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Fluorotelomer (FT) alcohols (FTOHs) belong to the subclass of per- and polyfluoroalkyl substances (PFAS)

and are used as building blocks of FT-based side chain fluorinated polymers (SCFPs), which are applied to

consumer products to provide hydro- and oleophobic characteristics. FTOHs are consistently detected in

consumer products, indicating FTOHs as major degradation products of FT-based SCFPs. Literature on

FTOHs indicates that much is known about the release of FTOHs during the production, throughout the

lifetime, and at the end-of-life of consumer products. This Perspective combines information from

FTOHs in consumer products with sufficient knowledge on FTOH volatility, partitioning to the gas phase,

and transformation to perfluorocarboxylates (PFCAs) to understand the extent of FTOH release to the

environment. In the indoor environment, FTOHs are released in textile factories to the air during the

production of consumer products, indicating a potential inhalation risk for the workers. Meanwhile,

indoor air FTOH levels at residential sites are estimated to pose low inhalation risk to humans based on

studies of 8:2 FTOH, which is known to undergo human metabolism to perfluorooctanoate (PFOA).

Release of FTOHs from FT-based SCFP-applied consumer products to the indoor environment

throughout the lifetime of the products is known, as well as release to the outdoor environment through

washing, weathering, or drying. At the end-of-life of consumer products, FTOHs are released to air from

landfills and can be detected in biosolids. Future policies need to not only account for FTOH presence in

consumer products, but also the known FTOH volatility, partitioning to the gas phase, and

transformation to PFCAs.
Environmental signicance

Fluorotelomer (FT) alcohols (FTOHs) are per- and polyuoroalkyl substances (PFAS) sub-class consistently detected in consumer products. Much is known about
FTOHs, indicating their volatility, partitioning to the gas-phase, and transformation to peruoroalkyl carboxylates (PFCAs). Based on the literature from 2000 to
2024, a Perspective on FTOHs in consumer products and FTOH release from consumer products to the indoor and outdoor environment is presented. Release of
FTOHs from consumer products to indoor air is known during the production and throughout the lifetime of consumer products, indicating potential inha-
lation risk to humans. Release of FTOHs from consumer products to outdoor air occurs at landlls, indicating sources of FTOHs to the atmosphere. Future
policies on FTOHs can be tied to their known transformation to PFCAs.
1. Introduction

Per- and polyuoroalkyl substances (PFAS) are a group of
compounds known to be present in consumer products.1 Flu-
orotelomer (FT) alcohols (FTOHs) belong to the PFAS sub-class
and are consistently detected in consumer products,1–42 with 8:2
or higher chain FTOHs as the predominant compounds found
lar Toxicology, Oregon State University,

Corvallis, Oregon 97331, USA. E-mail:

97; Tel: +1 541 737 9208

the Royal Society of Chemistry
in studies published from 2000s–2010s and 6:2 FTOH as the
predominant compound found in recent years.1 The presence of
FTOHs in consumer products can originate from the degrada-
tion products of the unreacted raw materials and reaction
intermediates of FT-based side-chain uorinated polymers
(SCFPs),43,44 and from the degradation of FT-based SCFPs once
applied to consumer products.44 Unlike uoropolymers, where
the backbone is uorinated (i.e., containing the –CF2–
fragment),45–48 FT-based SCFPs can be composed of a uori-
nated or non-uorinated backbone as long as the side-chain is
uorinated (Fig. 1).44,49,50 Some SCFP-containing products are
Environ. Sci.: Adv., 2024, 3, 1337–1357 | 1337
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Fig. 1 Example of two FT-based SCFP structures that can degrade to FTOHs because FTOHs are the building blocks of SCFPs, with SCFP
structures adapted from ref. 44. Bidirectional arrows indicate that FTOHs can be degradation products of FT-based SCFPs.
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sold directly to the public, including those for carpet treat-
ment,2,49,51,52 and application of SCFPs in some food contact
materials is approved.11,53 The FTOHs found in PFAS-containing
textiles are known to originate from FT-based
SCFPs.19,25,36,38,41,44,54–61 While there are multiple types of SCFPs,44

only FT-based SCFPs, such as FT-acrylate and -urethane
SCFPs,44 will degrade to FTOHs (Fig. 1).

