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zation of intrinsic defects in
monolayer ReSe2 on graphene†

Nguyen Huu Lam,‡a Jae-Hyeok Ko, ‡b Byoung Ki Choi,‡cd Trinh Thi Ly,aef

Giyeok Lee, b Kyuha Jang,g Young Jun Chang, *dh Aloysius Soon *b

and Jungdae Kim *a

Understanding the characteristics of intrinsic defects in crystals is of great interest in many fields, from

fundamental physics to applied materials science. Combined investigations of scanning tunneling

microscopy/spectroscopy (STM/S) and density functional theory (DFT) are conducted to understand the

nature of Se vacancy defects in monolayer (ML) ReSe2 grown on a graphene substrate. Among four

possible Se vacancy sites, we identify the Se4 vacancy close to the Re layer by registry between STM

topography and DFT simulated images. The Se4 vacancy is also thermodynamically favored in formation

energy calculations, supporting its common observation via STM. dI/dV spectroscopy shows that the Se4

vacancy has a defect state at around −1.0 V, near the valence band maximum (EVBM). DOS calculations

done for all four Se vacancies indicate that only the Se4 vacancy presents such a defect state near EVBM,

confirming experimental observations. Our work provides valuable insights into the behavior of ML

ReSe2/graphene heterojunctions containing naturally occurring Se vacancies, which may have strong

implications in electronic device applications.
Introduction

Two-dimensional (2D) transition metal dichalcogenides
(TMDCs) have been heavily investigated for fundamental
studies of novel physical phenomena and applications in elec-
tronics and optoelectronics.1–3 In contrast to most high-
symmetry hexagonal TMDCs, rhenium diselenide (ReSe2) has
a distorted 1T (1T′) structure with a triclinic symmetry that gives
rise to anisotropic electrical and optical properties. Various
potential applications utilizing the anisotropic properties of
ReSe2 have been suggested for polarization-sensitive detectors,
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polarization controllers, and liquid crystal displays.4–8 ReSe2 is
also recognized as a promising material for 2D heterostructure
devices, including electrically controlled non-volatile memory
with continuous data storage states, lter-free imaging systems
with low consumption, and light-mediated memory with a full-
visible spectrum range.9–11

Defects, i.e., interruptions of the regular periodicity in crys-
tals, play an essential role in determining the physical proper-
ties of a solid state system.12–14 Understanding the nature of
intrinsic defects favored by thermodynamics is always an
important subject in fundamental physics and applied mate-
rials science. Defect engineering is a common practice in
materials science, enabling the functionalization and
improvement of material properties.15 In low-dimensional
systems, defects are expected to have a more signicant
impact on the electronic properties, as compared to bulk
systems. For instance, various properties of two-dimensional
TMDCs, such as the carrier mobility,16–18 thermal
conductivity,19–22 catalysis,23–26 quantum emission,27 and optical
interactions,28–30 are strongly affected by defects. Among various
types of defects, identifying thermodynamically favored defects
and understanding their impacts on the band structure prop-
erties provide critical guidance for engineering the 2D func-
tionalities through the defect engineering. Recent studies on
the 1T′ ReSe2 surfaces using scanning transmission electron
microscopy (STEM) have demonstrated that Se vacancies are
generated due to the electron beams used in STEM measure-
ment. These vacancies appear at four different sites with diverse
Nanoscale Adv., 2023, 5, 5513–5519 | 5513
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densities.31 The STEM results can be explained by calculated
formation energy of those Se vacancies. Density of states (DOS)
proles have also been calculated for these Se vacancies.
However, experimental conrmation of how the Se vacancies
affect the electronic structures of ReSe2 is still unsettled.
Furthermore, the nature of intrinsic defects present on the as-
grown ReSe2 surface has not been fully investigated yet.
Further comprehensive studies focusing on the intrinsic defects
in ReSe2 are crucial for establishing a deeper understanding of
a wide range of electronic and optoelectronic applications of
related semiconducting TMDCs.

Here, defect characteristics in monolayer (ML) ReSe2 on
a graphene substrate is investigated using scanning tunneling
microscopy/spectroscopy (STM/S). To complement our high-
resolution STM experiments, state-of-the-art STM modeling
that goes beyond the simplied Tersoff–Hamann (TH) approx-
imation is conducted to precisely explain the atomic/electronic
structure of Se vacancies on the ReSe2 surface. This integrated
STM approach allows us to unquestionably provide the accurate
atomistic surface model (with the accompanying electronic
structure) of Se vacancies on ReSe2. Possible Se vacancies are
classied into four different sites based on their vertical height.
The combination of STM topography and DFT simulated
images provides compelling evidence for the intrinsic existence
of the Se4 vacancy among four different Se vacancies on the
monolayer ReSe2 surface. The calculated formation energy for
all Se vacancies further conrms the thermodynamic preference
for the Se4 vacancy, which aligns with the observations made in
STM. Interestingly, dI/dV spectroscopy directly reveals the
presence of a defect state associated with the Se4 vacancy
around −1.0 V near the valence band maximum (EVBM). This
experimental nding is supported by our calculations, demon-
strating that only the Se4 vacancy exhibits the defect state close
to the EVBM. Moreover, the STM topograph obtained at −1.0 V
exhibits prominent bright protrusions surrounding the Se4
vacancy, indicative of the spatially extended nature of the defect
state associated with this vacancy. These comprehensive results
genuinely capture the distinctive characteristics of intrinsic
defects, which hold important implications for potential defect
engineering and optoelectronic applications.

