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ylation stereoselectivity using
machine learning†

Sooyeon Moon, ‡ab Sourav Chatterjee, ‡a Peter H. Seeberger ab

and Kerry Gilmore §*a

Predicting the stereochemical outcome of chemical reactions is challenging in mechanistically ambiguous

transformations. The stereoselectivity of glycosylation reactions is influenced by at least eleven factors

across four chemical participants and temperature. A random forest algorithm was trained using a highly

reproducible, concise dataset to accurately predict the stereoselective outcome of glycosylations. The

steric and electronic contributions of all chemical reagents and solvents were quantified by quantum

mechanical calculations. The trained model accurately predicts stereoselectivities for unseen

nucleophiles, electrophiles, acid catalyst, and solvents across a wide temperature range (overall root

mean square error 6.8%). All predictions were validated experimentally on a standardized microreactor

platform. The model helped to identify novel ways to control glycosylation stereoselectivity and

accurately predicts previously unknown means of stereocontrol. By quantifying the degree of influence

of each variable, we begin to gain a better general understanding of the transformation, for example that

environmental factors influence the stereoselectivity of glycosylations more than the coupling partners in

this area of chemical space.
Introduction

Predicting the outcome of an organic reaction generally
requires a detailed understanding of the steric and electronic
factors inuencing the potential energy1,2 surface3 and inter-
mediate(s).4 Quantum mechanical calculations have signi-
cantly increased our ability to identify and quantify these
factors. However, the correlation of these physical properties
with reaction outcome becomes exceedingly challenging with
each increase in dimensionality (e.g., additional reaction
participants, pathways). Layering onto this the additional and
oen subtle nuances impacting the regio- or stereoselectivity5 of
a reaction complicates proceedings.

Machine learning is a powerful tool for chemists6,7 to identify
patterns in complex datasets from composite libraries or high-
throughput experimentation.8 Chemical challenges including
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retrosynthesis,9 reaction performance10 and products,11,12 the
identication of new materials and catalysts,13–15 as well as
enantioselectivity16,17 have been addressed. However, a signi-
cant challenge is predictability of reactions involving SN1 or
SN1-type mechanisms18 in the absence of chiral catalysts/
ligands,19 due to the potentially unclear mechanistic pathways
resulting from the instability of the carbocationic
intermediate.16,17,20

Glycosylation is one of the most mechanistically complex
organic transformations,20–22 where an electrophile (donor),
upon activation with a Lewis or Brønsted–Lowry Acid, is coupled
to a nucleophile (acceptor) to form a C–O bond and a stereo-
genic center. This reaction involves numerous potential tran-
sient cationic intermediates and conformations and can
proceed via mechanistic pathways spanning SN1 to SN2.23 The
stereochemical outcome is determined by numerous perma-
nent (dened by the starting materials) or environmental
factors (dened by the selected conditions/catalyst) whose
degree of inuence, interdepency, and relevance is poorly
understood.20,24,25 A systematic assessment of these factors on
a ow platform allowed for the isolated interrogation of these
variables. The empirical study indicated general trends/
inuences of these factors (Fig. 1) and hypothesized their rela-
tive rankings with respect to dominance.24 However, a data
sciences approach is required to positively identify, quantify,
and apply this knowledge for the accurate prediction of ster-
eoselectivities of new coupling partners and conditions. While
transfer learning has been applied to machine learning models
Chem. Sci., 2021, 12, 2931–2939 | 2931
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Fig. 1 General representation of the potential mechanistic pathways of glycosylations leading to either the alpha (a) or beta (b) anomer of the
formed C–O bond. The empirically-derived permanent and environmental factors and their influence on stereoselectivity are provided.24
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for the prediction of selectivities of glycosylations (reported
between preprint and publication of this work), the stereo-
selectivity of couplings predicted were controlled by the C-2 acyl
protecting group that provide a well-established, highly repro-
ducible means of stereocontrol in these reactions.26
Results and discussion
Algorithm training and description of datasets

