc.li/nanoscale scalable production and high materials quality.

Introduction

Magnetism and its application in spin electronics have been

key to develop high-density data storage solutions. Phenomena

. o such as GMR (giant magnetoresistance) and TMR (tunnel mag-
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France hard drive read heads and have fueled the big data and cloud
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era revolution." With the development of fundamental mecha-
nisms such as STT (spin transfer torque) and SOT (spin orbit
torque), spintronics technologies have been moving to non-
volatile highly efficient and ultra-low power memory circuits
such as MRAMs (magnetic random access memories) and are
now progressively being integrated to CMOS-based devices for
green technologies.”> Next generation spintronics is expected
to provide opportunities to merge logic and memory functions
in computing architectures under the unified spin variable, as
well as in many disruptive approaches for post-CMOS comput-
ing such as stochastic, logic-in-memory architectures, neuro-
morphic, and quantum circuits.’™*

All these envisioned applicative exploitations of spin elec-
tronics fuel the development of innovative material platforms,
which can bring novel functionalities and performance to
devices. In particular, 2D materials have been expected to
deliver many opportunities to tailor spin-based device pro-
perties and bring to light unseen possibilities. One of the first
examples is the robust spin transport in graphene (the proto-
typical 2D material), which unveils the long sought possibility
of a platform for spin transport and potential path for spin
logics targeting beyond CMOS solutions.">'® More remarkably,
the development and integration of 2D materials have also
been impressive with respect to the basic building block of
spintronics, the magnetic tunnel junction (MT]) at the core of
MRAM technology.'” Within only few years 2D materials have
already been demonstrated to provide many outstanding novel
properties for spintronics such as: interface protection and
stabilisation, diffusion control, spin filtering, atomic control
crafting of spinterfaces (ferromagnet/non-magnet interface),
increase of perpendicular magnetic anisotropies, natural atom
thick interfaces for spin-to-charge conversion and modulation
of spin orbit torques.'®>® Remarkably, while 2D materials
already offer a strong materials platform for spin transport
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and manipulation towards spin information processing for
beyond CMOS, their main potential remains to be unleashed:
an unprecedented full control and tailoring of electronic and
magnetic properties through gating.***> While the first
explorations of 2D materials integration in MTJs concerned
only the prototypical 2D materials graphene and h-BN, studies
were soon extended to large families of 2D semiconductors
such as transition metal dichalcogenides (TMDs).**"°

Most of the initial studies exploring 2D materials properties
for spintronics were based on atomically thin layers, which
were mechanically exfoliated form bulk crystals.*® This tech-
nique is known to enable the isolation of high quality atomic-
ally thin 2D materials in a relatively straightforward manner.
However, this approach is not scalable and, additionally, is
even detrimental for spintronics applications as the exfoliation
is carried out in an oxidative environment. This has been a
recurring limitation for the integration and study of 2D
materials on typical ferromagnetic spin sourcing materials,
such as Ni, Co, Fe, and their alloys. Indeed, the surface oxi-
dation of these material quenches the spintronics properties,
in turn leading to very limited spin extraction and transport
performances in complete spin valve structures. In parallel to
the exfoliation approach, the direct growth of 2D materials
appears as a crucial to overcome both the issue of scalability
and the integration with delicate spintronics materials.'”""
This has been observed for graphene and h-BN with direct
chemical vapour deposition (CVD) growth being central in the
unlocking of their spintronics properties.*"*®

Among 2D materials, 2D ferromagnets (FM) are promising
for spintronics as they could lead to a complete 2D MTJ.*'™**
Departure from usual spin sources would allow the exploita-
tion of the 2D material characteristics (conformality, flexibility,
atomic thickness control, etc.) for spin based circuits. In
addition, 2D ferromagnets have been predicted to be half
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metallic (meaning only one spin direction is present at the
Fermi level) materials,*>*® i.e. the perfect fully polarised spin
source. This would naturally offer infinite TMR for a 2D MT]J
and has been a long-haul quest in spintronics.*” Furthermore,
magnetism at the 2D limit has barely been exploited in func-
tional structures and promises to provide unseen properties
for the control of spin functions. Indeed while ultimately
achievable with conventional magnets, reducing thicknesses
down to few atoms thick requires sophisticated engineering
developments.”® On the contrary this comes naturally to 2D
materials with atomic precision and a wealth of gating oppor-
tunities of their magnetic/electronic properties. While the sole
existence of spontaneous magnetisation in 2D materials has
been questioned by the Mermin-Wagner-Hohenberg (MWH)
theorem since the 60s,” it is only very recently that intrinsic
magnetic order was experimentally observed in ultrathin layers
of 2D ferromagnets, such as Crl;, CrGeTe;, and Fe;GeTe,.”*>°
Compared to conventional ferromagnetic materials used in
spintronics, those materials are extreme sensitive to external
doping and electromagnetic fields. This gives for the first time
the opportunity to play with their intrinsic magnetic and elec-
tronic properties, an asset unavailable before. In particular,
the gating of 2D magnetic material could pave the way toward
magnetic phase crafting at the atomic level and on-the-fly elec-
trical control.

Concerning spintronics devices, the field is just blooming.
Fully 2D MTJs based on 2D ferromagnets have been success-
fully demonstrated using metallic Fe;GeTe, and h-BN barriers
in Fe;GeTe,/h-BN/Fe;GeTe, heterostructures.’® Remarkably, a
clear TMR of 160% was observed at 4 K leading to a spin polar-
isation of 66% for the Fe;GeTe,/h-BN interface (Fig. 1(d-f)).
Similarly, Fe;GeTe, structures (using MoS, barriers or spacer-
free homojunctions) presented more recently further confirm
the interest in those 2D ferromagnets for spintronics.**®’
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Here, beyond the remarkable observation of high spin polaris-
ation for the Fe;GeTe, electrode, one of the outstanding advan-
tages remains to be unleashed and this is the tunability. The
Curie temperature (T,) of Fe;GeTe, has been shown to be gate
tunable and it could potentially reach room temperature.’®
Such a material property holds very strong promise for future
applications. For example, one could think of lowering T. (or
change the anisotropy), through gate control, to achieve ultra-
low power magnetisation switching and subsequently raise the
temperature to obtain long term storage. In addition, most of
these new 2D materials naturally offer perpendicular an-
isotropy, a property usually available only in ultrathin 3D ferro-
magnets which are inherently more difficult to grow.”® The
advantage of perpendicular magnetic anisotropy is that it with-
stands downscaling while maintaining thermal stability, which
is a requirement for future ultrahigh density devices.> Along
this way, their intrinsic 2D nature makes them also perfect
candidates for hosting controllable topological protected sky-
rmions,® the ultimate spintronics memory element.®'

Also, in a very promising way, semiconducting Crl;, the flag-
ship of the chromium trihalides family, was reported as an
efficient insulating spin-filtering barrier for 2D MT]Js. Indeed, its
strong spin filtering properties were evidenced for Crl; sand-
wiched by two graphene electrodes in a Gr/Crl;/Gr tunnel struc-
ture (Fig. 1(a—c)).*"**** The MR in the device relied on the
applied magnetic field switching the internal Crl; interlayer
magnetic configuration from antiferromagnetic (AFM) to ferro-
magnetic in a way mimicking the early GMR behavior. In the
AFM state, every second layer of the Crl; would filter out an
opposite spin direction resulting in a large resistance for the
tunnel barrier, while with an applied magnetic field all the
layers would align. The latter would allow a preferential spin
direction to pass through, and thus it would reduce the overall
resistance. Very large TMR in the million percent range were
found, thanks to the spin filtering high efficiency. Additionally
voltage control was also demonstrated highlighting the potential
of this type of 2D AFM/FM for future spintronics devices.**** As
such a new type of device could arise using 2D FMs to work as a
gate-tunable tunneling barrier spin filter. It would rely on the
property of tuning the interlayer coupling from ferromagnetic to
antiferromagnetic through an external gate voltage, which
would be unavailable using conventional FM.*