Experimental
Sample preparation

All the ReSe2 lms were prepared using a home-built molecular
beam epitaxy (MBE) set-up with a base pressure of 1 × 10−10

Torr. 4H-SiC (0001) single crystal substrates were provided by
the Crystal Bank at Pusan National University. In ultra-high
vacuum, bilayer graphene substrates were prepared on silicon-
terminated SiC surfaces via multiple cycles of high-
temperature annealing at 1300 °C for 2 min. High-purity
rhenium (99.97%) and selenium (99.999%) were evaporated
using an e-beam evaporator and an effusion cell, respectively.
The substrate temperature was kept at 250 °C for 10 min to
achieve a monolayer thickness and then post-annealed at 420 °
C for 30 min while monitoring in situ reective high-energy
electron diffraction (RHEED) patterns at 18 kV. For STM
5514 | Nanoscale Adv., 2023, 5, 5513–5519
experiments, the as-grown lms were covered with an amor-
phous selenium layer at room temperature for surface protec-
tion. The samples were then heated to 480 K in ultra-high
vacuum to remove the capping layer prior to the STM
measurements.
Scanning tunneling microscopy/spectroscopy measurements

The STM/S measurements were conducted at 79 K in an ultra-
high vacuum chamber (∼7 × 10−11 Torr) by using a low-
temperature, home-built STM set-up.32 The STM topography
images were obtained in the constant-current mode with a bias
voltage applied to the sample. Electrochemically etched tung-
sten tips were cleaned in situ by electron beam heating. The
differential conductance (dI/dV) spectra were acquired by
a standard lock-in technique with a modulation voltage of
10 mV at a frequency of 1.2 kHz.
Theoretical studies

All rst-principles calculations in this work are performed with
density-functional theory (DFT), as implemented in the Vienna
Ab Initio Simulation Package (VASP).33,34 The ion–electron
interactions are treated within the projector augmented wave
formalism where the Kohn–Sham orbitals are expanded using
a planewave basis. The same computational set-up for this work
follows ref. 35. The kinetic cutoff for the planewave expansion is
taken to be 500 eV. The self-consistent van der Waals exchange–
correlation functional (optB86b)36 is used to compute the total
energies and forces in this work, and a G-centered k-point grid
of 6 × 6 × 1 is employed for Brillouin zone integrations. The
HSE06 hybrid functional37,38 with G-centered k-point grid of 3 ×

3 × 1 is used for a more accurate description of the electronic
structure with single-point calculations on pre-optimized
structures, namely the partial DOS and STM topographies.
The specic convergence criteria are set as 10−5 eV and 10−2 eV
Å−1 for the total energies and forces, respectively. For more
detailed information about the computational set-up used in
this work, we refer the readers to ref. 35. For the simulated STM
visualization, an in-house Python-based code is used to plot the
simulated STM topologies. In particular, the simulated STM
topologies are derived from rst-principles where the tunneling
matrix between the sample and the tip are taken in to account
explicitly.39–41

To address the thermodynamic stability of Se vacancy sites
on ReSe2, we dene the formation energy of these Se vacancies:

DEf
D = EV

D
Se − Esys + Ebulk

Se

Here, EVDSe, Esys, and EbulkSe are the total DFT energies for the
ReSe2/graphene system with an Se vacancy, the pristine ReSe2/
graphene system, and the bulk Se (per atom), respectively.
Results and discussion