We have trained a random forest algorithm using a dataset of
glycosylation reactions with a variety of stereoselective
outcomes to accurately predict the stereoselectivity of new
glycosylations, varying coupling partners, acid catalyst,
solvents, and temperature (pS5–S9, Table 1 of ESI†). Regression-
based random forest algorithms have proven powerful in
modeling chemical reaction performance.10,27 This algorithm
generates several weakmodels in the form of decision trees. The
nodes of each of these decision trees are generated by random
shuffling of the descriptors in the training set. The nal model
is an “ensemble” of a combined weighted sum of decision trees,
representing a collective decision of all individual trees that
generate good predictions and reduces overtting. The learning
performance of the algorithm can be signicantly enhanced by
hyperparameter tuning (pS35 of ESI†).28 Due to the heteroge-
neous nature of the descriptors in this work (vide infra), each
tree was generated using the CART (classication and regres-
sion tree) algorithm with pruning, which does not require pre-
processing or normalization.29 An interaction–curvature
algorithm was further utilized to reduce the selection bias of the
split predictors of the standard CART algorithm (Fig. 2).

A set of numerical descriptors that accurately describe the
relevant steric and electronic parameters of all reaction partic-
ipants – starting materials, reagents, and solvent – is key to
building an accurate, extrapolatable model to predict the subtle
nuances of stereoselectivity. The concise nature of the training
set (268 data points, Table S1 (pS5–S9), ESI†)30,31 renders
2932 | Chem. Sci., 2021, 12, 2931–2939
manual selection of descriptors – quantifying sterics/electronics
– using chemical intuition32 particularly important.33

The training dataset is a lightly modied version of the
dataset presented in our previous work,24 removing two subsets
of data (variance of the residence time and nucleophile equiv-
alents) and adding data for b-glucose electrophile (pS6, lines
68–74 and 101–106 of Table S1, ESI†) and three additional
solvents (pS9, lines 238–268 of Table S1, ESI†). Two holdout
datasets were experimentally generated (HD1, HD2). The rst
was comprised of new electrophiles, nucleophiles, acid cata-
lysts, and solvents. Holdout dataset 2 was comprised of exam-
ples probing the inuence of electrophile leaving group
stereochemistry.

Descriptor generation

Structures of all starting compounds were optimized, and DFT
calculations performed at the B3LYP 6-31G(d) or B3LYP 6-
311G(d) levels of theory using SPARTAN (pS37–S49 of ESI†). The
lower level of theory was utilized for optimization of the elec-
trophile molecules due to their size, and the values obtained
were acceptable compared to those obtained at the more
computationally expensive 6-311G(d) level of theory. The
maximum number of potential descriptors per model was set to
18 to avoid overtting by keeping the ratio of data-
points : descriptors >10 : 1.34,35 The best-performing descriptors
for each participant class were determined by the accuracy of
the resultant trained models in predicting stereoselectivities of
the relevant portions of holdout dataset 1 (e.g. determining the
accuracy of predicting the novel electrophiles in HD1 with
systematic screening of electrophile descriptors). Ten descrip-
tors were identied that, along with temperature, allow for the
assignment of quantied values to the relevant steric/electronic
properties of the chemicals involved.

The identied descriptors, described below (see potential
descriptors excel sheet for a list of all descriptors screened), are
either classied as regressors (intra-/extrapolatable values) or
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 General workflow of the process from data input to prediction
output.
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categorical (binary values). While the model can be developed
solely using regressor values, it exhibits marginally poorer
overall accuracy for holdout dataset 1 and necessitates addi-
tional calculations (vide infra). The ability to interchange
descriptors will facilitate the expansion of the developed model
into adjacent or similar chemical subspaces as well as for multi-
stage predictive algorithms, designing both reagents and envi-
ronmental conditions to maximize the stereoselectivity of the
desired transformation.

The key parameters needed to describe the electrophile were
differences in the reactivity of the anomeric position and the
orientations of the pyran ring substituents that may inuence
the selectivity through both conformational preferences36 and
© 2021 The Author(s). Published by the Royal Society of Chemistry
hyperconjugative interactions.37,38 The different leaving groups
at the anomeric position were distinguished using the calcu-
lated 13C NMR chemical shi,39 which provided more clear
distinctions between leaving groups than the 1H NMR shi40 of
the anomeric proton. The relative orientations of the ether
moieties around the pyran presented a challenge for descriptor
selection, as our model performed well with both regressor and
categorial descriptors. The accuracies of the three best per-
forming descriptors (proton J-couplings around the ring, dihe-
dral angles of the C–O bonds, and treating the relative axial/
equatorial orientations of the substituents as binary) are
shown in Fig. 3. The binary classication is the most accurate
and represents the simplest descriptor, and the loss of
additional/more nuanced information provided by regressor
values – e.g. the inuence and nature of the leaving groups – is,
at present, acceptable.