2D insulator/semiconductor ferromagnets could find their
way in spin dynamics and more specifically, in the field of
magnonics,*® targeting downscaled optics within magnetic
materials through spin waves. In this emerging field, 2D insu-
lator/semiconductor ferromagnets could lead to the demon-
stration of gate tunable magnonic channels.®” For example,
long distance magnon transport was already demonstrated in
2D antiferromagnetic MnPS; connected by two Pt spin hall
effect injector/detector (Fig. 1(g-i)).°® Their manipulation by
STT and SOT has also been demonstrated in part. Indeed
switching of the semiconducting van der Waals ferro-magnet
CrGeTe; through SOT was demonstrated at the interface with
Ta.®® Finally 2D insulator/semiconductor ferromagnets could
also tackle the long quest for integrating magnetism into semi-
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Fig. 1 2D magnet-based devices. (a—c) Optical image and schematic of a Gr/Crls/Gr MTJ and measured magnetoconductance vs. applied magnetic
field.*? Reproduced with permission from ref. 42. Copyright 2018 The American Association for the Advancement of Science. (d—f) Optical image
and schematic of a tunnelling spin valve device based on a Fe;GeTe,(L1)/h-BN/FesGeTe,(L2) heterostructure. The measured TMR reaches 160% at B
= + 0.7 T.%® Scale bar is 5 pm. Reproduced with permission from ref. 56. Copyright 2018 American Chemical Society. (g—i) Schematic and optical
image of a magnonic transport-based device using a MnPSz bilayer as magnon transport medium from the Pt electrodes, acting as magnon source
and detector. The graph shows the nonlocal magnon signal (Ry.) against the applied magnetic field B for devices of thicknesses 8 and 16 nm at
2 K.%8 Reproduced with permission from ref. 68. Copyright 2019 American Physical Society.

conductors started by diluted magnetic semiconductors.”
Providing high mobility could be found new 2D ferromagnet
semiconductors (such as early highlighted CrSiTe; and
CrGeTe; >*7"), it might reboot the field in an unexpected way.

While pioneer works in this direction have been based on
exfoliated material,"'™** already unveiling a strong potential
for spin performances and functionalities, large scale growth
will not only allow the systematic study of their properties but
also will enable the direct integration of these materials in
heterostructures for the fabrication of functional devices. The
integration of 2D magnets grown by CVD in functional spintro-
nics heterostructures can be foreseen to serve to the emerging
field of spintronics circuits.

In this article, we review the state of the art of the synthesis
of the most investigated 2D materials with magnetic order.

2160 | Nanoscale, 2021, 13, 2157-2180

Specifically, we discuss Fe;GeTe, and other ternary
tellurides,”””* CrX; (X = Cl, 1, Br) and a-RuCl;,”*"® MPX; (M =
metal, X = S, Se),””””® Cr and V dichalcogenides,”® ®> and metal
doped TMDs.**"® The crystal structure, the electronic and the
magnetic properties of these 2D magnets are reported in
Table 1. In the first part of this review, we discuss the state of
the art of synthesis of 2D magnets followed by a critical discus-
sion of perspective synthetic solution to achieve a control over
the materials characteristics. In the last section we discuss the
application of metalorganic CVD (MOCVD) for the growth of
2D magnetic materials. Since MOCVD has been recently used
for full-scale TMDs synthesis with thickness control,***” we
prospect that this technique may lead to similar results for 2D
magnets. Moreover, ternary and quaternary alloys and com-
pounds have already been achieved using MOCVD in thin

This journal is © The Royal Society of Chemistry 2021
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Table 1 Crystal models, electronic and magnetic properties of the 2D magnets object of this review
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films industry, and we envision possible pathways to syn-
thesise phosphochalcogenides, binary and ternary tellurides
and alloys using this method.

State of the art of magnetically active
2D crystal growth
Metal halides

One of the most studied classes 2D magnets are metal halides.
These are chlorides, bromides, and iodides of transition
metals such as Ti, V, Cr, Mn, Fe, Co and Cu. The majority of
them have been predicted to be predominantly antiferro-
magnetic with two ferromagnetic exceptions, which are Crl;,
possessing a Curie temperature of 45 K as reported in Fig. 2(a),
and CrBr;.'%" However, only a few of them have been obtained
experimentally. Within this group, the Cr-based halides have
been the most studied for their magnetic properties and
control over their magnetic order has been achieved via gating,
doping, pressure and stacking order.’™”*'*71% Atomically
thin flakes were obtained via mechanically exfoliation from
chemical vapour transport (CVT) grown bulk crystals
(Fig. 3(a)).'°® In this process, Cr powders were placed in an
ampoule filled with halogen gas, which is inserted into a

This journal is © The Royal Society of Chemistry 2021

furnace (set at 600-700 °C) while the other end is kept at room
temperature.®'®” Here the Cr powders are transported by the
convective flux onto the colder end outside the furnace and
after several days the slow reaction in the gas phase between
Cr atoms with the halogen species yielded high quality bulk
crystals. The synthesis of Cr halides alloys has been demon-
strated by mixing precursors powders.'”® In specific,
CrCl;_,Br, and CrBr;_,I, were obtained mixing CrCl; or CrBr;
commercial powders with Br or I beads according to the
desired final stoichiometry. By mixing Cr,O; and CrCl;
powders in a similar setup it is possible to obtain the vdwW
magnetic insulator CrOCL.'%°

A different synthetic approach has been reported by
Gamelin et al., who has demonstrated the colloidal synthesis
of Crl;, CrBr; and alloys."'® Cr(OCMetBu,); and trimethylsilyl
halide (C3HoSiX) have been used as precursors and the new
phase of Crl; and CrBr; has been obtained via chemical reac-
tion and precipitation occurring at 135-180 °C. The resulting
crystals are nanoplatelets (Fig. 3(b)) as large as 26 nm and
composed by 4-10 stacked layers. Magnetisation measure-
ments demonstrated a similar behaviour to exfoliated
crystals.

Recently, a few studies on the synthesis of FeCl, and
a-RuCl; have been reported. Zhou et al. has demonstrated the

Nanoscale, 2021,13, 2157-2180 | 2161
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Fig. 2 The role of the structure and the composition of materials in determining the magnetic properties; (a) phase transition of bulk Crls. The
crystal changes crystallography at 220 K and at 61 K (T.) spins align and magnetisation arises.'®” Reproduced with permission from ref. 107.
Copyright 2015 American Chemical Society. (b) Calculated magnetic anisotropy energy (MAE) vs. layer number in CrGeTes.!* Reproduced with per-
mission from ref. 111. Copyright 2019 AIP Publishing. (c) Evolution of the magnetic behaviour in MnBi,Te4(Bi>Tes),. The Bi,Tes layers separate the
ferromagnetic MnBi,Te, sheets decreasing the magnetic interaction (upper left inset) and decoupling the antiferromagnetism present in bulk.'!?
Reproduced with permission from ref. 112. Copyright 2020 John Wiley and Sons. (d) Magnetisation magnitude dependence on composition (con-
trolled by Pce/Pc,) in CrGeTes.** Reproduced with permission from ref. 113. Copyright 2018 AIP Publishing.

synthesis of atomically thin ferromagnetic FeCl, on Au(111)
and graphite via molecular beam epitaxy (MBE)."'* The grown
material exhibited nanometric grain size and low substrate
coverage, enabling only the fabrication of proof-of-concept
devices.

