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Energy Transfer from Dark States: A relativistic Approach

Lorenz S. Cederbaum1∗ and Jaroslav Hofierka1
1Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg,

Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
(Dated: July 8, 2025)

Recently, a relativistic theory of energy transfer has been developed and shown to give rise to
highly-important long-range phenomena for very large transferred energies where relativistic effects
are crucial to include. Being general, the theory is also applicable for small and intermediate sized
excess energies, where it describes retardation and magnetic effects. In this work we consider mainly
energy transfer from dark states of the donor, i.e., states which cannot decay radiatively by a dipole
transition. Starting from the general full relativistic expressions for the various asymptotic contri-
butions, we derive the leading terms describing the energy transfer for small and intermediate sized
excess energies. It becomes evident that at small excess energies retardation and magnetic effects
are essentially negligible compared to the impact of the bare Coulomb interaction. The situation
can change drastically if one considers the transfer of intermediate sized energies as possible in the
case of interatomic and intermolecular Coulombic decay (ICD). Already a transfer of several hun-
dreds of eV makes retardation effects similarly relevant as the Coulomb interaction at internuclear
distances typical for equilibrium distances of weakly bound systems. Increasing the transferred en-
ergy further, the impact of retardation effects can overtake that of the bare Coulomb interaction
between the donor and acceptor and even magnetic effects may become relevant. At such interme-
diate sized energies, a standard non-relativistic description of the participating donor and acceptor
systems themselves is expected to suffice in computing the energy transfer, while the description of
the energy transfer needs to take into account the relativistic effects as done here.

I. INTRODUCTION

There is vast literature on energy-transfer processes. When an electronically excited molecule transfers its excess
energy to a bound electronic state of its molecular neighbor, the process is known as Foerster resonance energy transfer
(FRET) [1]. FRET has many applications, mainly in the condensed phase, e.g., the first step of photosynthesis [2, 3]
and exciton transfer in semiconductors [4]. Owing to energy conservation, FRET is only possible if nuclear motion is
involved, implying a timescale of picoseconds or longer [2, 3]. Thus, FRET generally does not describe energy transfer
between atoms. FRET is often treated within the QED formalism which provides additional insight and applications
[5, 6].
Another, highly-efficient electronic-energy transfer process is interatomic and intermolecular Coulombic decay (ICD)

[7, 8] operative between molecules as well as atoms. Here, an excited system transfers its excess energy to ionize a
neighboring system, of course, provided that the excess energy is sufficiently high to ionize the neighbor. Being in
the continuum, energy conservation is always fulfilled without the need for nuclear motion. Consequently, the excited
system as well as the neighbor can be atoms or molecules and, importantly, the corresponding timescale of ICD is in
the femtosecond regime even in the presence of a single neighbor [8]. Once the ICD channel is energetically open, the
process takes place without the need for nuclear motion. To have a detailed comparison with experiment, the inclusion
of nuclear motion can be of relevance, however. Calculations including the nuclear motion have been reported, see,
e.g., Ref. [8] and references therein, and similar approaches can be also applied in the relativistic case. We stress that
energy transfer processes typically become faster the more neighbors are present and, in the case of ICD, this has
been computed and measured [7–11]. There are numerous applications of ICD varying from quantum halo systems
with an extreme mean separation between the atoms [12–14], quantum fluids [15] to quantum dots and wells [16–18].
Of general interest is that ICD is of potential relevance in radiation damage and for molecules of biological interest
[19–32].

In contrast to FRET, ICD can, in principle, take place for any amount of excess energies. Indeed, ICD has
been measured and discussed, for example, after creating vacancies in the core of atoms [33–35]. To be able to
describe ICD at much larger excess energies like those of deep core electrons of heavy elements, where neither the
dipole approximation nor the Schrödinger equation apply, a relativistic theory of energy transfer has been recently
developed [36].
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Apart from the fact that the newly developed theory describes ICD for very high transferred energies, the description
incorporates retardation and magnetic effects even for the transfer of small energies. For such excess energies, energy
transfer from bright states, i.e., states which decay radiatively by a dipole transition, retardation effects have been
derived by employing QED within the dipole approximation [37]. The contribution of these effects to the ICD rate
is very interesting, but generally small. Of course, for small transferred energies, the relativistic theory reproduces
the findings of the QED theory as explicitly shown in [36]. At large transferred energies, a relativistic approach is
necessary, and the impact of the ‘beyond Coulomb’ terms has been shown to be very relevant.

In this work, we would like to investigate the impact of retardation as well as of magnetic effects on ICD from dark
states, i.e., states which do not decay radiatively via a dipole transition. We shall see that for small excess energies
magnetic effects appear in the rates, in contrast to the situation for bright states. This is in accord with the QED
derivation of FRET for dark states discussed for the condensed phase [38]. We shall see that for small energies the
impact of retardation and magnetic effects on ICD is minor and we show that they can become substantial already
for intermediate sized excess energies.