A strong body of work exists on FTOH physicochemical
properties, namely FTOH volatility and partitioning to the gas
phase.62 Studies by Endo and colleagues,63–65 and by Dreyer
et al.,66 using a combination of experimental (e.g., hexane–
water, octanol–water partitioning, and gas and liquid chroma-
tography) and computational (e.g., COSMOtherm) approaches,
indicate the volatile nature of FTOHs. FTOHs are volatile
because at environmentally-relevant pH, FTOHs are neutral
(i.e., pKa > 14);67–71 in contrast, peruoroalkyl carboxylates
(PFCAs), such as peruorooctanoate (PFOA), are charged (i.e.,
pKa < 0–4).68–70,72–74 In air samples, FTOHs are known to partition
to the gas-phase relative to the particle-phase.35,39,62,68,70,72,75–104
1338 | Environ. Sci.: Adv., 2024, 3, 1337–1357
When FTOH levels in the gas-phase are compared to sum FTOH
levels in the gas- and particle phases, FTOHs in the gas-phase
associated fraction represent 90% of the sum,72,75,86,105 whereas
FTOHs in the particle-phase associated fraction represent 3–
40% of the sum.72,85,86,105

There is sufficient knowledge to indicate that any n:2 FTOH
(n= 6, 8, 10,.) consistently degrades to Cn and C[n− 2] PFCAs,
and [n − 1]:3 FTCA, with [n − 1]:3 FT-unsaturated-carboxylate
(FTUCA) and [n − 1]:2 secondary FTOH (sFTOH) as some of
the observed intermediate products (Fig. 2).62 The trans-
formation from FTOHs to PFCAs can occur in environmental
and biological systems.106 FTOHs are not only known to
undergo atmospheric transformation to PFCAs,76,98,107–122 but
also long range atmospheric transport, thus partially explaining
the presence of PFCAs in remote areas.79,91,100,113,121,123–128

However, volatility, wet deposition, and scavenging can impact
the amount of PFCAs formed from atmospheric transformation
of FTOHs.122 Biotransformation of FTOHs in soil,129–150

sludge,151–159 and sediment160–162 also results in PFCAs. However,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A degradation pathway of 6:2 FTOH leading to the formation of PFCAs, namely perfluorohexanoate (PFHxA) and perfluorobutanoate
(PFBA), and 5:3 FTCA with 5:3 FTUCA and 5:2 sFTOH as intermediate products. Carbon–fluorine bonds are highlighted in bold. Detailed
degradation pathways are outlined in ref. 62.
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FTOHs in soil can be taken up by plants before biotransforming
to PFCAs.163–169 Aerobic conditions promote faster degradation
(less than 1 to 14 days half-life) than anaerobic conditions (less
than 1 to more than 365 days half-life) of FTOHs,170 and nutri-
ents and redox conditions are known to impact biotransfor-
mations.143 Meanwhile, FTOHs in water samples are known to
undergo photolysis to PFCAs,118,171,172 but microbial biodegra-
dation of 8:2 FTOH to peruorooctanoate (PFOA) in brackish
water is known as well.173 Nitrate and hydroxyl radicals promote
photolysis, but dissolved organic carbon inhibits photolysis.171

In biological systems, mammalian,174–193 avian,194 and sh195,196

metabolisms biotransform FTOHs to PFCAs.
The knowledge on the presence of FTOHs in consumer

products and on the volatility, partitioning, and transformation
of FTOHs in environmental and biological systems indicates
that much is known about FTOHs. Therefore, in this personal
review (Perspective), studies concerning the release of FTOHs
from production to end-of-life of consumer products and on
FTOHs are combined to provide further understanding in the
eld of PFAS. Release of FTOHs in the context of consumer
products is important to examine not only due to the potential
exposure of FTOHs to humans (i.e., release to the indoor envi-
ronment),197 but also due to the eventual degradation of FTOHs
to PFCAs in the outdoor environment.107 Policy implications
from the presence of FTOHs in consumer products and from
transformation of FTOHs to PFCAs in the environment are
briey discussed.
2. Methods