Another synthetic strategy that has been utilised to grow 2D
magnets is magnetron sputtering, by which thick films of
FeCl, and FeCl; were grown.''> The technique enables to
achieve high coverage in a short time, however, with poor
control over the film thickness and ultimately leads to thick
films with small grain size and irregular shape. a-RuCl;, which
is a Kitaev antiferromagnet with a low magnetic transition
temperature of 7 K in bulk, was synthesised using the vertical
Bridgman method.”® Here RuCl; powders were slowly molten
in a vertical furnace at 1100 °C and after 80 hours the crystals
obtained were large and easy to exfoliate.

Many other members of these family have been predicted
to be magnetically active, such as FeX,*> and MnXj,''°
however the experimental demonstration of their synthesis is
still missing (to the best of our knowledge). The physical
vapour deposition (PVD) growth of Nil, has been recently
reported by Liu et al. via low pressure sublimation of Nil,
powders onto SiO, or h-BN as target substrate."'” The growth
temperature was set to 450 °C for both substrate materials,
however h-BN required only one minute of growth time,

2162 | Nanoscale, 2021,13, 2157-2180

whereas SiO, needed 5-10 minutes. Monolayer and few layer
flakes were selectively grown only on h-BN with lateral size up
to 20 um, while on SiO, the deposited flakes were as thick as
40 nm. Interestingly, other magnetic vdW halides have been
synthesised decades ago such as like CoCl,,"*® GdI,,"**"*° and
FeBr, ""'**> but no further attempts to grow these materials
has been done recently.

Tellurides

Another important family of magnetic vdW crystals is the
binary and ternary metal tellurides. Thus far, to the best of
our knowledge, this consists of few materials which have
been experimentally demonstrated: FeTe, Fe;GeTe,, CrXTe;
(X = Ge or Si), MnBi,Te,, and GdTe;. However many other
tellurides have been recently predicted to show magnetic
order, such as ferromagnetic VSnTe; and NiSiTe;.'*?
Fe;GeTe, is a metallic ferromagnet in bulk with a Curie
temperature of 220 K that drops to 130 K in monolayer
form and it presents an Ising-type long range ordering.’’'>*
The growth of this material has only been achieved via CVT
where ultrapure Fe, Ge, and Te powders were mixed in the
3:1:2 ratio (Fig. 3(c)). The temperature gradient between
the powders and the target zone was usually 700-750 °C
along with I, gas transport agent and the synthesis lasted
for several days.'**

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 Morphology of 2D magnetic crystals. (a) SEM image of a CVT grown Crls single crystal."™®* Reproduced with permission from ref. 134.
Copyright 2020 Elsevier. (b) Bright field transmission electron microscope (TEM) image of Crls colloidal nanocrystals.**® Reproduced with permission
from ref. 110. Copyright 2020 American Chemical Society. (c) High-resolution (HR)TEM of the atomic structure of FesGeTe,.'*> Reproduced with
permission from ref. 135. Copyright 2019 The American Association for the Advancement of Science. (d) SEM image of CVD-grown MnPS3 microfl-
akes.’®® Reproduced with permission from ref. 136. Copyright 2018 John Wiley and Sons. (e and f) Optical micrographs of CVD-grown undoped
WSe, and V-doped WSe, alongside HRTEM image showing the presence of dopants.*’ Scale bars are 150 um and 1 nm. Reproduced with per-

mission from ref. 137. Copyright 2020 John Wiley and Sons.

CrGeTe; and CrSiTe; are layered semiconductors and ferro-
magnetic insulators with Heisenberg and Ising spin order
models, respectively.'*>'*® Similarly to the other 2D magnets
these crystals are expected to present layer dependent mag-
netic properties, as shown in Fig. 2(b) where the magnetic an-
isotropy energy increases with the layer number.""" Both crys-
tals have been grown using a self-flux CVT process, in which
Ge or Si and Te powders are loaded in large stoichiometric

This journal is © The Royal Society of Chemistry 2021

excess (1:3:36 molar ration, for example) in an ampoule
where they play the role of self-transport agents.>>'**'?% [n
this case the synthesis can last up to 20 days at temperatures
higher than 1000 °C. MBE was used to tune the composition
of the Cr-Ge-Te system from Cr,Te; to CrGeTe; by varying
the relative precursors supply. In this way, it has been poss-
ible to tune the magnetic response from a minimum, when
Ge was absent, to a maximum where Ge supply was four
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times larger than the Cr one, as reported in the plot in
Fig. 2(d)."*?

The antiferromagnetic topological insulator MnBi,Te, has
been also synthesised via self-flux CVT over a period of 7
days.'*® This technique has been implemented by mixing the
elemental powders in the stoichiometric ratio under vacuum,
heating the systems at 850 °C for 24 hours and subsequently at
595 °C for 150 hours. Interestingly, MnCl, can also be
employed as transport agent, if the molar ratio of the three
precursors is set at Mn:Bi:Te:MnCl, 1:1:1:0.3. This
different molar ratio has resulted in higher Hall mobilities
measured in a magnetoelectronic device. Not only elemental
powders can be used, commercial Bi,Te; and MnTe bulk
powders were employed in the crystal growth and, in addition
to this, a complete phase diagram was drawn with Bridgman
vertical growth. This has highlighted a plethora of possible
phases and stoichiometries.'*®'*" These MnBi,Te, (x = 2, 4, 6,
.3y =4, 7, 10, ...) phases have a peculiar structure, where
Bi,Te; are sandwiched in between two MnBi,Te, layers."'* The
separation of MnBi,Te, layers has led to the isolation of single
2D ferromagnetic sheets, as represented in Fig. 2(c). Another
antiferromagnetic layered material that has been recently
reported is GdTes;, which unlike MnBi,Te, shows metallic
characteristics.'®* The CVT synthesis used Te and Gd powder
in a 97: 3 ratio, where Te acts as the transport agent, heated at
a temperature of 900 °C for 12 hours. Recently, platelets of the

(a)
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2D ferromagnetic FeTe have been grown via ambient-pressure
CVD using FeCl, and Te powder as precursors on SiO, sub-
strates."*® In this synthesis, it was possible to selectively grow
the tetragonal phase at 530 °C, whereas increasing the growth
temperature to 590 °C resulted in the growth of hexagonal crys-
tals. The lateral size of these platelets ranged from 10 to 60 pm
with thicknesses down to 2.8 nm.

Metal phosphochalcogenides

Metal phosphorus trichalcogenides are antiferromagnetic wide
band gap semiconductors with general formula MPX;, where
M is a metal, or a combination of metals matching the stoi-
chiometry, and X is either S or Se. Specifically two metal atoms
coordinate with [P,X¢]'” ions within the individual layer and
arrange into a hexagonal structure. The difference between sul-
phides and selenides are related to the stacking of the 2D
layers in the bulk form, where the firsts are monoclinic (C2/m
space group) and the latter are rhombohedral (R3 space
group).