In the following section we will first briefly recapitulate the situation of the ICD rate for dark states when determined
by employing the Coulomb interaction between the donor and acceptor. Then, we will investigate the impact of the
relativistic Breit interaction which leads, as will be shown, to the appearance of retardation and magnetic effects.
Finally, the range of relevance of these effects will be discussed.

II. THEORETICAL FRAMEWORK

A. Coulomb Interaction and ICD

Consider a donor specified by D and an acceptor specified by A, where D and A can be atoms or molecules. The
excited (or ionized excited) donor D* carries the excess energy ℏω = ED∗ −ED which is transferred to A and ionizes
it

D∗ +A → D +A+ + e
ICD

, (1)

emitting the ICD electron e
ICD

. As usual, the rate of the energy transfer process is given by

Γ
ICD

= 2π| ⟨I|VC |F ⟩ |2, (2)

where VC is the Coulomb interaction between the electrons of the donor and those of the acceptor and |I⟩ and |F ⟩
are the initial and final states of the process. Due to energy conservation, the total initial and final energies, EI and
EF , fulfill EI = EF .
Now, there are two principal ways to evaluate the matrix element ⟨I|VC |F ⟩ which determines the ICD rate. The

‘direct’ way consists of considering the total donor-acceptor system as a single system and its states are computed
using a suitable ab initio quantum mechanics method. Such methods and explicit calculations are available, see, e.g.,
Green’s functions [39–42] and coupled-cluster [43–46] approaches. In the second, ‘explicit’, way one assumes that the
interatomic or intermolecular distance R between D and A is large and derives explicit analytical expressions for the
matrix element. Such expressions provide much insight into the process at hand.

At large distances between D and A, the initial and final states |I⟩ and |F ⟩ of the ICD process can each be expressed
as a product of a donor and an acceptor state: |I⟩ = |ΨD∗⟩ |ΦA⟩ and |F ⟩ = |ΨD⟩ |ΦA+⟩. The meaning of the respective
individual states is self explanatory. We only mention that, for brevity, |ΦA+⟩ is the state of the ionized acceptor
including the emitted electron, taken to be energy normalized.

To continue, the Coulomb interaction between the electrons of D and A is expanded in inverse powers of R which,
in the case of molecules, is the distance between the respective centers of mass of the nuclei. The coordinates of the
donor’s and acceptor’s electrons are denoted by {xi} and {x′

j}, respectively. Now, new coordinates for the electrons
of the donor relative to its center of mass at RD and analogously for the acceptor are introduced

ri = xi −RD , (3)

r′j = x′
j −RA . (4)

Then, the distance between an electron of the donor and an electron of the acceptor reads
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|xi − x′
j | = R

∣∣∣uDA
+

ri − r′j
R

∣∣∣ . (5)

Here and in the following, u
DA

=
R

D
−R

A

R is the unit vector pointing from the center of mass of the donor to that of
the acceptor. This all enables a straightforward expansion of the distance between the electrons:

|xi − x′
j | = R

[
1 +

(
β

R

)] 1
2

= R
[
1 +

1

2

(
β

R

)
− 1

8

(
β

R

)2

+
3

48

(
β

R

)3

+ ...
]

β = 2u
DA

· (ri − r′j) +
(ri − r′j)

2

R
. (6)

With the above, the expansion of the Coulomb interaction and later on of the Breit interaction can be calculated.
The expansion of the Coulomb interaction up to 1/R4 reads

VC =
∑
i,j

1

|xi − x′
j |

=
d̂D · d̂A − 3(u

DA
· d̂D)(u

DA
· d̂A)

R3
+

9q̂D∥ d̂A∥ − 6q̂D
⊥ · d̂A

⊥

2R4
, (7)

where only the terms which contribute to the transition matrix element ⟨I|VC |F ⟩, i.e., which are products of donor
and acceptor terms, are listed. Here,

d̂D =
∑
i

ri

dD =
∑
i

⟨ΨD∗ | ri |ΨD⟩ = ⟨ΨD∗ | d̂D |ΨD⟩ (8)

is the electronic dipole moment operator of the donor and the resulting transition dipole moment. These quantities
are defined analogously for the acceptor.