The 1T′ structure of ML ReSe2 on a graphene substrate is shown
in Fig. 1a and b. In the side view (Fig. 1a), ReSe2 consists of
a distorted hexagonal layer of Re atoms sandwiched between
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Monolayer (ML) ReSe2 on a graphene substrate. (a and b) The side- and top-view structures of ML ReSe2. The Se atoms in the topmost
layer are classified into Se1 (green), Se2 (orange), Se3 (blue), and Se4 (red) based on their height along the c-axis. The Re-chain is indicated by red
solid lines in (b). (c) The STM topography image of ReSe2 shows the oval feature with a lattice constant of ∼6.6 Å (It = 30 pA).
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two corrugated Se layers. Unlike 1T hexagonal TMDCs, the Se
atoms in ReSe2 are not located in the same plane due to the
distorted Re layer.5,42,43 Based on the height along the c-axis, the
Se atoms in the top layer can be classied into Se1, Se2, Se3, and
Se4, which are marked by green, orange, blue, and red colors in
Fig. 1a and b, respectively. Se1 is located at the highest position
followed by Se2 and Se3, and the closest one to the middle Re
layer is Se4. The strongly distorted Re atoms present a diamond
chain structure (red solid lines) in Fig. 1b (further details of the
atomic structures for the pristine and defect-containing ReSe2/
graphene systems are found in ESI Fig. S1†). Such lattice
distortions give rise to in-plane anisotropy, leading to the
unique optical and electrical properties in ReSe2.4,6,8 The
atomistic features of ReSe2 with a triangular unit cell are ob-
tained in the STM topography image in Fig. 1c. The bright
protrusions (oval shape) of the hexagonal feature are mainly
related to both Re diamond chains and nearby top Se atoms.35

Fig. 2a shows an STM topography of ReSe2 lms grown on
bilayer graphene (BLG). We could observe defect features on
ReSe2 surfaces, which appear as local depression indicated by
a box in Fig. 2b. Fig. 2c shows an atomistic image taken from
the box area in Fig. 2b. In the defect region (black dashed
circle), one oval spot (at the center of the dashed circle) shows
a slightly suppressed contrast with a dark hole defect at its le
side (marked by a red triangle). The marked hole defect is
located at the Se4 site and identied as an Se4 vacancy. This
observation is further corroborated by the DFT-simulated STM
image of an Se4 vacancy (diamond-shaped inset of Fig. 2c). The
© 2023 The Author(s). Published by the Royal Society of Chemistry
simulated image accurately reproduces the hole-like feature
and location of the observed Se4 vacancy in the STM image.
Detail line proles along the Se4 vacancy are provided in ESI
Fig. S2.† More STM image examples of Se4 vacancies are also
available in Fig. S3† (supported by rst-principles DFT/HSE06
STM simulations in Fig. S4†). The formation energy of all Se
vacancies is calculated in Fig. 2d, conrming that the Se4
vacancy observed via STM is indeed energetically favored
(0.66 eV per vacancy). Our calculated results are in line with
previous DFT calculations.31 Understanding how this intrinsic
defect of Se4 vacancy inuences the electronic properties of ML
ReSe2 is important for potential applications. Therefore, direct
experimental observations of the defect state of Se4 vacancy are
essential for this purpose.

Fig. 3a shows dI/dV spectra measured at the Se4 defect site
and the defect-free area in the inset image marked by red and
black crosses, respectively. The dI/dV spectrum taken from the
defect-free area (black curve) shows a bandgap of ∼1.7 eV with
a valence band maximum (EVBM) ∼−1.2 eV and conduction
band minimum (ECBM) ∼0.5 eV, which are in agreement with
a previous report.44 In comparison, our HSE06-calculated
bandgap of monolayer ReSe2 (1.83 eV) also agrees well to the
experimental value of 1.7 eV and aligns with the reported HSE06
and G0W0 values of 1.62 eV (ref. 45) and 2.09 eV (ref. 5). On the
other hand, at the Se4 vacancy, the dI/dV spectrum (red curve)
reveals a defect state peak at around −1.0 V near EVBM (indi-
cated by a red arrow).
Nanoscale Adv., 2023, 5, 5513–5519 | 5515
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Fig. 2 Se4 vacancy in ML ReSe2. (a) STM image of ReSe2 film grown on bilayer graphene (BLG) (Vb= 1.0 V, It= 30 pA). (b) STM image shows some
defect feature with a suppressed contrast (marked by a black box) (Vb = 1.0 V, It = 30 pA). (c) Atomistic STM image of an Se4 vacancy. The Se4
vacancy is indicated by the red triangle inside the defect region (black dashed circle). The diamond-shaped inset in (c) is a HSE06 DFT simulation
image of an Se4 vacancy. (d) Formation energy of all Se vacancies based on optB86b DFT total energy calculations.
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To further examine Se vacancies and their electronic struc-
tures, the DFT calculated density of states (DOS) for all four
kinds of Se vacancies (namely, VSe1, VSe2, VSe3, and VSe4; see
Fig. 1) are presented in Fig. 3b. It is obvious that the valence and
conduction band edges are signicantly modied with these Se
vacancies when compared to pristine ReSe2/graphene (black
curve). Besides the thermodynamic considerations (where VSe4