Besides being magnetically active, these materials attracted
research interest due to their catalytic properties and hence
more efforts were made towards facile and scalable crystal
growth methods."*®"*° CVT is the most used technique to syn-
thesise these bulk crystals (Fig. 4(a)), which also enables to
achieve mixed metals phosphochalcogenides such as
CuCrP,Ss, CulnP,Se, and alloys."*'*' However, He et al
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Fig. 4 Reported growth methods for 2D magnets: CVT and CVD. (a) CVT growth of metal phosphochalcogenides. The sketch depicts the reaction,
where the halogen gas transports the elements from the hot to the cold side via convection.'*® Reproduced with permission from ref. 146.
Copyright 2016 American Chemical Society. (b) CVD of V-doped WSe,. The mixed precursors react with Se on the SiO, surface into ferromagnetic
V-WSe,.**” Scale bar is 50 pm. Reproduced with permission from ref. 147. Copyright 2020 John Wiley and Sons.
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attempted and achieved a higher throughput protocol that
involves the hydrothermal synthesis of metal oxides (NiO, or
MnO,) and then a subsequent step in a CVD tubular furnace
with stoichiometric quantities of S (Se) and P."*®'**'% [n
order to avoid parasitic reactions (formation of metal sul-
phides), a single phosphosulphide precursor was prepared
either by ball milling the powders together or by melting P and
S in a pre-growth step. The result was a forest of multilayer
MnPX; (Fig. 3(d)) or NiPS; with flakes of lateral size around
2-3 um. While the morphology of such flowers is not suitable
for planar device fabrication, this approach proved that it is
possible to grow MPX; crystals via CVD. FePS; has been grown
in a similar way, using FeS previously grown on carbon paper
and then phosphorised and sulphurised in a tubular furnace
at 550 °C.'** The morphology and dimension of the FePS;
flakes are similar to what has been reported for Ni and Mn
based phosphochalcogenides. Huang et al. reported analogous
results using NaCl crystals as templates, which then are
covered in solution with FeCl; and then placed in a CVD
furnace at 500 °C along with P and S powders.'*®

Transition metal dichalcogenides

Amongst the large family of TMDs the V (VS,, VSe,, VTe,) and
Cr (CrS,, CrSe,, CrTe,) compounds are magnetically active,
intrinsically or they can become magnetic via doping with
metal atoms.’"'*8715 These TMDs are mainly antiferro-
magnetic (CrS, and CrSe, are ferromagnets), semimetallic and
stable in the 1T trigonal phase (space group C2/m) with A-A
stacking. CVD-based syntheses of these materials have been
demonstrated. Shivayogimath et al.'>* have proposed a strategy
to achieve a monolayer self-limited synthesis, which is based
on the different solubilities of metals and chalcogens in gold
recalling the self-limited synthesis of graphene on copper'®
and former growths of group VI TMDs.'”® A thin film of the
metal precursor (20 nm) is deposited by PVD on a sapphire
substrate and, subsequently, covered with a 500 nm thick gold
foil. This composite film is then placed into a hot-wall tubular
furnace at high temperature (850 °C) where it is exposed to
chalcogen vapours for 10 to 15 minutes. The chalcogen solids
are placed upstream and heated at 110 °C, 220 °C, and 420 °C
for S, Se, and Te respectively. Since the metal chosen is soluble
in gold and the chalcogens have good affinity (decreasing form
S to Te) with it, the latter will tend to stick on the Au surface
more easily compared to the normally used ceramic substrates
(SiO,, sapphire). This facilitates the formation of monolayers
that can potentially cover the whole gold surface when ade-
quate reaction time is provided. Using this method, it has
been possible to grow flakes of CrS,, CrSe,, CrTe, and VS, in
addition to many other non-magnetic TMDs. Large VX, mono-
layer flakes on SiO, have been achieved by Liu et al.'>” using
CVD by salt-assisted (KI) chalcogenisation of V,Os, a reaction
commonly used for group 6 TMDs,"® at temperatures between
680 to 750 °C in a hot-wall reactor at atmospheric pressure. A
similar CVD configuration has been used for the synthesis of
multilayered VTe, nanoflakes by NH,Cl as evaporation assist-
ant for V,05 at temperatures ranging from 600 to 800 °C at

This journal is © The Royal Society of Chemistry 2021
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atmospheric pressure."” Whereas Chua et al. reported the
CVD growth of VS, microflowers on carbon paper via sulphuri-
sation of VCl; at just 500 °C at atmospheric pressure set by a
mixture 95:5 of Ar/H,.">® VCI; has also been used along with
Te powder in the CVD growth of VTe, nanoplatelets at a
growth temperature of 600 °C, resulting in triangular multi-
layer flakes up to 10 pm in lateral size."®

Magnetism can be induced in other metallic and semicon-
ductive TMDs, such as MoS,, WSe,, TaS, and NbS,, via doping
or alloying with a wide range of metal atoms.®%'®'7'
However, only few reports have been published showing experi-
mental characterisation of doped-TMDs obtained via CVT.
Metallic TMDs, such as TaS, and NbS, can become magneti-
cally active when layers of metal atoms are intercalated in
between the TMDs sheets forming a new crystal structure
(space group P6322) with a new stoichiometry of M;,;Ta(Nb)S,.
In particular, Cr intercalation in Nb and Ta sulphides yields
ferromagnets with T, at 120 K and 110 K respectively,"®®
whilst V,,3NbS, and V,,3TaS, are almost perfect XY antiferro-
magnets (spin is out-of-plane by 2°) with much lower Curie
temperatures (50 K and 32 K respectively).'®® Fe can also be
intercalated in NbS, resulting in an Ising-nematic
antiferromagnet.®®

Substitutional doping of TMDs has been reported a few
times but is yet to be established, and rarely it has been
achieved during the CVD growth by adding a third
precursor.'’°™"7? Interestingly, Lee et al. have synthesised ferro-
magnetic monolayer V-doped WSe, with lateral dimensions of
approximately 100 um onto SiO, via a two-step process.'?”'”?
Firstly, tungsten and vanadium precursors (NH,H,W;,0, and
NH,VOs;) are dissolved in deionized water in amount propor-
tionate to the target doping level, then the solution is spin-
coated onto a silicon substrate along with NaOH acting as
growth promoter. Then, at 750 °C in presence of H, the metal
precursors decompose in metal oxides and react with selenium
to form atomically thin V-doped WSe, monolayers (Fig. 4(b))
extended over tens of microns (Fig. 3(e and f)). A similar
synthesis protocol has also been recently used by Pham et al.
to obtain 10 pm-sized V-doped WSe, monolayer flakes
where larger saturation magnetisations were measured for
higher V doping levels up to 8 at%, point in which the distance
between the dopant atoms becomes too small to allow
ferromagnetism."”*

Pathways towards wafer scale
synthesis of 2D magnets

CVD is a manufacturing technique which can be upscaled and
due to its success in 2D materials synthesis it can be regarded
as a promising route for the synthesis of atomically thin 2D
magnets over wafer-size areas. Therefore, in this section we
will outline the possible pathway towards establishing the
(MO)CVD growth of these materials, describing the fundamen-
tal physics, possible precursors, process parameters and sub-
strate effects.
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Fundamentals of CVD and MOCVD

After describing the state-of-the-art of 2D magnetic crystals
growth, the next step is to identify pathways for the wafer-scale
production of these materials and subsequent integration into
devices. Looking at the modern electronics industry, most of
the materials used for the fabrication of commercial devices
require uniform high-quality films with precisely controlled
composition to achieve the desired specifications. A technique
that conjugates throughput, scalability and precise process
control is CVD. Furthermore, CVD can be applied to a wide
variety of materials, given the large library of compounds cur-
rently employed as precursors for the growth of oxides, semi-
conductors, nitrides, and metal thin films. The CVD reactor
design, related physics, reaction kinetics, and substrate contri-
bution have been extensively investigated for the growth of 2D
materials.