Observed nucleophile reactivity has been correlated with
a range of parameters.41–43 Where available, Mayr's nucleophi-
licity and eld inductive parameters correlate with glycosylation
stereoselectivity.44 To ensure general applicability, the 17O NMR
chemical shi of the oxygen nucleophile was calculated to
capture the relevant hyperconjugative inuences. The steric
environment of the nucleophile was described by the exposed
surface areas of the oxygen and a-carbon in a space-lling
model (Fig. 4). While screening whether simple categorical
descriptors can be utilized, specically the whole values 0–3 to
describe the substitution at the a-carbon (as opposed to the
exposed surface area), we found that the regressor value proved
superior (see ESI†).

The chosen environmental conditions – solvent, acid cata-
lyst, and temperature – are even more inuential on the ster-
eoselectivity than the intrinsic properties of the nucleophile and
electrophile (vide infra). While regressor values for similar
species have been calculated previously, the identication of the
descriptors for acid catalysts relevant to this transformation was
critical. The conjugate base of the acid catalyst has a signicant
impact on glycosylation stereoselectivity,45 as evidenced by
several studies observing an a-triate intermediate20,46 – the
product of the conjugate base trapping the oxycarbenium ion.47

Two values were identied that capture the nuanced role of this
species (Fig. 5a): the HOMO energy value of the conjugate base
and the exposed surface area of the oxygen or nitrogen anion in
a space-lling model.

While the inuence of the solvent in glycosylations48,49 has
been categorized by polarity and donicity (coordinating ability)
values,20 donicities are experimentally derived values and only
available for select solvents. The calculated minimum and
maximum electrostatic potentials describe the ability of the
solvent to stabilize and interact with charged intermediates
(Fig. 5b). These descriptors perform well, such that even previ-
ously unreported means of solvent-control over stereoselectivity
are accurately predicted (vide infra).
Model training and algorithm comparison

The tuned random forest algorithm was trained using these
descriptors on the training dataset24 containing systematic
Chem. Sci., 2021, 12, 2931–2939 | 2933
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Fig. 3 (a) Three potential means of describing the stereochemistry of the ether groups around the pyran core. (b) Parity plot of the resultant
models using each set of descriptors for the electrophile (all also including the calculated 13C NMR shift of C1). Predictions weremade of holdout
dataset 1. (c) Three-dimensional map of the electrophile chemical subspace covered by the developed model, defined by the orientation of the
C2 and C4 substituents on the pyran ring and the calculated 13C NMR shift of C1. Glc – glucose, Gal – galactose, Man – mannose, Bn – benzyl,
TCA – trichloroacetimidate, SEt – ethylthio.

Fig. 4 Three-dimensional map of the nucleophile chemical subspace
covered by the developed model, defined by the exposed surface
areas of the nucleophilic oxygen and the carbon alpha to the nucle-
ophile, as well as the calculated 17O NMR shift. MeOH – methanol,
EtOH– ethanol, iPrOH– isopropanol, tBuOH– tert-butanol, 2F-EtOH
– 2,2-difluoroethanol, 3F-EtOH – 2,2,2-trifluoroethanol.

2934 | Chem. Sci., 2021, 12, 2931–2939
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combinations of seven electrophiles, six nucleophiles, four acid
catalysts, and seven solvents over a solvent-dependent temper-
ature range of �50 to +100 �C (pS5–S9, Table S1, ESI†). For
comparison, three additional models were trained using
Gaussian process regression (GPR), support vector machine
(SVM), and regression tree (RT) algorithms. While for some
specic predictions different algorithms would have lower
RMSEs, random forest (RF) proved superior. The average RMSE
of the four models were: RF – 5.9%, RT – 11%, GPR – 7.9%, SVM
– 10%. In general terms, RT tended to overestimate the prefer-
ence for beta-product formation at low temperatures, GPR
captured the trend of stereoselectivity change with respect to
temperature but lacked precision, and SVM oen predicted no
inuence of temperature yielding a racemic mixture of products
(see pages S14–S28 of the ESI†).