The quantities q̂D∥ and q̂D⊥ appearing above relate to the traceless quadrupole moment operator of the donor which

deserves further attention. This operator is a traceless tensor and the subscripts ∥ and ⊥ refer to components parallel
or perpendicular to the unit vector u

DA
. Explicitly,

q̂D∥ =
∑
i

[
(u

DA
· ri)2 − r2i /3

]
qD∥ = ⟨ΨD∗ | q̂D∥ |ΨD⟩ , (9)

and

q̂D
⊥ · d̂A

⊥ =
∑
i,j

(u
DA

· ri)
[
(ri · r′j)− (u

DA
· ri)(uDA

· r′j)
]

qD
⊥ · dA

⊥ = ⟨ΨD∗ | q̂D
⊥ |ΨD⟩ · ⟨ΨA|dA

⊥ |ΨA+⟩ . (10)

With Eq. (7) and the notations (8,9,10), one readily finds

⟨I|VC |F ⟩ = dD · dA − 3(u
DA

· dD)(u
DA

· dA)

R3
+

9qD∥ dA∥ − 6qD
⊥ · dA

⊥

2R4
, (11)

for the matrix element determining the energy transfer rate. The term ∝ 1/R3 describes the transition due to dipole-
dipole and the term ∝ 1/R4 quadrupole-dipole donor-acceptor interaction. The next term would be ∝ 1/R5 and is
due to quadrupole-quadrupole interaction.

For energy transfer from a bright state, the leading term dominates and the ICD rate (after averaging over the
random orientation of the donor and acceptor) reads [47]:

Γ
ICD

=
3ℏ
4π

( c

ω

)4 γDσA

R6
, (12)
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where γD is the radiative rate (Einstein coefficient) of the isolated donor and σA is the photoionization cross section
of the acceptor at a photon energy of ℏω. The above expression allows for an estimate of the ICD rate using
experimentally determined data. Importantly, the true power of ICD lies in the finding that its rate can be orders of
magnitude larger than that predicted by the above formula at intermolecular distances as in weakly bound systems
like clusters and liquids [47].

For energy transfer from a dark state, the transition dipole moment dD of the donor vanishes and we are left with
the quadrupole-dipole term ∝ 1/R4 in Eq. (11). The respective ICD rate now takes on the following appearance [47]:

Γ
ICD

=
1323ℏ
28π

( c

ω

)6 γDσA

R8
, (13)

where the radiative rate γD now relates to the quadrupole transition of the donor.

To make contact with the notation of the quadrupole moment elements in Ref. [47], we define the direction of the
unit vector u

DA
, connecting the centers of mass of the donor and acceptor, as the z-axis of our coordinate system.

Then, it is easy to see from Eqs. (9) and (10) that qD∥ = qDzz and qD
⊥ · dA

⊥ = qDxzd
A
x + qDyzd

A
y . Note that in Ref. [47], Q

is used and not q.

FIG. 1. Total ICD rates of BaZn resulting from Zn 3d sub-shell ionization as a function of the internuclear distance R. The
vertical line indicates the equilibrium distance Req of the BaZn dimer. The three upper curves show the ab initio calculated
results for Γ0, Γ±1, and Γ±2. The three lower curves show the quadrupole-dipole (Γ0, Γ±1) and the quadrupole-quadrupole
(Γ±2) asymptotic approximations resulting from the Coulomb interaction (see text). Solid lines: 3d0 vacancy; dashed lines:
3d±1 vacancy; dash-dotted lines: 3d±2 vacancy. The figure is taken from [47].

Since this work is on energy transfer from dark states, we briefly address the example presented in Ref. [47] before
turning to the discussion of retardation and magnetic effects for dark states. Ionization of the 3d subshell of Zn leads
to the possible vacancies 3d0, 3d±1 and 3d±2. In Zn, these vacancies can only be filled by the transition from a
4s electron orbital. This transition is dipole forbidden and ICD can take place for the 3d0 and 3d±1 vacancies via
quadrupole-dipole and for the 3d±2 vacancy via quadrupole-quadrupole transitions. Figure 1 shows the results of the
asymptotic expressions (13) and the respective one ∝ 1/R10 not discussed here for the 3d±2 vacancy for ICD in the
BaZn dimer. These results are compared with the those of ab initio computations.

As seen in the figure, at equilibrium geometry, the ab initio determined rate is about three orders of magnitude
larger than that predicted by the asymptotic expression. According to the ab initio prediction, the ICD lifetime is
in the fs regime while the asymptotic expression predicts this lifetime to be in the ps regime. It is only for distances
R > 12 Å that the asymptotic approximation becomes accurate. The value of the asymptotic expression can be better
appreciated if one realizes that the radiative lifetime of the 3d vacancy of an isolated Zn atom is just about 2µs [48],
i.e., the asymptotic expression predicts the ICD lifetime to be shorter than the radiative lifetime by about 6 orders of
magnitude. Finally, we note that the Auger (also called Auger-Meitner) decay of the 3d hole is energetically closed.
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B. Breit Interaction and ICD

As discussed above, using the Coulomb interaction, the usual asymptotic expression for the ICD rate of bright
states exhibits a behavior proportional to 1/R6. By employing QED within the dipole approximation, it has been
demonstrated that retardation leads to additional, longer range, terms ∝ 1/R4 and ∝ 1/R2 [37]. For energy transfer
from dark states, the ICD rate shows a behavior proportional to 1/R8 (we concentrate on quadrupole-dipole transi-
tions). Our relativistic approach reproduced in the dipole approximation the findings of QED for bright states [36].
The appearance of longer range terms found for bright states motivated us to investigate their possible appearance
for dark states.

