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Bioorthogonal activation and mitochondrial
targeting of a near-infrared-emitting iridium(III)
nitrone complex via cyclooctynylated
phosphonium cations for enhanced cellular
imaging and photodynamic therapy†

Edward R. H. Walter, ‡a,b Lawrence Cho-Cheung Lee, ‡b,c

Peter Kam-Keung Leung, ‡c,d Kenneth Kam-Wing Lo *c,d and
Nicholas J. Long *a

In this work, we designed and synthesised a new cyclometallated iridium(III) nitrone complex [Ir

(bpz)2(bpy-nitrone)](PF6) (1) (Hbpz = benzo[a]phenazine; bpy-nitrone = 4-((methyl(oxido)imino)methyl)-

4’-methyl-2,2’-bipyridine) as a bioorthogonally activatable phototheranostic agent. Complex 1 displayed

very weak emission and singlet oxygen (1O2) photosensitisation in solutions due to the quenching nitrone

moiety. However, upon the strain-promoted alkyne–nitrone cycloaddition (SPANC) reaction with bicyclo

[6.1.0]non-4-yne (BCN), which converted the nitrone unit to a non-quenching isoxazoline derivative, the

complex exhibited a substantial increase in emission intensity in the near-infrared region and 1O2 gene-

ration efficiency. Given that mitochondria are a crucial target in cancer therapy, we prepared a series of

BCN-functionalised phosphonium cations (BCN-Phos-n), each bearing different substituents, to serve as

mitochondrial-targeting vectors for delivering complex 1 to the mitochondria via the bioorthogonal

SPANC reaction. Notably, complex 1 exhibited more significant emission turn-on upon reaction with

BCN-Phos-5 and BCN-Phos-6 (I/Io = 24.7 and 14.1, respectively), attributed to their increased hydropho-

bicity resulting from the methylation or methoxylation of the phenyl rings on the phosphonium cation.

Live-cell confocal imaging and flow cytometric analyses revealed that complex 1 showed larger emission

enhancement in HeLa cells pretreated with BCN-Phos-5 or BCN-Phos-6 compared to other BCN-Phos-

n analogues. Co-staining experiments confirmed that the resultant luminescent isoxazoline cycloadducts

predominantly accumulated in the mitochondria. Additionally, both dark and light-induced cytotoxicity of

complex 1 increased upon pretreatment of the cells with BCN-Phos-5 or BCN-Phos-6. Our results

demonstrate that the theranostic potential of transition metal nitrone complexes can be significantly

enhanced via strategic structural manipulation of their bioorthogonal reaction partners.

Introduction

Over the past two decades, the development of bioorthogonal
chemistry1,2 has revolutionised the fields of chemical
biology3–5 and biomedicine.6–8 Bioorthogonal ligation reac-
tions between two abiotic functionalities have enabled the
visualisation of specific biomolecules and associated biologi-
cal events in live cells using fluorescence microscopy.9 The use
of fluorescent probes, however, can lead to unavoidable back-
ground fluorescence due to non-specific covalent labelling and
the entrapment of unreacted probes within the cellular
environment. Thus, there has been significant interest in the
development of fluorogenic bioorthogonal probes, whose fluo-
rescence is quenched by the appended bioorthogonal group
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and can only be restored upon specific bioorthogonal reac-
tions, thereby enhancing the precision of fluorescence
imaging.10–12 This design strategy has recently been extended
to the development of activatable photosensitisers for targeted
photodynamic therapy (PDT).13,14 The controlled activation of
the reactive oxygen species (ROS) photosensitisation capabili-
ties of the photosensitisers through bioorthogonal reactions
can minimise undesirable off-target photodamage often
observed with traditional photosensitisers, which display
“always-on” photosensitisation properties and lack target
selectivity.

Luminescent and photofunctional transition metal com-
plexes have gained significant attention as phototheranostics
due to their attractive photophysical and photochemical
properties, including high photostability, long-lived and
environment-sensitive emission, as well as efficient ROS
photosensitisation.15–19 We have a long-standing interest in
the development of these complexes as bioorthogonal reagents
for various biological and biomedical applications.20 In 2016,
we demonstrated for the first time that nitrone, a 1,3-dipole
that can selectively react with cyclooctynes via the strain-pro-
moted alkyne–nitrone cycloaddition (SPANC) reaction,21 can
serve as an emission quencher for transition metal complexes,
providing a new avenue for the development of phosphoro-
genic bioorthogonal probes.22,23 The nitrone-modified com-
plexes are non-emissive in solutions, but exhibit significant
emission enhancement upon reaction with bicyclo[6.1.0]non-
4-yne (BCN) derivatives (Scheme 1). This modification also
allows for the modulation of the ROS photosensitisation
efficiencies of the complexes, enabling controlled activation of
their emission and ROS generation behaviour in targeted

cells.24,25 Thus, transition metal nitrone complexes represent a
promising scaffold for the development of bioorthogonally
activatable probes and photosensitisers.