After a few years since the isolation of graphene, the CVD
synthesis of self-limited monolayer films on a cm* scale were
achieved via H,-aided reduction of methane on metal
films.">>'”® These results paved the way for the growth atomic-
ally thin h-BN and TMDs and similar processing strategies to
the ones identified for the graphene synthesis, yielded high
quality crystals."”®"7® Up until now, powder precursors have
been the nearly the only suitable precursors for the growth of
high quality atomically thin TMDs due to their reactivity at
high temperature and their relative low cost.'”® However,
powder-based CVD lacks of a precise control over precursors
supply and the growth time is determined by the powder
amount, which ultimately limits the coverage and the thick-
ness control. Thus, MOCVD, where the precursors are high
vapor pressure solids, liquids, or gases and are individually
controlled, has been proposed as a possible solution to these
limitations. MOCVD enables control on the precursor flowrates
with the possibility to extend the growth time up to several
hours. This technique enabled the growth of MoS,, MoSe,,
WS,, and WSe, over more than 2-inch wafers with perform-
ances approaching the ones of materials grown using
p()Vvders.86,87,1807182

As we mentioned in the previous section, other bottom-up
techniques are used for the growth of 2D materials. We
described how MBE can cover a wide range of compositions
with high resolution in the Cr-Ge-Te system. Analogous
results have also been reported for TMDs,'*'®* where the
high degree of process control provided by MBE enabled fun-
damental studies of nucleation and growth of monolayer
WSe,.'®> However, despite the extremely high crystal quality
that is achieved, MBE currently leads only to sub micrometric
flake sizes with slow deposition rate. Additionally, the tech-
nique itself requires extremely pure elemental precursors, high
temperatures and ultra-high vacuum in the reaction chamber.
Atomic layer deposition (ALD) is less demanding in terms of
cost and it can produce large films with controllable thick-
ness.'®® The polycrystalline films with domains normally
(within  1-2  pm) much smaller than CVD-grown
materials,"®”'%® (several microns in lateral size) currently rep-
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resent the main limitation in using ALD to grow TMDs and it
is possibly due to the low deposition temperatures, which are
usually around 500 °C.

The physics of the MOCVD reactors

CVD is a multiscale process, as it involves both macroscopic
and microscopic phenomena. The former are: precursor evap-
oration, reactor fluid dynamics, and heat transport.'%'%°
While the latter are: precursors reaction, diffusion, and nuclea-
tion and growth.'® Analogously to liquids flowing in pipes,
the physics in a CVD reactor is governed by the Reynolds
number Re, which determines whether the flow is turbulent or
laminar and consequently the fluid dynamics and the precur-
sors distribution.'® Conventional CVD parameters nearly
always result in low Re and therefore the process can be mod-
elled using the well-known Navier-Stokes equations, which
model the conservation of momentum and mass, and the con-
servation of heat and chemical species."”® Solving these
equations for the reactor geometry, given specific boundary
conditions, results in the temperature, velocity, and concen-
tration profiles across the tube, which are essential infor-
mation for the process parameter optimisation. To distinguish
the individual concentration profiles of all the chemical
species, the direct and the inverse reaction rates must be con-
sidered, which are usually Arrhenius-like power laws. The solu-
tions of the mass, heat and momentum balance can be
included into mesoscale simulations (Kinetic Monte Carlo and
phase-field models) as boundary conditions to predict mor-
phology, distribution and size of 2D materials."**'** Another
key phenomenon to be considered is the formation of the
boundary layer where the flow meets the substrate. Within the
boundary layer the viscous component of the forces dominate
and the gas velocity acquires a component normal to the sub-
strate, inducing a concentration gradient through the layer, as
described in Fig. 5(a)."®* Additionally, the boundary layer
thickness increases along the substrate by the square root of
the x coordinate in a horizontal reactor and this causes a drop
in the growth rate, ultimately leading to an inhomogeneous
film."®> This is generally mitigated tilting or rotating the sub-
strate to level off the boundary layer contribution,'®*'”
however this configuration is rarely present in research labs
while it is normally use at industrial level. Therefore, a solu-
tion to this issue has been found in using vertical reactors;
where the gas flow is normal to the substrate and hence the
boundary layer thickness is homogeneous. This ultimately
results in a uniform distribution of products (Fig. 5(b))."*®
This configuration proved to be particularly advantageous for
MOCVD of TMDs, since ]. Robinson, ]J. Redwing and co-
workers have been able to reduce the growth time from the
26 hours, reported for horizontal MOCVD synthesis,®” to just
one hour in a vertical reactor.'®® Moreover, the use of a cold-
wall reactor where the substrate is placed onto a graphite sus-
ceptor heated by an induction system, which prevents parasitic
reactions in the gas phase and minimises the vapour transport
led to the synthesis of epitaxial WSe, monolayer films over
large sapphire and h-BN substrates.'%?72%

This journal is © The Royal Society of Chemistry 2021
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Fig. 5 Fundamentals of CVD physics and equipment. (a) Sketch of the
boundary layer arising in a horizontal furnace. The precursor flux
towards the substrate J(x) is a function of the layer thickness §(x) and
the precursor concentration n(x), both dependent on the horizontal
coordinate.’®® Reproduced with permission from ref. 189. Copyright
2008 The Royal Society of Chemistry. (b) Comparison between a con-
ventional horizontal reactor and a vertical reactor. The boundary layer
presence results in an inhomogeneous product distribution.?®®
Reproduced with permission from ref. 198. Copyright 2020 American
Chemical Society. (c) Schematic of a cold-wall CVD reactor for the
growth of WS, from solid (W(CO)e), liquid (diethyl sulphide, DES) or
gaseous (H,S) precursors.?°® Reproduced with permission from ref. 203.
Copyright 2018 American Chemical Society.
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These considerations regarding the flow are of concern of
both CVD and MOCVD alike, however the higher degree of pre-
cursors flow control in MOCVD makes this technique particu-

This journal is © The Royal Society of Chemistry 2021

View Article Online

Review

larly promising for the growth of 2D materials. In fact, the pre-
cursors supply in powder-based CVD cannot be efficiently
control as its evaporation rate depends on many factors such
as temperature, carrier gas velocity, powder heap height and
geometry.”** Additionally, the precursors amount is limited
and therefore does not allow prolonged growth times needed
for full coverage on wafer scale. Several strategies to control the
precursor flowrates have been proposed, such as using low
volatile oxides, to limit the metal precursor evaporation,**> or
mapping the evaporation rate via calorimetric analysis,">’
which has improved the crystal quality. On the contrary, in
MOCVD the precursors are placed outside the furnace in stain-
less steel cylindrical bubblers where the carrier gas flows into
the cylinders and transport the precursor’s vapour in the
p(7)
P—p(T)
where Fj, is the flowrate of the carrier gas, p(T) is the precur-
sor’s vapour pressure at the bubbler temperature 7" and P is
the bubbler pressure. Hence, for a robust control of the precur-
sor flowrate a bubbler necessitates to be linked to an upstream
mass flow controller (MFC), a pressure controller (PC) down-
stream and to be placed into a water bath, which controls the
temperature and consequently the vapour pressure. If the pre-
cursors are compressed gases (i.e. hydrides) only a single MFC
is required. Such bubblers can be placed in parallel for multi-
element compounds, alloying and doping enabling a wide
range of compositions in the final product. Alongside the con-
ventional CVD equipment, the precursors used in MOCVD are
usually pyrophoric, flammable, or toxic and therefore
additional equipment for the effluent treatment is often
needed and hazards must be carefully assessed. A good
example of a custom-built MOCVD system used for the growth
of TMDs is schematically reported in Fig. 5(c).