In general, relativistic effects can shift and split levels computed by the non-relativistic Schrödinger equation and,
thus, energetically closed ICD channels in the non-relativistic case may become ICD active [49]. Using the Dirac
equation to compute the asymptotic ICD rate, one obtains a rate proportional to 1/R6 as in the non-relativistic case
because of the Coulomb interaction contained in the Dirac equation [50, 51]. In other words, the Dirac equation has
to be augmented by the Breit interaction [52] in order to include retardation and magnetic effects.

The single-electron Dirac Hamiltonian for electron i reads

h(i) = cαi · pi + (βi − 1)mec
2 +W (ri), (14)

where c is the velocity of light, pi is the vector of the momenta and αi is the vector of the 4-dimensional Dirac
matrices. The potential W (ri) is the Coulomb interaction of the electron with the nuclei. The electronic coordinate
ri is with respect to the nuclear center of mass.

The many-electron Dirac-Breit Hamiltonian at fixed nuclear coordinates takes on the appearance [52, 53]:

H =
∑
i

h(i) +
∑
i>j

g(i, j) +W0. (15)

Here, g(i, j) is the electron-electron interaction containing the Breit interaction (see below) and W0 is the Coulomb
repulsion of the nuclei.

As already mentioned above, one has to include the frequency dependent Breit interaction in order to take into
account retardation and magnetic effects. This interaction, determined by QED theory, is caused by the exchange of
a virtual photon between the interacting electrons [52, 53]. The form of the Breit interaction depends on the gauge
used for the propagator for photons [54]. There are two popular forms widely employed, one which follows from the
Feynman (Lorenz) gauge and one by choosing the Coulomb gauge, and we mention that they do not necessarily lead
to identical results [55, 56]. Both gauges have been used in Ref. [36]. Here, we concentrate on the Feynman (Lorenz)
gauge.

The electron-electron interaction
∑

i,j g(i, j) between those of the donor and those of the acceptor deserves particular
attention. We shall call this interaction Vω in the following. To proceed, we have to take care that the coordinates of
their electrons have a common coordinate system. The Breit interaction in the Feynman gauge reads:

V F
ω =

∑
i,j

1−αi ·α′
j

|xi − x′
j |

ei
ω
c |xi−x′

j | . (16)

Note that in the Feynman gauge, the Coulomb potential does not appear explicitly as an additive term of the Breit
interaction.

In analogy to Eq. (2), the ICD rate now reads

Γ
ICD

= 2π| ⟨I|Vω |F ⟩ |2. (17)

The general expansion of Vω and of ⟨I|Vω |F ⟩ in inverse powers of R up to the third power has been discussed [36].

In the following subsection, we discuss the expansion of the matrix element ⟨I|Vω |F ⟩ which determines the ICD
rate for small and intermediate sized excess energies up to the term ∝ 1/R4 relevant for energy transfer from dark
states.
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C. Expansion in powers of 1/R: Small energies

1. Energy transfer from bright states

Let us start with energy transfer from a bright state. At small energies ℏω, the dipole approximation is valid. If
we collect for each term ∝ 1/Rn the leading contribution in ω/c, we find [36]

⟨I|Vω |F ⟩ = ei
ω
c R

[(ω
c

)2 −SDA + SDA
∥

R
+ i

(ω
c

) −SDA + 3SDA
∥

R2
+

SDA − 3SDA
∥

R3

]
,

SDA = dD · dA, SDA
∥ = (u

DA
· dD)(u

DA
· dA). (18)

The appearance of this matrix element is identical to the result obtained using QED and the dipole approximation
[37]. See also [57], where the result of [37] is given in the present notation. As seen, the expression of the term
∝ 1/R3 is identical to that obtained using the bare Coulomb interaction in Eq. (11), except for the phase factor ei

ω
c R.

This factor does not contribute to the ICD rate though. However, there is a subtle difference between the QED and
Coulomb results on the one hand side and the result in Eq. (18) on the other hand. The latter has been derived for
relativistic states which are solutions of the Dirac-Breit Hamiltonian and the former for states which are solutions of
the Schrödinger equation. For small energies, the differences are expected to be minor, but they might be of some
importance for intermediate sized energies like core energies of light atoms where ωa0/c < 1 (a0 is the Bohr radius).
Of course, for ωa0/c > 1 Eq. (18) is meaningless as it has been derived for small energies. Then, the full relativistic
results discussed in Ref. [36] have to be considered.

2. Energy transfer from dark states at very large R

Next, we turn to energy transfer from dark states. As the transition dipole moments vanish, all terms in Eq. (18)
also vanish and we have to compute the next leading contributions in powers of (ω/c)n as well as extend the discussion
to the term ∝ 1/R4, as we have already seen in Subsection IIA for the bare Coulomb case.