This Perspective is based on publications concerning FTOHs
from 2000 to 2024, collated by searching for publications in
Google Scholar and Web of Science using the term “uo-
rotelomer alcohol”. In each of the papers, both the cited and
citing references are consulted and this manual iterative
process nishes once there is no newer, relevant citing refer-
ence. Publications prior to 2000 relevant to the Perspective are
© 2024 The Author(s). Published by the Royal Society of Chemistry
included to account for knowledge that has existed for more
than two decades. Relevant, newer (e.g., 2024) publications are
collated through daily search using the keyword “PFAS” on the
search function of the American Chemical Society, the Royal
Society of Chemistry, and Elsevier publication websites from
mid-2023 till May 2024.
3. Release of FTOHs to the indoor
environment
3.1 Release to the indoor environment during the
production of consumer products

The padding process, a technique where chemicals are applied
to bers by way of immersion in a bath, followed by a curing
step in an oven55,198,199 (i.e., heating, which leads to volatiliza-
tion) is a method to deposit FT-based SCFPs onto textiles.60,200

When U.S. EPA scientists replicated the textile padding process
to apply C6 FT-based SCFPs in a laboratory setting,200 6:2 FTOH
was released to the indoor air, but 6:2 FTOH concentration was
not provided in the study. The result from the U.S. EPA study
corroborated the results from a 2016 study performed at
a Chinese textile factory201 where FTOHs (9.5–90 × 106 pg m−3)
were present in indoor air collected from the workshop area
where the padding processes to apply FT-based SCFPs occur.
The FTOHs can be detected in dusts in industrial sites and
a thorough review and perspective was provided by Paris-Davila
et al.202
3.2 Release to the indoor environment throughout the
lifetime of consumer products

Partitioning of FTOHs from consumer products known to
contain FT-based SCFPs to indoor air occurred in the orders of
hours-to-months depending on the materials and factors,
including temperature and light.4,7,33,35,104,203–205 Sinclair et al.4

measured losses of 25–630 pg cm−2 and 220–260 ng of FTOHs
following heating of nonstick frying pans between 180 and 230 °
Environ. Sci.: Adv., 2024, 3, 1337–1357 | 1339
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C, 20 min and microwaving of popcorn bags for 3 min,
respectively. The experiment by Davern et al.104 on microwaved
popcorn bags (less than 2 min) corroborated the results from
Sinclair et al. through the detection of 480 000 pg m−3 of 6:2
FTOH released to the air.

Fast food packaging was also known to emit FTOHs as
indicated by Schwartz-Narbonne et al.33 when an average of 85%
decrease in FTOH levels (130–2400 ng) was measured following
storage of ∼2 years at room temperature. Textiles were also
known to emit FTOHs to the air, including children rain trou-
sers and rain jackets (750–490 000 pg m−3 aer 3 h, 25 °C),203

and cotton clothes (210–53 000 pg m−3 aer 9 months, 25 °C).35

Emissions of FTOHs from mattress pads and membrane
apparel (200–800 ng g−1 loss aer 2 h, 40–100 °C),7 from
mattress pads and a cleaner product (230 and 12 400 ng g−1 loss
aer 125 and 28 h, respectively, 25 °C),205 and from reghter
turnout gears (8:2 FTOH detected aer 30 min, 200 °C)204 were
also known. Products containing FT-based SCFPs were known
sources of FTOHs in indoor air.