Mitochondria are crucial subcellular organelles involved in
a wide range of important biological processes including
energy production,26 biomolecular synthesis,26 calcium signal-
ling,27 as well as cell proliferation and death.28 Mitochondrial
dysfunction can lead to various diseases such as cancer29 and
neurodegenerative disorders.30 Given their pivotal role in
maintaining cellular functions, mitochondria have become an
important target for cancer therapy.31 Mitochondria possess a
negative membrane potential (ca. −120 to −180 mV), and it
has been reported that the mitochondria in cancer cells are
more hyperpolarised than in normal cells due to their higher
metabolic activity.32 Thus, lipophilic cations such as triphenyl-
phosphonium cation (TPP+) preferentially accumulate in the
mitochondria over other subcellular organelles, resulting in ca.
100–1000-fold higher intramitochondrial concentrations.33

These moieties have been engineered with various bioorthogo-
nal handles to precisely direct fluorescent/fluorogenic
bioorthogonal probes to the mitochondria, facilitating the
imaging of these organelles in live cells.34–46 This approach
enables the monitoring of mitochondrial membrane potential
changes47 and mitophagy,48 as well as the activation of mito-
chondria-enriched prodrugs for applications in cancer
therapy49–53 and cardioprotection.54 However, the use of a two-
step bioorthogonal approach for delivering photoactive tran-
sition metal complexes to the mitochondria, and controlled
activation of their emission and ROS photosensitisation pro-
perties for bioimaging and PDT applications remains
unexplored.

In this work, we designed, synthesised and characterised a
new cyclometallated iridium(III) nitrone complex [Ir(bpz)2
(bpy-nitrone)](PF6) (1) (Hbpz = benzo[a]phenazine; bpy-
nitrone = 4-((methyl(oxido)imino)methyl)-4′-methyl-2,2′-bipyri-
dine) (Scheme 2) as a bioorthogonally activatable photothera-
nostic agent. The Hbpz ligand was selected because its metal
complexes show near-infrared (NIR) emission and high singlet
oxygen (1O2) generation efficiencies.55 Additionally, we pre-
pared a series of BCN-modified phosphonium cations
(BCN-Phos-n) (Scheme 2) as mitochondrial-targeting vectors to

Scheme 1 The SPANC reaction of phosphorogenic iridium(III) nitrone
complexes with BCN derivatives leading to the formation of luminescent
isoxazoline cycloadducts.

Scheme 2 Structures of complex 1 and BCN-Phos-n.
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direct the nitrone complex to the mitochondria via the SPANC
reaction. Specifically, BCN-Phos-1–BCN-Phos-4 carried varying
numbers of cyclohexyl (Cy) and phenyl (Ph) moieties on the
phosphonium cation to tune their aromaticity;56–58 while
BCN-Phos-5–BCN-Phos-7 contained different substituents on
the phenyl rings of the TPP+ unit, including two methyl
(BCN-Phos-5) or methoxy groups (BCN-Phos-6) at the meta-
positions to enhance their lipophilicity,59–62 or a di(ethylene
glycol) pendant at the para-position (BCN-Phos-7) to increase
its aqueous solubility and biocompatibility.57,58

Results and discussion
Synthesis and characterisation of complex 1 and BCN-Phos-n

The synthesis of complex 1 involved the reaction of the
dichloro-bridged iridium(III) dimer [Ir2(bpz)4Cl2] with the
ligand bpy-nitrone in CH2Cl2/MeOH (Scheme 3a), followed by
anion exchange with KPF6 and purification by column chrom-
atography and recrystallisation from CH2Cl2/Et2O. The
complex was characterised by high resolution (HR)-ESI-MS, 1H
and 13C NMR and IR spectroscopy, and gave satisfactory
elemental analyses (ESI†).