For large excess energies, when the donor is embedded in an environment containing many acceptors, the long range
contribution ∝ 1/R is the most relevant [36]. We shall see below that even for small energies this contribution is
particularly interesting. We start with the full relativistic compact expression [36]:

⟨I|Vω |F ⟩ = ei
ω
c R

R

[
ϵDϵA − ϵDα · ϵAα

]
, (19)

where we have used the following abbreviations

ϵD =
∑
i

⟨ΨD∗ | eiω
c (u

DA
·ri) |ΨD⟩ ,

ϵA =
∑
j

⟨ΨA| e−iω
c (u

DA
·r′j) |ΨA+⟩ ,

ϵDα =
∑
i

⟨ΨD∗ | eiω
c (u

DA
·ri)αi |ΨD⟩ ,

ϵAα =
∑
j

⟨ΨA|αje
−iω

c (u
DA

·r′j) |ΨA+⟩ . (20)

Let us first evaluate ϵDϵA. The leading term in power of (ω/c) is obtained by expanding the phase factor ei
ω
c (u

DA
·ri)

in ϵD up to second order and the respective factor in ϵA up to first order. One obtains ϵDϵA = i
2

(
ω
c

)3 ⟨ΨD∗ |
∑

i(uDA
·

ri)
2 |ΨD⟩ dA∥ . It is much more involved to evaluate the second term in Eq. (19). For finding the leading term in power

of (ω/c) it suffices to expand the phase factor in ϵDα up to first order and to zeroth order in ϵAα as every Dirac matrix
introduces a quantity energy/c, see below. It is helpful to first introduce the following relation between coordinates
and Dirac matrices, see, e.g., [58]

αi =
i

ℏc
[H, ri] , (21)
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which immediately gives ϵAα = −i
(
ω
c

)
dA. The evaluation of ϵDα is more complicated. Since the transition D∗ → D is

optically forbidden, one has as the leading term in in power of (ω/c)

ϵDα = i
ω

c

∑
i

⟨ΨD∗ | (u
DA

· ri)αi |ΨD⟩

=
i

2

ω

c

[∑
i

⟨ΨD∗ | (u
DA

· ri)αi |ΨD⟩+
∑
i

⟨ΨD∗ |αi(uDA
· ri) |ΨD⟩

]
. (22)

Here, the Dirac matrices cannot be replaced by coordinates alone. However, inserting the relation (21) into the above
equation, we arrive at the useful identity:

⟨ΨD∗ | (u
DA

· ri)αi |ΨD⟩ = ⟨ΨD∗ |
{ iω

2c
(u

DA
· ri)ri +

1

2

[
(u

DA
· ri)αi − (u

DA
·αi)ri

]}
|ΨD⟩ ,

⟨ΨA| (uDA
· r′j)α′

j |ΨA+⟩ = ⟨ΨA|
{
− iω

2c
(u

DA
· r′j)r′j +

1

2

[
(u

DA
· r′j)α′

j − (u
DA

·α′
j)r

′
j

]}
|ΨA+⟩ , (23)

where we have also given the respective identity for the acceptor in case one is interested in the situation that A
cannot be ionized by a dipole transition.

One sees that there are two basic contributions to the matrix element ⟨I|Vω |F ⟩ which determines the ICD rate
at large distances. The first can be expressed by electronic coordinates and will be identified below with quadrupole
transition moments while the Dirac matrices cannot be eliminated from the second contribution. It is illuminating to
analyze the latter contribution in detail.

We introduce the appealing vectors and their respective transition matrix element

L =
∑
i

Li =
∑
i

ri ×αi = (Lx,Ly,Lz) (24)

LD = ⟨ΨD∗ |L |ΨD⟩ .

We call L the relativistic angular moment. Choosing the z-axis to be parallel to the unit vector u
DA

, one readily finds∑
i

[
(u

DA
· ri)αi − (u

DA
·αi)ri

]
= (Ly,−Lx, 0). (25)

As this term contributes to ⟨I|Vω |F ⟩ via the scalar product ϵDα · ϵAα, see Eq. (19), the quantity LD
x dAy − LD

y dAx
arises which is nothing but the z-component of the cross product LD × dA. In an arbitrary coordinate system, this
component is the one parallel to u

DA
and is specified as (LD × dA)∥.

We are now in the position to collect all contributions and express them by dipole, quadrupole and relativistic
angular moments. The final result takes on the compact appearance

⟨I|Vω |F ⟩ = −ei
ω
c R

R

[ i
2

(ω
c

)3

qD
⊥ · dA

⊥ +
1

2

(ω
c

)2

(LD × dA)∥

]
, (26)

where the scalar product qD
⊥ · dA

⊥ has been introduced and discussed in Section IIA. Comparing with the result (11)
for the bare Coulomb interaction, we see that apart from the different power of 1/R, the parallel component of the
quadrupole moment qD∥ does not appear in Eq. (26), but instead a magnetic term appears. As typical, electric

quadrupole and magnetic dipole transitions appear together in relativistic theory [59, 60].