Levels of FTOHs above the limit of quantitation were re-
ported in the range of 0.04–1 900 000 pg m−3 in indoor
air,39,70,87,181,203,206–220 which were two-to-three orders of magni-
tude lower than the recorded indoor air levels at a Chinese
textile factory (Fig. 3). While the partitioning of FTOHs from
consumer products to the air was already assessed, the half-lives
of FTOHs in indoor air were not studied. Once FTOHs were off-
gassed from the material indoors, FTOHs were known to sorb
dust in addition to air particles.221,222 Comprehensive reviews
and perspectives on FTOHs in house dusts were provided
previously by Shoeib et al.,14 Savvaides et al.,20 and Zhu et al.223

3.3 Assessments of human exposures to FTOHs in the
indoor environment and the associated potential human
health implications

Inhalation is determined to be the major exposure route of
FTOHs for humans, therefore, occupational settings where
FTOHs are used, such as uorochemical manufacturing and
textile industries,16,182,184,200–202,224,225 are likely to encounter
FTOH inhalation exposure.181,202,226–229 However, a signicant
gap exists with regard to exposure studies on FTOHs at occu-
pational sites, therefore, comparisons with exposure to FTOHs
Fig. 3 Box and whisker plot comparison between min and max of
reported FTOH indoor air concentration at residential sites and at
a textile factory. The indoor air residential data are obtained from ref.
70.

1340 | Environ. Sci.: Adv., 2024, 3, 1337–1357
at residential sites still need to be performed. Meanwhile,
studies of human exposure from inhalation of 8:2 FTOH in
residential indoor air indicate that risk of human exposure to
PFOA from inhalation of 8:2 FTOH in air or dust is
low.14,87,203,208,211,216,217,230,231 A recent review on human exposure
pathways to PFAS exclude FTOH inhalation, indicating the low
potency for human health impacts from inhalation of FTOHs.232

Langer et al. and Kim et al. estimate that 5 and 2.5% of 8:2
FTOH are transformed to PFOA through human metabolism,
respectively, indicating low 8:2 FTOH contribution toward
overall PFOA exposure.87,208 Corroborating results from Shoeib
et al.,14 Schlummer et al.,203 Winkens et al.,216 Padilla-Sánchez
et al.,217 Xu et al.,230 and Tian et al.231 indicate that the risk of
exposure to PFOA following inhalation of 8:2 FTOH in air or
dust does not exceed the tolerable daily intake of PFOA (1500 ng
per kg bw per day). Poothong et al. further indicate that only 3%
of PFOA exposure originates from indirect exposure, including
house dust ingestion and indoor air inhalation.233 Shoeib et al.
indicate that inhalation of 8:2 FTOH in air is more relevant than
ingestion of 8:2 FTOH in house dusts, but the overall exposure
is still less than the estimated Canadian adult dietary intake
limit of PFOA (70 ng per day).211 Dermal absorption of FTOHs
from air is not predicted to be a major route of exposure of
FTOHs to humans.234,235

Ingestion of FTOHs can be another route of exposure for
humans,13 as the 6:2, 8:2, 10:2, and 12:2 FTOHs can be trans-
ferred to real food samples.32,236 The 6:2 FTOH is also predicted
to be as toxic as 8:2 FTOH through ingestion.237 However,
ingestion is a route of exposure that does not result from par-
titioning of FTOHs to the indoor environment (e.g., inhalation
or dermal absorption from air). Therefore, the partitioning of
FTOHs to food samples (i.e., ingestion) is beyond the scope of
this study.

Similarly, while 6:2 FTOH can lead to reproductive dysfunc-
tion in mice male offsprings238 or abnormal adult anxiety
behaviors in Zebrash (Danio rerio) trans-generationally,239 the
route of exposure in these studies is not through partitioning of
FTOHs to the indoor or outdoor environment (i.e., directly to
embryos and through ingestion, respectively). However, it is
noted that in a 6:2 FTOH inhalation study involving rats, the
elimination half-lives of 6:2 range from 1 to 15 h and the FTOH
metabolites yield is 2% mol.183
4. Release of FTOHs to the outdoor
environment
4.1 Release to air during the production of consumer
products