The trained RF model was then used to predict the stereo-
selectivities of the entirety of holdout dataset 1, containing
unseen variants of each of the four chemical species in the
reaction over the accessible temperature ranges (dened by the
solvent and reactor). Holdout dataset 1 (see holdout dataset 1
excel sheet of ESI†) was generated using the same reproducible
microreactor platform24 as the training dataset. The results of
these predictions, as compared to the experimentally observed
selectivities, are presented as the percentage of alpha product
formed versus temperature. The corresponding parity plots for
each are also provided (Fig. 6).

Validation of descriptors and prediction accuracy of holdout
dataset 1

The selectivity of electrophiles bearing phosphate leaving
groups is accurately predicted to be similar24 to those of glycosyl
imidates and thioethers for glucose, galactose, and mannose
electrophiles, with a combined root mean square error (RMSE)
of 2.0 (Fig. 6a). The model can be applied to other pyran cores,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Plot of the descriptors used to quantify the relevant factors of the conjugate base of the activator. Area (�A2) corresponds to the exposed
surface area of the oxygen (O�) or nitrogen anion (N�) in a space-filling model. HOMO: highest occupied molecular orbital (eV). (b) Plot of the
descriptors used to quantify the relevant factors of the solvent, the maximum (MaxElPot), and minimum (MinElPot) values of the electrostatic
potential (kJ mol�1). Tf2NH – bis(trifluoromethane)sulfonamide, TfOH – trifluoromethanesulfonic acid, FSO3H – fluorosulfonic acid, MsOH –
methanesulfonic acid, DCM– dichloromethane, CHCl3– chloroform, tBu-benzene– tert-butylbenzene, MTBE–methyl tert-butyl ether, ACN–
acetonitrile.
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such as L-fucose.50 The predicted stereoselectivity of the fucose
a-glycosyl imidate electrophile with isopropanol matches well
with the experimental data (RMSE: 5.0), favoring the b-anomer
at low temperatures and exhibiting a decrease in stereo-
selectivity with an increase in temperature (Fig. 6b).

While the training dataset contains only simple alkyl alco-
hols as nucleophiles, the model accurately predicts the stereo-
selectivities of disaccharide formation. The predicted values for
the coupling of a-galactose imidate with both glucose and
mannose C6 alcohols matches well with the experimental data,
albeit predicting a less a-selective process than observed
(RMSE: 6.9 and 4.2, Fig. 6d and e, respectively).

The model predicts more a-selective processes than experi-
mentally observed in glycosylations using superacid 4,4,5,5,6,6-
hexauoro-1,3,2-dithiazinane-1,1,3,3-tetraoxide (C3F6S2O4NH)
as acid catalyst. This deviation is seen at lower temperatures
with galactose, however, the trend is correct and has a low
RMSE (5.5, Fig. 6g). The weakest correlation of our model is
observed for the C3F6S2O4NH-activated mannose coupling with
tert-butanol in DCM (RMSE: 19.3). Here, a stereoselective
plateau is predicted at low temperatures with a-selectivity
around 60% – as was observed experimentally for other activa-
tors with mannose.24 However, experimentally the b-man-
nosylation product is mainly formed at low temperatures
(�50 �C, 63% b-product). This nding is highly unexpected as b-
mannosylation is challenging, generally requiring locked elec-
trophile congurations.21 With C3F6S2O4NH, the perbenzylated
electrophile ranges from a 63% b-selectivity at �50 �C to 98% a-
selectivity at 30 �C (Fig. 6h).

Finally, the stereoselectivities of glucose and galactose a-
imidate electrophiles with isopropanol were predicted for two
new solvents (Fig. 6j and k). The strong inuence of solvent48,51

on the stereoselectivity of glycosylations is nicely captured by
the descriptors chosen, and the model is accurate across a wide
temperature range for both a,a,a-triuorotoluene (RMSE: 6.2)
and 1,4-dioxane (RMSE: 4.5).
© 2021 The Author(s). Published by the Royal Society of Chemistry
Model validation of unreported inuences on stereoselectivity
(holdout dataset 2)

While the descriptors were chosen based on the current
understanding of glycosylations, we wondered whether the
model could also navigate newly discovered mechanistic pecu-
liarities that inuence stereoselectivity. One factor that is
generally not considered signicant while performing glyco-
sylations is the orientation of the anomeric leaving group.52,53

No inuence of the a/b-orientation of the leaving group in
dichloromethane was reported (Fig. 7a),24 and divergences in
stereoselectivity based on this factor have sparingly been
observed in the literature, e.g., when phenylsilicon triuoride
(PhSiF3) is used as a catalyst.54