3. Energy transfer from dark states: The remaining terms

As found in Eq. (26), the leading contribution in powers of (ω/c)n to the central matrix element ⟨I|Vω |F ⟩ is of
third power (we remind that a Dirac matrix scales as energy/c, see Eq. (21)). Analogously, the leading contribution
to the term of ⟨I|Vω |F ⟩ proportional to 1/R2 scales as (ω/c)2, that proportional to 1/R3 scales as (ω/c)1 and finally
the scaling is (ω/c)0 for the term proportional to 1/R4. The situation reminds of the finding in Eq. (18) for energy
transfer from bright states.

To proceed, we make use of the complete list of the explicit expressions contributing to the terms of ⟨I|Vω |F ⟩
proportional to 1/R2 and 1/R3 which are provided in Appendix B in Ref. [36]. There, the expressions are ordered in
growing powers of (ω/c) which is helpful in collecting the leading contributions to the matrix element. As done in the
preceding subsection IIC 2, the phase factor is expanded in a Taylor series to the needed term and then use is made
of Eq. (21).

Page 7 of 13 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Q

ad
o 

D
ir

ri
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

1/
08

/2
02

5 
4:

30
:3

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5CP01449B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp01449b


8

In the case of ⟨I|Vω |F ⟩ ∝ 1/R2, the quantity ϵDα appears, see Eq. (22) and is evaluated as in Eqs. (23) to (25).
Collecting all contributions and expressing them as above by dipole, quadrupole and relativistic angular moments,
one obtains:

ei
ω
c R

R2

{
3

2

(ω
c

)2 [
qD
⊥ · dA

⊥ − qD∥ dA∥ +
2

3
qD0 dA∥

]
+

i

2

(ω
c

)
(LD × dA)∥

}
. (27)

Here, in contrast to the term ∝ 1/R in Eq. (26), the parallel component of the quadrupole moment appears and, in
contrast to all terms, see below, also the isotropic quadrupole moment qD0 = ⟨ΨD∗ |

∑
i r

2
i |ΨD⟩.

The evaluation of the leading contributions to the terms ∝ 1/R3 and, in particular, ∝ 1/R4, is less involved since
the relativistic angular moment does not appear. Because the leading contributions to the term ∝ 1/R4 scale as
(ω/c)0, the result is, up to the phase factor ei

ω
c R identical to Eq. (11) for the bare Coulomb interaction. The final

result for these terms reads

ei
ω
c R

[
9qD∥ dA∥ − 6qD

⊥ · dA
⊥

]1
2

[(
− iω

c

)
1

R3
+

1

R4

]
. (28)

Note that except of the factor ±iω/c, the coefficient of the term ∝ 1/R3 is the same as that of the term ∝ 1/R4, and
the same applies for the terms ∝ 1/R2 and ∝ 1/R3 describing energy transfer from bright states, see Eq. (18).

D. Expansion in powers of 1/R: Intermediate energies

1. Energy transfer from bright states: Corrections

In Section IIC, we have derived the leading contribution in powers of ω/c of each of the 1/R-Taylor expansion
terms of the transfer matrix element ⟨I|Vω |F ⟩ determining the energy transfer rate. Obviously, the results obtained
are valid for small transferred energies. What about intermediate sized energies, where ωa0/c (a0 = 1 a.u.) is still
well smaller than 1 allowing for collecting the next leading contributions in powers of ω/c? Notice that as c = 137
a.u., ω/c = 1 implies a rather large excess energy of 3781 eV which is above the binding energy of the K 1s core
electron. In other words, there is a large range of energies available, where ω/c ≪ 1.

We can take advantage of the fact that the starting point has been the full relativistic expressions of the 1/R-Taylor
expansion determined in Ref. [36] and, in principle, determine as many contributions in powers of ω/c as one wishes.
An additional advantage of such an approach is that all appearing relevant quantities, like energies and multipole
moments, are expressed with the Dirac-Breit relativistic wavefunctions of the donor and acceptor.