Levels of FTOHs released to air collected near industrial sites,
namely near textile and carpet manufacturing and treat-
ment,77,102,201,240 and uorochemical manufacturing facili-
ties,241,242 are two-to-three orders of magnitude and one order of
magnitude higher than the levels of FTOHs collected near non-
industrial sites,70,75,79–83,86–88,91,93,96,113,114,117,121,207,211,212,243–266

respectively (Fig. 4). Of note, FTOH release from textile and
carpet manufacturing and treatment facilities can be one-to-two
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Box and whisker plot comparison betweenmin andmax of reported FTOH outdoor air concentration at different sites. The non-industrial
data are obtained from ref. 70.
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orders of magnitude higher than the amount emitted from
uorochemical manufacturing facilities.

The composition of FTOHs at the global level is still domi-
nated by 8:2 FTOH,100,117 which is attributed to the historical use
of C8-based PFAS. At textile and carpet manufacturing and
treatment sites, the dominant FTOH in studies before 2020 is
8:2 FTOH,77,201 while the dominant FTOH in studies aer 2020 is
6:2 FTOH,102,240 likely reecting the shi from C8- to C6-based
PFAS. Similarly, at uorochemical manufacturing sites, 8:2
FTOH is the dominant FTOH in the study performed before
2020,241 while 6:2 FTOH is the dominant FTOH in the study
performed aer 2020.242

Once released, FTOHs undergo atmospheric transformation
to PFCAs and there have been efforts to model the contribution
of FTOHs to the PFCA level globally. Modeling studies by
Wallington et al.108 and Yarwood et al.110 estimated that 1–10%
contribution of global PFOA levels are due to atmospheric
degradation of 8:2 FTOH based on reported outdoor air
concentrations of 8:2 FTOH. Thackray and Selin also performed
modeling work based on the presence and subsequent trans-
formation of FTOHs to PFCAs, but their modeling effort pre-
dicted 25% contribution of the global level of PFCAs from FTOH
atmospheric degradation.120,122
4.2 Release to air at the end-of-life of consumer products

Once used, FT-based SCFP-applied consumer products are
disposed to the landlls,267–270 where hydrolysis can occur and
degrade FT-based SCFPs to FTOHs,19,27,33,34,36,41,58 followed by the
partitioning of FTOHs to the gas-phase.271–273 Release of 8:2
FTOH and its transformation product is documented in
a laboratory-scale landll leachate-sediment microcosm
study,162 while Goukeh et al. demonstrate the degradations of
FT-based SCFP-applied materials and subsequent volatilization
of FTOHs in laboratory-scale landll-simulated settings.34

Landll gas (LFG) is known to contain FTOHs (1–10 × 106 pg
m−3).34,274 Landlls are thus known to emit FTOHs based on
© 2024 The Author(s). Published by the Royal Society of Chemistry
ambient air samples collected near landlls (5–17 000 pg
m−3).97,275–277 Levels of FTOHs in ambient air near landlls are
comparable to the levels of FTOHs in the air collected outside
uorochemical manufacturing facilities (Fig. 4). The FTOHs
found in ambient air near landlls are dominated by 8:2 and
10:2 FTOHs from studies in the 2010s,275,276 but 6:2 FTOH starts
to dominate in recent years,97,274,277 which is reective of the 6:2
FTOH detected in consumer products in recent years.1

The release of FTOHs from landlls indicates that while
landlls are a sink of FT-based SCFP-applied consumer prod-
ucts, landlls are a source of FTOHs to the atmosphere as well.
Studies by Li et al.,278 Washington et al.279 and van Zelm et al.280

foresee the emission of FTOHs from landlls as a major
contributor of PFCAs in the environment through the continual
degradation of FT-based SCFPs and the subsequent release of
FTOHs, followed by transformation to PFCAs. However, the
existing global inventory of PFCAs based on outdoor air
concentrations and atmospheric transformation
models115,122,281,282 are yet to account for FTOHs released from
landlls, which represents a research gap.
4.3 Release of FTOHs to the outdoor environment
throughout the lifetime of consumer products