has the lowest formation energy), only VSe4 presents a defect
state near the valence band edge (red arrow in Fig. 3b) while
VSe1,2 and VSe3 exhibit multiple in-gap states within the band
gap and a defect state around the middle of band gap, respec-
tively. From our DFT partial DOS calculations (see Fig. S5†), the
defect state in VSe4 near the valence band edge is largely
contributed from the occupied 5d states of the under-
coordinated Re atom neighboring the VSe4 defect. For the in-gap
states observed in the other Se vacancies, they correspond
mainly to the unoccupied dangling bond 5d states of the
neighboring undercoordinated Re atoms as seen in the partial
DOS in Fig. S5.† Additionally, the HSE06 theoretical STM
images presented in Fig. S6† conclusively exclude the stable O-
and S-substituents at the VSe1 site (which was proposed in ref.
31) due to the mismatch in their STM topographical contrast.
5516 | Nanoscale Adv., 2023, 5, 5513–5519
To aid the reader, the O- and S-substituted ReSe2 structures are
provided in Fig. S7.† Referring to Fig. 3b for VSe4, an additional
peak (denoted by a red arrow) is observed near the valence band
edge, while the conduction band edge is virtually unaffected;
this corroborates our experimental STS results (Fig. 3a). Thus,
we conclude that the most likely Se vacancies found on our
samples are due to VSe4. In passing, we would also like to
highlight that the role of the graphene substrate acts as
a conductive support to the ReSe2 layer (Fig. S8†). As reported in
our previous work,35 graphene facilitates the donation of
charges through the vdW gap and results in the so-called
compressed/trapped charges within the vdW gap. This allows
one to image the topologies of the graphene-donated in-gap
states of ReSe2 as evidenced in ref. 35. In addition, in order to
accurately describe the electronic structure of the hetero-
structure interface, one will need to go beyond DFT and utilize
higher-level theories (e.g. using the GW approximation46,47)
where the image charge screening may signicantly renorm-
alize the bandgap of the 2D material. This is currently beyond
the scope of this work.

The spatially extended defect state of the Se4 vacancy is also
directly observed in STM topographs. Fig. 4a and b present STM
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The defect state of the Se4 vacancy. (a) dI/dV spectra were measured at the Se4 defect site (red curve) and defect-free area (black curve).
The inset shows an STM image where STS measurements were taken (color coded). The Se4 vacancy is indicated by the red triangle. (b) The
partial density of states (pDOS) was calculated based on the DFT HSE06 functional for different upper Se vacancies and pristine ReSe2; the green,
orange, blue, red, and black curves correspond to the pDOS of Se1, Se2, Se3 and Se4 vacancies and pristine ReSe2, respectively.
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images of an Se4 vacancy taken at +1.0 V (conduction band
region) and −1.0 V (defect state level), respectively. The defect
area (marked by the dashed circle in Fig. 4b) reveals very bright
protrusion at −1.0 V, while a deeply sunken region with a dark
contrast appears at +1.0 V in the corresponding defect area
(Fig. 4a).

In essence, via a close collaboration between high-resolution
STM/STS experiments and advanced DFT-based STM modeling
Fig. 4 The spatially extended defect state of an Se4 vacancy. STM images
(defect state level).

© 2023 The Author(s). Published by the Royal Society of Chemistry
(by including the DFT-parametrized linear combination of tip
orbitals), we unambiguously provide a direct characterization of
Se vacancies on the ReSe2 surface-elucidating both the actual
atomic and electronic structures on an equal footing in this
integrated STM approach. We advocate that such direct
measurement and characterization of surface defects and their
complexes are essential for providing a more complete picture
of surface-dominated properties of important low-dimensional
of an Se4 vacancy at (a) +1.0 V (conduction band region) and (b)−1.0 V

Nanoscale Adv., 2023, 5, 5513–5519 | 5517
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nanomaterials (as evidenced in our recent work of ultrathin
complex oxides on copper surfaces41).
Conclusions

Microscopic investigation using STM/S is performed to under-
stand the nature of Se vacancies in ML ReSe2 on a graphene
substrate. Among four possible Se vacancy sites, a commonly
observed defect is the Se4 vacancy, which is located close to the
Re layer. Formation energy calculations support that the Se4
vacancy is thermodynamically favored, agreeing with STM
observations. DFT calculations also indicate that with the Se4
vacancy, only the valence band edge is slightly up-shied in
energy, while the conduction band edge of ReSe2 is unper-
turbed. Our dI/dV spectroscopy results clearly show that the Se4
vacancy has a defect state at −1.0 V near EVBM (−1.2 V), which is
in good agreement with the DFT prediction. The area near the
Se4 vacancy exhibits bright protrusion in the STM topograph
probed at −1.0 V (defect state level), spatially mapping the
electronic state of the Se4 vacancy. Our results may have strong
implications on how this type of ReSe2/graphene heterojunction
(with naturally occurring Se vacancies) may behave in actual
electronic device applications. By establishing a close collabo-
ration between high-resolution STM/STS experiments and
advanced STMmodels, we condently elucidate both the actual
atomic and electronic structures of low-dimensional materials.
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