reactor. The precursor flowrate F is given by F = Fin,

Potential precursors for the MOCVD growth of 2D magnets

The general requirements of MOCVD precursors are: high vola-
tility, high reactivity, stability under atmosphere and possibly
low toxicity. However, we can refine these specifications
looking at the current state-of-the-art MOCVD growth of TMDs
for key parameters and precursors. A key precursor require-
ment is a low carbon content since it has been shown that
organic precursors lead to the deposition of carbonaceous
species on the final product.”**?°® This has been partially
solved for WSe, utilising H,Se, which has massively decreased
the contamination from carbon and other elements.’® In
addition to this, 2D materials growth needs low precursors
flowrates (0.01 sccm for metals and 0.4-5 scem for chalcogens)
unlike classic MOCVD of coatings and thin films where the
flowrates are orders of magnitude larger. Thus, it is possible to
opt for less volatile precursors when advantageous in terms of
safety, availability, and ease of handling.

Looking at the classes of 2D magnets we described earlier,
they are formed by: metals (Cr, V, Fe, Mn, Bi, Ni, Ta and Nb),
chalcogens (S, Se and Te), halogens (Cl, Br and I), Si, Ge and
P. For all these elements there are precursors which are used
in CVD industry or research that can be employed for the
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growth of 2D magnets. Fig. 6 and Table 2 summarise the
physical properties of the proposed precursors.

Cr-Precursors. Cr(CO) is highly volatile and even more than
the currently used molybdenum and tungsten carbonyls
(vapour pressures at 25 °C in torr: 0.2 Cr(CO)s, 0.1 Mo(CO)s
and 0.05 W(CO)s)*®” that have been extensively used for
MOCVD of MoX, and WX,. Furthermore, Cr carbonyl has a
high pyrolysis rate at temperatures lower than 500 °C enabling
the possibility to grow on temperature sensitive substrates.*’®
Comparing Cr carbonyl with other Cr-containing commercial
MOCVD precursors, it outperforms more complex organochro-
mium molecules in the growth of Cr,O; at 500 °C achieving
the highest growth rate with negligible carbon contamination
left.>%°

V-Precursors. In the MOCVD growth of VO, coatings, a wide
range of vanadium precursors has been reported,**’
the most successful compound in terms of phase selectivity
and product purity is vanadyl acetylacetonate (VO(acac),),
whose volatility matches the requirements for MOCVD and
leaves negligible carbon contamination.>""*'*> Another mole-
cule that can potentially be used is VCl, that has the same
vapour pressure of tungsten carbonyl at room temperature.
This would be advantageous as V is already in the +4 oxidation
state and it does not leave carbon contaminations.**° However
HCI would evolve from the reaction with the chalcogen precur-
sors and hence precautions must be taken.

Mn-Precursors. Several organomanganese compounds have
been used as dopant source for II-VI semiconductors and in
principle can be proposed for the growth of MnBiTe, and
MnPX;.>"* The most widely used is methylcyclopentadienyl-
manganese tricarbonyl ((CO);CH3;CsH,Mn, TCMn) despite
having the highest cracking temperature of all the class and
low volatility.>'**™> As it possesses a vapour pressure compar-

however
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able to the one of W(CO), (0.05 torr at 25 °C)*** at room temp-
erature it may be volatile enough to sustain the growth of
atomically-thin materials. Other MOCVD compatible com-
pounds are (CsHs),Mn, (MeCsH,),Mn, Me(CO)sMn and Et
(CO)sMn, which might be more advantageous than TCMn
having lower carbon atoms.

Fe-Precursors. Another element to cover is iron for the syn-
thesis of FePS;, FePSes, and Fe;GeTe,. Iron pentacarbonyl (Fe
(CO)s) and ferrocene (FeC;0H;,) are low in carbon content and
they have been established in the MOCVD growth of Fe, FeS,
and Fe,0;.>'°'® Iron pentacarbonyl could be better suitable
since it has lower carbon content and a lower cracking temp-
erature of 300 °C than ferrocene.>'***°

Ni-Precursors. Similarly, Ni(CO), can potentially be used as
Ni-precursor since it has been employed for the growth of Ni
thin films at low temperature (175-400 °C), due to its extre-
mely high volatility and low cracking temperature of
~200 °C.**' However, it presents acute toxicity and hence,
alternative  nickelorganic precursors have also been
reported.*** Nickel pentacene (Ni(CsHs),) and Ni(dmg), (nickel
bis(dimethylglyoximate)) proved to be efficient to yield Ni films
of high quality with a negligible amount of impurities.***>**

Bi-Precursors. The perfect example of a Bi-based material to
look at is Bi,Tes, as it is a vdW crystal and it is widely produced
via MOCVD. The typical MOCVD growth is based on the reac-
tion between trimethyl bismuth (TMBi) and an organotelluride
that can be diethyl telluride (DETe) or di-isopropyl telluride
(DiPTe) at the moderate temperature of ~450 °C.>**>*® Most of
the Bi,Te; produced is in the form of films of hundreds of nm
in thickness using precursors flowrate several order of magni-
tudes larger than values reported for TMDs. Bi,Te; in the
monolayer or few-layered form has not been reported yet.

Nb-Ta-precursors. Several organometallic compounds are
widely used for the growth of Nb and Ta nitrides and oxides,
(such as Ta(NCMe;)(NEtMe); or  Nb(N‘Bu)(NMe,)}{C
(N'Pr),(NMe,)},) however these are large molecules with a high
number of carbon atoms and functional groups.**?>*?
Therefore, precursors more suitable for the growth of 2D NbX,
and TaX, could be carbon-free molecules such as NbCl; and
TaCls. These two precursors both possess high vapour press-
ures*** and have already been used for the growth of atomic-
ally-thin sulphides by reaction with sulphur powder at high
temperature.>*>>*” Additionally, a solid example of the use of
NbCls; in MOCVD has been reported by Kozhakhmetov et al.
where few layered 3R-NbS, was obtained using gaseous H,S
and H, as carrier gas.'®?

S, Se, Te-precursors. Chalcogen precursors for 2D materials
have been extensively explored in MOCVD of group VI sul-
phides and selenides. The most used one are organochalco-
gens, which are formed by two alkyl tails of length ranging
from one to three carbon atoms bonded with a chalcogen
atom. In particular diethyl sulphide (DES) has been used in
almost all of the MOCVD reports of MoS, and WS, achieving
full coverage of monolayers on both sapphire and amorphous
silica, showing good optical and electronic transport pro-
perties despite the submicrometric grain size.’”**® It is poss-

This journal is © The Royal Society of Chemistry 2021
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Table 2 Vapour pressure laws, melting and boiling point of potential precursors

Precursor Melting point (°C) Boiling point (°C) Log(Pyapour, torr)

Group V

vcl, -25 148 0.06 at 298 K (ref. 265)

NbCl; 205 248 17.263-4732/T — 0.7912In(T) — 29263/T° (ref. 234)
TaCl, 216 239 21.199-4831/T — 1.399In(T) — 7648/T° (ref. 234)
Group VI

Cr(CO)e 90 210 11.475-3622.9/7>"