The ability to use solvent to turn on and off the inuence of
leaving group orientation on glycosylation stereoselectivity has, to
the best of our knowledge, not previously been reported. While
essentially identical behavior is observed inDCM and chloroform,
a slight divergence in MTBE at low temperatures is observed, with
an 11%difference at�50 �Cwhere the b-electrophile reaches 96%
a-selectivity. This variable becomes important in toluene. Glucose
b-imidate electrophile yields almost unchanged stereoselectivity
(�60% alpha) over a 120 �C range! The orientation of the leaving
group of the electrophile inuences the stereoselectivity by more
than 40% at �50 �C (Fig. 7b).

With this limited data in our training dataset (Fig. 7a and b),
we tested the ability of our model to predict the inuence of
other factors on this to-date unreported phenomenon in
holdout dataset 2, whose experimental values were obtained on
the same microreactor platform as TD and HD1 (see holdout
dataset 2 excel sheet of ESI†). The stereoselectivity of glucose a-
imidate with ethanol as nucleophile ranges from 10–54% a-
product in toluene. The model predicts that the b-electrophile
will behave differently, with a much less selective coupling
overall (37–56% a-product) and a 27% difference in selectivity at
low temperature compared to the a-electrophile. This predic-
tion matches well with the experimental results, with an RMSE
Chem. Sci., 2021, 12, 2931–2939 | 2935
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Fig. 6 Prediction of stereoselectivity for glycosylations using different anomeric leaving groups, electrophiles, nucleophiles, activators, and solvents.
Descriptors used were: electrophile (C1: 13C NMR shift, C2: stereochemistry axial¼ 1 or equatorial¼ 0, C4: stereochemistry axial¼ 1 or equatorial¼
0), nucleophile (O: 17O NMR shift, O: exposed surface area, aC: exposed surface area), acid catalyst (A�: HOMO energy, A�: exposed surface area),
solvent (minimum electrostatic potential, maximum electrostatic potential), and temperature (�50 to 100 �C). (a) Prediction of stereoselectivity for
glycosylations involving a glycosyl phosphate leaving group. Bu – butyl, Ph – phenyl, RMSE – root mean square error. TMSOTf was used as acid
catalyst, which has the same descriptors as TfOH. (b) Prediction of stereoselectivity using a fucose (Fuc) electrophile with iPrOH in DCM. (c) Parity
plot of electrophile (electrophile) predictions. (d and e) Prediction of mannose and glucose nucleophile, respectively, with galactose a-imidate
electrophile in DCM. (f) Parity plot of nucleophile (nucleophile) predictions. (g) Prediction of 4,4,5,5,6,6-hexafluoro-1,3,2-dithiazinane 1,1,3,3-tet-
raoxide (C3F6S2O4NH) activator with galactose electrophile and tBuOH nucleophile in DCM. (h) Prediction of C3F6S2O4NH with mannose elec-
trophile and iPrOH in DCM. (i) Parity plot of activator (acid catalyst) predictions. (j) Prediction of a,a,a-trifluorotoluene (3F-toluene) solvent with
glucose a-imidate electrophile and iPrOH. (k) Prediction of 1,4-dioxane solvent with galactose a-imidate electrophile and iPrOH. (l) Parity plot of
solvent predictions. Figure code: fucose (A); glucose (:); galactose (-); mannose (C); experimental (data points); predicted (solid colored line).

2936 | Chem. Sci., 2021, 12, 2931–2939 © 2021 The Author(s). Published by the Royal Society of Chemistry