In the case of textiles, myriad processes degrade FT-based
SCFPs applied in consumer products, as described by Schel-
lenberger, van der Veen, and colleagues: loss of bers, increased
and/or rough surface area, disruption of non-/covalent bonding
between and amongmonomers (e.g., loss due to laundering and
rain, volatilization), and UV-degradation.19,25,55,56,59,283 Schellen-
berger and van der Veen et al. also assess the release of FTOHs
to the outdoor environment throughout the lifetime of
consumer products through comparisons of FTOH concentra-
tions pre- and post-washing, weathering (e.g., temperature,
humidity, and light), and drying.19,25,56,59 The FTOHs are detec-
ted in wastewater treatment plants (WWTPs) not known to be
impacted by textile factories,284–291 indicating washing of FT-
Environ. Sci.: Adv., 2024, 3, 1337–1357 | 1341
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based SCFP-applied consumer products as a potential source of
FTOHs to WWTPs. However, estimate of FTOH release to
WWTPs in Europe following washing of FTOH-containing
consumer products was minimal (∼0.7 t per year).56
4.4 Release to water during the production of consumer
products

While FTOHs are volatile and partition to the gas-phase, FTOHs
can be detected in water samples, including those sampled
from WWTPs near textile factories and uorochemical
manufacturing facilities.102,240,292–295 Levels of FTOHs in water
samples recorded near uorochemical manufacturing facilities
are three-to-six orders of magnitude higher than levels recorded
near textile factories (Fig. 5). However, the range of FTOHs in
water samples collected from near textile factories (2.1–
43 ng L−1)240,294,295 is comparable to the range of FTOHs in water
samples collected from rivers and WWTPs not known to be
impacted by textile factories (0.003–78 ng L−1) (Fig. 5).284–291 In
studies concerning WWTPs impacted by textile factories,
FTOHs in the inuents are higher than in the effluents, indi-
cating transformation of FTOHs to PFCAs in WWTPs.294,295 In
the only published study of its kind, FTOHs are below the limit
of detection (<LOD) in groundwater samples collected from an
active uorochemical manufacturing facility.296 More data on
FTOHs in any water samples can be useful, but prior data,
supported by known partitioning preference of FTOHs to the
gas phase and transformation of FTOHs to PFCAs, need to be
acknowledged in terms of the potential results of <LODs in
future studies.
4.5 Release to water at the end-of-life of consumer products

Due to disposal of FT-based SCFP-applied consumer products
to municipal solid waste,267–270 as well as the volatilization of
FTOHs (Fig. 4) and the transformation of FTOHs to PFCAs,
release of FTOHs to water at the end-of-life of consumer prod-
ucts is estimated to be insignicant.289,293 In landlls, FTOHs in
Fig. 5 Box and whisker plot comparison between min and max of repo

1342 | Environ. Sci.: Adv., 2024, 3, 1337–1357
LFG are known to transform to FTOH degradation products
through studies on LFG condensate and landll leachates.297,298

Of note, 5:3 FTCA is an intermediate transformation product
between 6:2 FTOH and PFHxA62 (Fig. 2), and is a major PFAS
consistently measured in landll leachates.299–301
4.6 Release to soil during the production of consumer
products

Comparable amount of FTOHs were measured in soil samples
collected near uorochemical manufacturing in the U.S. (60–36
000 and 100–243 000 pg g−1),296,302 China (70–7200 and 2600–50
000 pg g−1),169,241 and Japan (100–12 000 pg g−1).242 The levels of
FTOHs in soil near uorochemical manufacturing facilities
were two-to-three orders of magnitude higher than levels of
FTOHs collected from roadside in the U.S. (0.51–10 pg g−1).39 No
publication on FTOHs in soil samples collected near textile and
carpet manufacturing and treatment facilities was located by
the author.
4.7 Release to soil at the end-of-life of consumer products