Mo(CO)s 150 156 11.7274-3788.3/T>"7

W(CO)s 170 175 10.947-3640.4/T>"

Group VII

TCMn -1 232 0.05 at 298 K (ref. 266)

Group VIII

Fe(CO)s -21 103 8.073-1960.869/(T — 0.228)*%”
Fe(CsHs), 173 249

Group X

Ni(CO), -17 43 7.512-1409.037/(T — 11.637)*”
Ni(CsHs), 171 2.124-3651.114/T>%8

Group XIV

SiH, -185 -112 7.097-703.987/(T + 5.352)*"
TMSi -99 26 6.852-1047.272/(T — 36.057)*°
sicl, —-69 58 7.704-1616.546/(T + 5.305)*"°
GeH, -165 —-88 6.981-736.692/(T — 4.665)°
TMGe -88 43 6.986-1166.492/(T — 33.005)*”
GeCl, -50 87 6.557-1080.101/(T — 63.588)*°”
Group XV

P (red) 590 (sublimates) 7.917-2819.239/(T + 6.399)>°”
PH; -133 -88 6.9-702.651/(T — 11.065)*%”
TMP -86 38 7.7329-1512/T>%

TEP 127 7.86-2000/T %

TMBi -86 110 6.984-1388.9/(T — 42.374)*""
Group XVI

S 115 445 91.489-8170/T — 12.611n(T) + 0.00357 >
H,S -82 —60 7.403-958.587/(T — 0.539)>%”
DMS -98 36 7.162-1201.134/(T — 29.906)*7*
DES -104 92 7.541-1560.523/(T — 26.557)>%7
Se 221 685 8.0886-4989/T>"*

H,Se —66 -41 6.492-596.484(T — 66.353)>¢”
DMSe -87 55 7.696-1665.9/T %>

DMSe, 156 13.585-3912.8/T>"°

Te 450 988 7.5999-5906.2/T %7

DMTe -10 82 7.97-1865/T >

DETe 137 7.99-2093/T >

DiPTe 49 8.288-2309/T°7°

Group XVII

tBuCl -26 51 7.129-1281.242/(T — 21.795)>%”
nHexCl —-94 133 6.769-1304.968/(T — 73.092)*”7
EtI -111 72 6.96-1247.135/(T — 39.612)*%”

ible to use dimethyl sulfide to reduce the carbon incorporation
as shown by Shinde et al. however its extremely high volatility
may reduce the flowrate control.'®® Di-tert-butyl sulphide has
also been reported as precursor for MoS,, however the high
number of carbon atoms resulted in carbon contamination
specifically at high pressure temperature.>**>*°
Analogously, dimethyl selenide (DMSe) proved to be a suitable
precursor for MoSe, and WSe, owing to its lower volatility
compared to DMS and therefore easier to control.>*"*** In
order to prevent the carbon contamination, it is possible to
switch to hydrides (H,S and H,Se), however these compounds
are extremely toxic and it might be challenging their use in
university research laboratories, posing also concerns over the
scalability of the synthesis.>*>?*°® As no atomically-thin tellur-
ide has been reported via MOCVD yet, therefore to propose a
suitable precursor for future synthesis of binary and ternary

and

This journal is © The Royal Society of Chemistry 2021

magnetic telluride we have to look at the production of non-
layered semiconductors. The perfect example is the epitaxial
growth of HgCdTe, a small band gap semiconductor used for
infra-red detection. This material is the result of a solid solu-
tion between HgTe and CdTe, whose bandgap can be tuned by
varying the Hg/Cd ratio during growth.>** Such a fine tuning
has been achieved via MOCVD adjusting the flowrates of
mercury vapours and dimethyl cadmium (DMCd) using GaAs,
Si or sapphire as epitaxial substrates.>** The metal precursors
react with dimethyl telluride (DMTe) and hydrogen to form
Hg,Cd,_,Te at a temperature of 400 °C, which is much lower
than the temperatures used for liquid phase growth tech-
niques.>*®> Similarly, CdZnTe can be grown using similar pre-
cursors and temperature starting from diethylzinc (DEZn).>*®
Interestingly, the low growth temperature allows to control the
rate limiting step of the process, since at T < 430 °C the reac-
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tion is kinetically-driven and the activation energy determines
the final composition whereas for higher temperature the lim-
iting step is the mass transport and the diffusivity of each
element.**’

Si-Ge precursors. Similarly to chalcogens, silicon and ger-
manium hydrides are established gaseous carbon-free precur-
sors. In fact, SiH, and GeH, are both used for epitaxial growth
of Si and Ge films and Si-doping of GaAs and they possess
moderate cracking temperature in presence of H, as carrier
gas (~600 °C for GeH,).>** > However, they are both pyropho-
ric and extremely toxic. Both tetramethyl silane and germane
have been reported as suitable MOCVD precursors being
highly volatile and much less toxic than hydrides.>**™>%
Furthermore, SiCl, and GeCl, have low toxicity and they are
C-free precursors often used in epitaxial growth of Ge, GeO,
and SiO, growth.>**>?°¢

P-Precursors. For the growth of metal phosphochalcogen-
ides, we listed the potential precursors for metals, sulphur and
selenium, therefore we discuss possible precursors for P, pro-
posing alternatives to the extremely toxic phosphine gas (PH;).
Trimethyl and triethyl phosphine ((CH3);P TMP, (CH3CH,);P
TEP), are highly volatile at room temperature (VP: 493 torr for
TMP, 15 torr for TEP) and their toxicity level is lower than the
phosphine one, thus they could be available option.>*” Their
use has already been tested in the MOCVD growth of InP and
as P-dopants sources in n-type diamond, without any differ-
ence in quality compared to the use of PH;.>*%>%

Halogen precursors. Very few precursors are reported in the
literature since most of the metal halides are synthesized via
CVT where gaseous chlorine, iodine and bromine are used.
Potential Cl precursors were tested by Barrioz et al. in the
MOCVD growth of CdCl, on CdTe films, tert-butyl chloride
(tBuCl) and n-hexyil chloride (n-HexCl) reacted with DMCd at
temperatures ranging from 350 to 450 °C.*°> The best result
was achieved with tBuCl at 400 °C since n-HexCl did not
efficiently crack at the explored temperatures. Similarly, the
only iodine MOCVD precursor reported in the literature is
iodoethane (CH3;CH,I, ethyl iodide), which has a vapour
pressure of 100 torr at room temperature and it has been
employed as I-dopant source for ZnS and Cu films.>®*>%
Unfortunately, bromine is yet to be reported as element in a
CVD process, therefore, in analogy with the I-precursor, we
propose bromoethane as potential precursor. Alternatively, it
may be possible to use halogen gases directly in the MOCVD
process analogously to oxygen and hydrogen, widely used as
reagents or reducing/oxidant agents.