For energy transfer from bright states there is no need for further derivation. One just has to add the leading
contributions given in Eq. (18) and those in Eqs. (26–28). The latter constitute the next order corrections to the
former. For completeness, we express the collected terms explicitly in a compact form:

⟨I|Vω |F ⟩ = ei
ω
c R

4∑
n=1

[(ω
c

)3−n
Mn +

(
ω
c

)4−n
Cn

Rn

]
, (29)

where the following abbreviations are used for the ‘main’ quantities Mn

M1 = −dD · dA + (u
DA

· dD)(u
DA

· dA) ,

M2 = −iM3 = i
[
−dD · dA + 3(u

DA
· dD)(u

DA
· dA)

]
,

M4 = 0 , (30)

and for the ‘corrections’ Cn

C1 = − i

2
qD
⊥ · dA

⊥ − 1

2

( c

ω

)
(LD × dA)∥ ,

C2 =
3

2

[
qD
⊥ · dA

⊥ − qD∥ dA∥ +
2

3
qD0 dA∥

]
+

i

2

( c

ω

)
(LD × dA)∥ ,

C3 = −iC4 =
i

2

[
6qD

⊥ · dA
⊥ − 9qD∥ dA∥

]
. (31)

Note that the relativistic angular moment, see Eq. (24), contains a Dirac matrix which scales as energy/c.
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2. Energy transfer from dark states: Discussion

In complete analogy to the spirit of the preceding subsection, one can use the explicit terms provided in [36] for
the expansion of the energy transfer matrix element to obtain the next leading contributions in powers of ω/c also for
dark states. As many terms appear containing various sextupole and octupole moments and, in addition, as we expect
these moments to be rather small in general, we refrain from listing them. Instead, we will discuss the relevance of
the terms derived in this work.

Let us return to the weakly bound BaZn dimer discussed in Section IIA. To remove an electron from Zn 4s requires
9.39 eV and from Zn 3d 17.51 eV [61]. After ionizing the Zn 3d shell an 4s electron fills this vacancy and the excess
energy available is 8.12 eV (= 0.29 a.u.) sufficient to undergo ICD with the Ba neighbor. The ICD rate in Eq.
(13) stems from the term of the matrix element ∝ 1/R4, see Eqs. (11) and (28). As discussed above, this rate is
much larger than the radiative rate of the isolated Zn 3d vacancy, explaining the dominance of ICD, but still much
smaller than the ab initio result. See Figure 1. As can be seen in Eqs. (26 - 28), the terms due to retardation and
magnetic effects provide a less steep decline with R of the matrix element and hence of the ICD rate. Each power of
1/R less than 1/R4 is accompanied by a factor ω/c. For Zn, ω/c = 2 × 10−3 which implies that R should be about
2.5× 102 Å in order to contribute similarly as the term ∝ 1/R4. At such long distances the overall ICD rate is rather
small, see Figure 1.
Having seen that for BaZn the impact of retardation and magnetic effects on ICD after Zn 3d ionization is small

compared to the impact of the bare Coulomb interaction, we ask at what scenarios do we expect these effects to be
relevant. We mention two scenarios.

Following the remarks made in the preceding subsection, it suggests itself that choosing systems and transitions
with substantially larger excess energies is advantageous. For simplicity, we first consider ions with a Zn-like core.
Ionizing the 3d shell of Xe24+, for instance, provides excess energies from the 4s→3d transitions of 582 eV (3d5/2)

595 eV (3d3/2) [62]. These lead to ω/c ≈ 0.15. Following the above discussion, the term ∝ 1/R3 will contribute

similarly to the term ∝ 1/R4 already at about the equilibrium distance of the BaZn dimer, see Eq. (28). The excess
energy available after removing an electron from the 3d shell of Au49+ is estimated to be about 1500 eV [63] and thus
ω/c ≈ 0.39, implying that the two terms ∝ 1/R3 and ∝ 1/R4 contribute the same already at a distance of about
1.35 Å. Of course, the impact of retardation falls off slower with distance than that of the bare Coulomb interaction.
In other words, taking into account all the terms contributing to the ICD, collected in Eqs. (26 - 28), one can expect
the retardation and magnetic effects to be the dominating ones in the energy transfer from the above dark states.

Highly charged ions are often used as projectiles in experiments and, more recently, also for investigating ICD, see
[32, 64]. In these cases, ICD is induced by the collision, but not by energy transfer from the ion as discussed in this
work. It might, therefore, be more suitable from a practical point of view, to investigate ICD starting from a neutral
heavy atom and a neighbor like in the example of the BaZn dimer. We may use again Xe and Au as above, but as
neutral atoms. The conclusion drawn above that retardation and magnetic effects dominate the contribution to ICD
by the bare Coulomb interaction for essentially all values of R, applies also to the case of ionizing the 3d shell of these
neutral atoms. However, the situation differs in that the created 3d vacancy in the ions discussed above is a dark
state, while in the neutrals there are many channels for ICD since there are many electrons energetically above the
vacancy. In that sense, one can characterize the transitions filling the vacancy and leading to ICD with a neighbor as
either bright or dark transitions. As each transition gives rise to an ICD electron emitted from the neighbor with a
characteristic kinetic energy, one can, in principle, discriminate the channels.

As a last point of this first scenario, we would like to mention that the radiative rates due to quadrupole transitions
can be expected to be larger for the same kind of vacancies in the heavier elements [65] and this may enhance the
respective ICD rate. Of course, much depends on the suitability of the neighboring system, in particular, on its
photoionization cross section at the respective energy corresponding to the excess energy.