The pathway for FTOHs to be released to soil at the end-of-life of
consumer products involves biosolids,303,304 which are collected
from WWTPs. Studies by Ellington et al.,133 Yoo et al.,153 and
Zhang et al.163 indicate FTOH concentration in the range of 13
000–57 000, 4000–820 000, and 1000–170 000 pg g−1, respec-
tively. The levels of FTOHs in biosolid-amended soil are two-to-
ve orders of magnitude higher than FTOHs in roadside soil
samples (0.5–10 pg g−1).39 A potential source of FTOHs in
biosolids is FT-based SCFPs as the estimated degradation half-
lives of FT-based SCFPs can vary between 10 and 110 years305–308

or up to a thousand years.309–311 Any FTOHs remaining in the
biosolids can breakdown to PFCAs and further transformation
products, indicating a potential pathway of PFOA exposure to
humans when biosolids are applied to soils for farming.
rted FTOH water concentration at different sites.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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5. Policy implications of release of
FTOHs associated with consumer
products

Within the U.S., aside from states' initiatives on consumer
products312,313 and the U.S. Food and Drug Administration
(FDA)'s announcement of 6:2 FTOH voluntary phase-out from
the food contact material (FCM) market,314 there are no regu-
lations on the release of FTOHs to the environment. The phase-
out of FTOH-containing FCMs indicates that less FTOH-
containing FCMs will end up in landlls, which will also lead
to the reduction of FTOHs and PFCAs released to the environ-
ment. The phase-out of FTOH-containing textile315 likely also
leads to less FTOHs and PFCAs in the environment, but regu-
lations on active and closed textile mills are still needed due to
the potential formation of PFCAs downstream.316

The lack of existing regulations on FTOHs may be indicative
of legislative and general public understanding and approaches
toward PFAS that are still limited to ionic PFAS including, PFOA,
peruorooctane sulfonate, and their PFAS-replacements, such
as hexauoropropylene oxide-dimer acid.317–320 Lawmakers can
thus consider tying the transformation of FTOHs released from
FT-based SCFPs in landlls to the presence of PFCAs in the
atmosphere within existing regulations as the foundation for
any policies regarding FTOH use in consumer products.

An approach where entities that emit FTOHs are capped at
certain levels can be considered. This approach can be relevant
for landll operators because FTOHs are estimated to continue
to be emitted from landlls to the atmosphere due to past and
current FT-based SCFP use.56,278,279,321,322 However, the propor-
tion of FTOHs released to the gas-phase due to hydrolysis of FT-
based SCFP-applied products in landlls is yet to be studied.
Therefore, there are likely to be pushbacks from landll oper-
ators on any proposed regulations of FTOHs. For comparison,
hydrolysis experiments performed in laboratory settings indi-
cate an increase in FTOH concentrations in FT-based SFCP-
applied consumer products up to 1500× pre- and post-
hydrolysis.19,27,33,36,58

Policies discouraging the use of FTOHs can also be consid-
ered as alternatives to FTOHs are available, such as silicone-
based polymers, wax, hyperbranched polymers, silicone-based
PFAS, and melamin.323–326 However, the environmental
impacts of alternatives to FTOHs are unclear, though the pres-
ence of silicone-based PFAS monomers in soil and earthworms
is known.326,327

Future policies can also promote treatment efforts known to
mitigate the release of FTOHs to the environment. Researchers
from the U.S. EPA indicate that thermal treatments containing
calcium oxide and alumina-based catalysts can be useful to treat
FTOHs through mineralization.328,329 Calcium oxides are
distributed in a ameless tube furnace operated between 400
and 800 °C as gas-phase FTOHs are owing, and degradation
efficiency of FTOHs following experiments achieves 85–99%
removal of FTOHs.328 Comparable degradation efficiency can
also be achieved with the use of alumina catalysts at a lower
temperature range of 200–500 °C.329 If these techniques can be
© 2024 The Author(s). Published by the Royal Society of Chemistry
recreated and applied on a large scale, such as in landlls where
gas-phase FTOHs are detected, then the potential for FTOHs to
transform into PFCAs in the environment can be inhibited.
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