The role of the growth substrate

The substrate choice is a fundamental parameter in the CVD
process since crystal structure, morphology and high tempera-
ture stability of the substrate material directly influence the
growth kinetics. These aspects have been extensively discussed
in recent reviews.'”>?”$%7? For 2D materials in particular, the
interactions between film and substrate determine not only
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the morphology of the grown layer but also nuclei density,
optical properties, strain and crystal phase. We can divide the
substrates into chemically inert versus chemically reactive. The
most prominent example of this second category is Cu for the
growth of graphene that acts as a catalyst for methane cracking
reaction combined with the poor C solubility.”®* Similarly,
h-BN growth is catalysed by iron that additionally acts as nitro-
gen reservoir when preannealed with ammonia, enabling in
this way full coverage.”®"**> Au foil plays a similar role for
TMDs where the limited solubility of chalcogens confines the
growth to the first layer resulting in large area monolayers.>3*"%>

Regarding chemically inert substrates, the most used one is
SiO,/Si as it is inexpensive and technologically relevant for
electronic devices and it enables a stark optical contrast
between the flakes and the substrate. Numerous examples of
large isolated TMDs flakes have been reported in the literature
using powder CVD,****°" whereas full coverage has been
achieved via MOCVD.*"'® However, the roughness of the
silica combined with the difference in thermal expansion
coefficient compared with TMDs induces in the flake a consist-
ent strain, which is detrimental for the optical properties of
the grown material.**>*>> Moreover, the orientation of the
flakes is completely random and therefore when coalescing
the film presents a high concentration of grain boundaries,
which is detrimental for the charge carrier mobilities.
Substituting amorphous SiO, with crystalline substrates, such
as sapphire, h-BN (Fig. 7(a)) or SrTiO3, it is possible to govern
the domain orientation and minimise the antiphase
boundaries.??>?°4*%>  Additionally the vdW surface of 2D
materials prevents the bonding between the film and the sub-
strate avoiding possible lattice mismatches and therefore the
presence of strain. It is also possible to engineer the nuclea-
tion via spincoating organic compounds (perylene-3,4,9,10-tet-
racarboxylic acid tetrapotassium salt, PTAS the most
common)*®” that lower the nucleation energy barrier and act
as nucleation promoters, as reported in Fig. 7(c and d). In this
way, it has been demonstrated the possibility of CVD of MoS,
over large area at a lower temperature ~650 °C compared to
conventional powder CVD.?® The substrate crystal lattice can
also be used to select the phase of 2D materials in case of poly-
morphism. A notable example is the lattice restructuring of
orthorhombic SnS into 1T-SnS, onto monolayer WS, that act
as templating substrate and that has the advantage of a dan-
gling bond-free and clean interface as represented in
Fig. 7(b) **° Similarly, 2D y-InSe can be grown selectively from
other layered stoichiometries and phases by vapor transport
starting from InSe powder.>®” Applying a moderate tempera-
ture gradient (500-600 °C) on the template substrate, which is
mechanically exfoliated e-GaSe, the separation of the desired
y-InSe in the coldest zone and the In,Se; polytypes in the
hottest one is achieved. Another notable example is the growth
of the non-vdW ferromagnetic Cr,S;, because Cr exists also in
+3 oxidation state and it forms rhombohedral Cr,S; as well as
1T-CrS,.>°*2%° In particular, the former was achieved by using
atomically smooth fluorophlogopite mica since SiO, yielded
mixed phases and an irregular morphology.*°%3%

This journal is © The Royal Society of Chemistry 2021
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Fig. 7 Substrate and environment influence on 2D materials. (a) Atomic
force microscopy (AFM) map of highly-oriented WSe, grown via
MOCVD on h-BN and relative orientation count.?°? Reproduced with
permission from ref. 202. Copyright 2019 American Chemical Society.
(b) Schematic that shows a WS, flake that templates the growth of
layered SnS, from SnS and S precursors.?%¢ Reproduced with permission
from ref. 286. Copyright 2019 American Chemical Society. (c and d)
Optical images and AFM maps of MoS, crystals grown with and without
the nucleation promoter PTAS.?®” Reproduced with permission from ref.
287. Copyright 2014 American Chemical Society. (e) Extremely fast
degradation of fewlayered Crls under atmosphere and focused light.288
Reproduced with permission from ref. 288. Copyright 2018 American
Chemical Society. (f) HRTEM micrograph that reports the visibly thick
oxide layer on multilayer FesGeTe,.28° Reproduced with permission from
ref. 289. Copyright 2019 IOP Publishing.

Encapsulation of 2D magnetic materials

A shared issue for the whole 2D materials is the degradation
under atmosphere via reaction with oxygen and moisture.>*?

This journal is © The Royal Society of Chemistry 2021
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Oxidation in atomically thin crystals has been demonstrated to
be extremely detrimental for optical and electronic properties
and poses an additional challenge for the future device
integration.?***°® 2D tellurides (MoTe, and WTe,) are particu-
larly sensitive to the environmental conditions where Te con-
verts into Te oxides after few hours after the synthesis.?*°~3%8
Similar phenomena has also been observed in 2D magnetically
active tellurides CrSi(Ge)Te; **° and Fe;GeTe,, whose oxidation
led to poorer magnetic properties in a multilayer sample
(Fig. 7(f)).*® Crl; undergoes an even more severe degradation
process, which is catalysed by ambient light and dissolves exfo-
liated crystals in a few minutes as seen in Fig. 7(e).>*® Several
possible strategies to overcome this important limitations have
been proposed, such as coating with polymers or encapsulat-
ing with air-stable thin films.*'® The encapsulation with h-BN
layers has proved to be a successful strategy for protecting 2D
materials, which also enables to improve charge carrier mobili-
ties®™* and light emission properties in MoS,.>'**"? Regarding
the synthesis of h-BN, several MOCVD papers have reported
the large-scale growth of mono- and fewlayers over different
metallic and inert substrates.>**'” Therefore, after the first
growth of the desired 2D magnet it may be possible to directly
deposit a protective layer of h-BN by switching precursors and
parameters in the same reactor. Additionally, the use of glove
boxes connected with the MOCVD chamber would enable to
preserve air and moisture sensitive material and to deposit
protective capping layer of different nature using different
deposition techniques.

Conclusions and outlook

van der Waals materials with magnetic ordering holds tremen-
dous interest for fundamental physics investigation and novel
device fabrication. Progress has been made in the understand-
ing of their fundamental properties and device demonstration
is at the early stages. We have described how pioneering work
have been based on exfoliated materials to understand mag-
netism and spin dynamics in 2D. We have emphasised how
materials grown in mono and few-layered form extended over
large areas will not only allow the systematic study of their pro-
perties but will also enable the direct integration in van der
Waals heterostructures for the fabrication of functional
devices. The integration of 2D magnets grown by CVD in func-
tional spintronics heterostructures can be foreseen to serve to
the emerging field of spintronics circuits. As the use of CVD
synthesis has revolutionised the investigation of graphene,
similarly MOCVD is enabling the advancement of 2D TMDs
devices. We envision that the wide range of 2D magnets can
also see a similar progress once MOCVD enables the achieve-
ment of large area atomically thin films. Here we have reviewed
the state of the art of the synthesis of metal halides, binary
and ternary metal tellurides, doped TMDs, and metal phos-
phochalcogenides. We have highlighted that CVT is the predo-
minant available synthesis route, which leads to the formation
of high-quality bulk crystals that then require to be microme-
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chanically exfoliated to be studied in the atomically thin form.
The only 2D magnetic materials that have been CVD grown in
the atomically thin form are V and Cr-based TMDs as well as
doped-TMDs. We have then identified potential precursors for
the main classes of 2D magnetic materials, and we have criti-
cally discussed their suitability for the MOCVD synthesis on
the bases of their physical properties, research and industrial
usage and safety. In specific, the precursor volatility is critical
as highly volatile compounds enable an efficient supply with
robust control. More efforts in this synthesis technique will be
required to see the field moving towards the construction of
different device architecture and materials assembly to explore
the potential of spintronic circuits. We believe that the estab-
lishment of a new platform for vdW atomically thin and mag-
netically ordered materials synthesis will provide exciting
opportunities for future data storage and communication
devices.
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