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
K

ax
xa

 G
ar

ab
lu

 2
02

0.
 D

ow
nl

oa
de

d 
on

 2
4/

07
/2

02
5 

2:
53

:3
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sc06222g


Fig. 7 Prediction of novel mechanistic controls of glycosylation reactions using holdout dataset 2, with experimental data shown as points and
predicted data shown as lines. The relevant experimental data for the a-electrophiles can be found in Table S1 of the ESI.† (a) Experimental results
of coupling a/b-glucose electrophiles with iPrOH (Glc1a and Glc1b) in DCM and CHCl3. (b) Experimental results of coupling a/b-glucose
electrophiles with iPrOH (Glc1a and Glc1b) in toluene, and MTBE. (c) Prediction and experimental results of b-glucose electrophile (Glc1b) with
EtOH in toluene. (d) Prediction and experimental results of b-glucose electrophile (Glc1b) with tBuOH in toluene. (e) Parity plot of EtOH and t-
BuOH nucleophile predictions with the b-glucose electrophile. (f and g) Prediction and experimental results of b-galactose electrophile (Gal1b)
with iPrOH in DCM and toluene, respectively. (h) Parity plot for DCM and toluene solvent predictions of the b-galactose electrophile with iPrOH.
Figure code: Glc1a (:); Glc1b (+); EtOH (⬣); tBuOH (;); DCM (1); toluene (-); experimental values (data points) and predicted values (solid
colored lines).
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of 4.4 over the 120 �C range (Fig. 7c). The model predicts a less
a-selective reaction at low temperatures than observed with t-
BuOH as nucleophile (similar to what is observed using the a-
electrophile, pS6, lines 82–88 of Table S1, ESI†), though at
higher temperatures, the prediction matches well with experi-
mental values (RMSE: 6.4, Fig. 7d).

Lastly, we sought to explore whether this additional mech-
anistic complexity exists for other electrophiles (Fig. 7f and g).
In DCM, the coupling of a-galactose with isopropanol moder-
ately favors the formation of the b-product (19–51% a-product
from �50 to 30 �C, (pS7, lines 119–124, of ESI†)). The model
predicts that the b-galactose electrophiles will give similar a-
selectivity in DCM over the 80 �C temperature range (24–49% a-
product), matching experimental results (RMSE 3.1, Fig. 7f). In
toluene, the a-galactose electrophile exhibits a wide range of
selectivities with isopropanol, from 10–69% a-product across
the 130 �C range (pS7, lines 142–148, of ESI†). The model
predicts a slight divergence (15%) in stereoselectivity at low
temperatures when the b-galactose electrophile is used (25–64%
a-product, �50 to 70 �C), though not as large as what is
observed with b-glucose. This prediction again aligns with
experimental results (RMSE: 3.7, Fig. 7g). Overall, the model
correctly predicts the previously unknown ability to turn on and
off the inuence of the electrophile leaving group's orientation
using solvents under otherwise identical conditions. We
hypothesize the decrease of stereoselectivities for b-electro-
philes when using toluene may result from an increase in the
SN1-type pathways. The p-system of the solvent can more easily
induce solvolysis of the more planar equatorial leaving group
from both faces (as compared to the axial orientation), leading
to an accessible oxonium ion instead of an a-triate interme-
diate. Additional detailed mechanistic studies are required to
discern the degree and nature of mechanistic control.
Overall inuences of permanent and environmental factors
on stereoselectivity

Random forest algorithms can quantify the inuence of the
variables within the model. Thus, values can be assigned to the
Fig. 8 Degree of influence of the eleven factors (defined and
described above) influencing the stereoselectivity of glycosylations,
rounded to the nearest whole number.

2938 | Chem. Sci., 2021, 12, 2931–2939
identied factors inuencing the stereoselectivity of a reaction
(Fig. 8), allowing for some cautious generalizations to be made.
In the chemical subspaces covered by our model, 47% of the
inuence over a glycosylation's stereoselectivity is determined
by the inherent properties of the coupling partners. The elec-
trophile (27%) is more impactful than the nucleophile (20%).
Upon selection of the coupling partners, more than half of the
stereoselectivity observed is controlled by the environmental
conditions chosen. The most important environmental factors
are the solvent (27%) and the reaction temperature (19%).

Conclusion

A concise training dataset generated on a continuous ow
platform was utilized to train a random forest algorithm to
predict the stereoselectivity of glycosylations as an example for
complex, mechanistically uid transformations. Calculated
descriptors were screened and assigned to quantify the indi-
vidual inuencing factors of the coupling partners, active
species, and solvent. The predictions of glycosylation stereo-
selectivities were made of two holdout datasets – testing
nucleophiles, electrophiles, catalyst, solvents, and temperature
– containing data obtained experimentally on a microreactor
platform. The model is highly accurate (overall RMSE: 6.8) in
the chemical subspaces explored. Further, the model accurately
predicts a previously unknown means of controlling glycosyla-
tion stereoselectivity. The approach will be applicable to better
understand the stereoselectivity of other transformations based
on reactions of nucleophiles and electrophiles.
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