In the second scenario we consider a donor embedded in an extended environment containing many acceptors. The
situation has been discussed in detail in [36] and we only briefly address it here in connection with energy transfer via
a dark transition. Employing the full Dirac-Breit theory and assuming the various donors to interact weakly with each
other and, for simplicity, to be homogeneously spherically distributed around the donor, gives rise to the following
simple expression for the total ICD rate:

Γtotal
ICD

= Γtotal
ICD

(0, R0) + γDe−R0/Ratt . (32)

Here, Γtotal
ICD

(0, R0) is the ICD rate due to the neighboring acceptors within a distance R0 from the donor chosen to be
large enough such that the matrix element in Eq. (26) applies for R ⪆ R0. As we have seen in Figure 1, this rate can
be rather larger than predicted by asymptotic expansions. Consequently, it is advisable to compute this quantity by
other means, e.g., by relativistic ab initio methods, if possible. Furthermore, this quantity grows substantially with
the number of neighbors [8–11]. Ratt is the attenuation length parameter describing the losses a photon beam has in
matter [66–68]. This parameter depends on the photon energy and is typically larger for larger energies.
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As seen from expression (32), the remote acceptors alone can suppress the radiation of the donor, provided that
Ratt ≫ R0, which is expected to be the case for larger excess energies. Interestingly, the radiative rate γD of the
donor grows with the photon energy the donor would emit if isolated [65], and, nevertheless, this radiation will be
suppressed.

III. CONCLUSION

By employing the Dirac-Breit Hamiltonian, where the Dirac Hamiltonian has been complemented by the frequency
dependent Breit interaction, we are able to derive and analyze asymptotic expressions for energy transfer incorporating
relativistic effects. Here, we expand the general full relativistic expressions derived recently to obtain the various
asymptotic contributions in the leading powers of ω/c (ℏω is the energy transferred). The work first concentrates
on energy transfer from dark states of the donor, i.e., states which cannot decay radiatively by a dipole transition.
Except of the derivations themselves, the main goal is to analyze the terms arising due to retardation and magnetic
effects and to assess whether they can be of relevance for energy transfer from dark states.

From the expressions obtained it becomes evident that retardation and magnetic effects are essentially negligible
for energy transfer between a dark bound electronic state of the donor and a bound state of the acceptor compared to
the impact of the bare Coulomb interaction. This applies as well to the case of ICD at small energies as the detailed
discussion of the BaZn dimer after Zn 3d ionization demonstrates.

However, it becomes clear that the situation can change drastically if one considers the transfer of intermediate
sized energies as possible in the case of ICD. Already a transfer of about 500 eV energy, makes retardation effects
similarly relevant as the Coulomb interaction at internuclear distances typical for equilibrium distances of weakly
bound dimers. Obviously, when increasing the transferred energy further, the impact of retardation effects can
overtake that of the bare Coulomb interaction between the donor and acceptor and even magnetic effects may become
relevant. At such intermediate sized energies, standard non-relativistic calculations should suffice to obtain reliable
transition quadrupole moments and energies. At substantially higher energies, one will have to resort to relativistic
calculations, and as the quotient ωa0/c is no longer a small quantity, the expansion employed here cannot be used,
and the full relativistic expressions derived recently have to be considered.

Dark states with intermediate sized excess energies are available, for instance, in highly charged atomic ions. Such
atoms are used in experiments, also on ICD. A particularly transparent situation is found for ions isoelectronic with
neutral Zn. But, in principle, one is not confined to dark states in order to apply the present approach. To arrive
at sufficiently large excess energies in neutral atoms, dark transitions of many-electron atoms can be envisaged. For
instance, after removing a 3d electron of Xe, there are many channels available for ICD with a neighbor, some of
them are from the transition of an s electron to fill the 3d vacancy. Measuring the kinetic energy of the ICD electron
allows one to identify the dark transition in question. In this context we mention that not only the excess energies,
but also the absolute values of the quadrupole moments are expected to typically grow for the same kind of vacancies
in the heavier elements and this too may enhance the respective ICD rate.

As found for energy transfer from bright states of the donor, the true power of ICD becomes apparent also for
transfer from dark states by employing ab initio methods to compute the ICD rate. At equilibrium geometry of
weakly bound systems, the ab initio computed rates can be orders of magnitude larger than those computed by the
asymptotic expressions. This might be even more so for transfer from dark states because the presence of a close
by neighbor can reduce the symmetry of the donor enhancing the ICD. Nevertheless, the asymptotic expressions are
very useful in understanding and estimating whether a given constellation is relevant to ICD, see also Section IIA.
Of course, the asymptotic expressions become reliable estimates at larger distances between the donor and acceptor.
Retardation and magnetic effects become particularly relevant at very large distances in the presence of many donors.
Here, the full Dirac-Breit theory predicts a paradigm, namely that much of the radiative rate is suppressed and turned
into ICD.
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