The BCN-modified phosphonium cations BCN-Phos-n were
synthesised using the corresponding phosphine precursors
(Phos-n) (Scheme 3b), which were either purchased from com-
mercial suppliers (for Phos-1–Phos-4) or prepared according to
previously reported protocols (for Phos-5–Phos-7).63,64 The
phosphine precursors were reacted with 3-bromopropylamine
hydrobromide in n-butanol under reflux for 3 days, in a pro-

cedure adapted from Zhou and co-workers.65 The resultant
amine-functionalised phosphines (H2N-Phos-n) were obtained
as ammonium salts in good yields (44–62%) after purification
by recrystallisation from isopropanol/Et2O, except for
H2N-Phos-1 which did not precipitate out of Et2O and was,
therefore, used in subsequent steps without further purifi-
cation. Amide coupling of H2N-Phos-n with (1R,8S,9S)-bicyclo
[6.1.0]non-4-yn-9-ylmethyl N-succinimidyl carbonate (BCN–
NHS) was achieved under mild basic conditions.22–25 All
BCN-Phos-n analogues were obtained in average to good yields
(45–78%) after purification by silica gel column chromato-
graphy. These compounds were characterised by HR-ESI-MS
and 1H, 13C and 31P NMR spectroscopy (ESI†).

Photophysical and photochemical properties of complex 1

Complex 1 displayed intense spin-allowed intraligand (1IL)
(π → π*) (bpy-nitrone and bpz) absorption in the UV region
(ca. 274–431 nm, ε on the order of 104 dm3 mol−1 cm−1) and
weaker spin-allowed metal-to-ligand charge-transfer (1MLCT)
(dπ(Ir) → π*(bpy-nitrone and bpz)) absorption features in the
visible region (ca. 456–550 nm) (Fig. 1a and Table S1,
ESI†).25,55 The strong absorption in the region of 500–600 nm
is an attractive feature because it allows for efficient photo-
excitation using green light. The weaker absorption tailing
beyond ca. 615 nm is assigned to spin-forbidden 3MLCT
(dπ(Ir) → π*(bpy-nitrone and bpz)) transitions. Upon photoirra-
diation, the complex exhibited NIR emission in fluid solutions
at 298 K (Table 1 and Fig. 1b). Additionally, it showed a vibro-
nically structured emission band with an extraordinarily long
emission lifetime (8.79 μs) in an alcohol glass at 77 K (Table 1

Scheme 3 Synthetic routes of (a) complex 1 and (b) BCN-Phos-n.

Inorganic Chemistry Frontiers Research Article
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and Fig. 1b). These observations suggest that the emission of
the complex originates from a predominant 3IL (π → π*) (bpz)
excited state with possible mixing of some 3MLCT (dπ(Ir) → π*
(bpy-nitrone/bpz)) character.25,55 Similar emission features
were observed when the complex was excited at 550 nm, indi-
cating that the emission is largely independent of the exci-
tation wavelength. Importantly, the emission quantum yields
of the complex (Φem ≤ 0.0047; Table 1) were significantly lower

than those of related bpz complexes,55 indicating efficient
emission quenching by the appended nitrone unit.22–25

Additionally, the 1O2 generation quantum yield (ΦΔ) of the
complex was determined by monitoring the emission band of
1O2 centred at ca. 1270 nm in aerated CH3CN. The small ΦΔ

value (0.05; Table 1) indicates strong suppression of the 1O2

photosensitisation capability of the complex by the quenching
nitrone moiety.

Bioorthogonal reactivity and phosphorogenic response of
complex 1

We utilised the strained alkyne (1R,8S,9S)-bicyclo[6.1.0]non-4-
yn-9-ylmethanol (BCN–OH) as a model substrate to examine
the bioorthogonal reactivity of the nitrone complex. The
second-order rate constant (k2) of the SPANC reaction of the
complex with BCN–OH in MeOH at 298 K was determined to
be 0.3309 M−1 s−1 (Fig. S1, ESI†), which is 8.3 times greater
than that of the free ligand bpy-nitrone (k2 = 0.040 M−1 s−1).22

The accelerated reaction kinetics can be attributed to the
direct coordination of the nitrone ligand to the cationic
iridium(III) polypyridine unit, which enhanced its
reactivity.22–25 Importantly, upon the SPANC reaction with
BCN–OH in aerated phosphate-buffered saline (PBS; pH 7.4)/
MeOH (9 : 1, v/v), the complex showed substantial emission
enhancement (I/Io = 5.8; Table 2 and Fig. 2a) and lifetime
extension (τ increased from 0.05 to 0.13 μs; Table 2), resulting
from the conversion of the quenching nitrone moiety to a non-
quenching isoxazoline derivative. The formation of the isoxa-
zoline product 1-BCN was verified by ESI-MS analysis (Fig. S2,
ESI†). Conjugate 1-BCN was isolated and purified, and its
photophysical and 1O2-photogeneration properties were inves-
tigated. Both Φem (0.062–0.072; Table 1) and ΦΔ (0.76; Table 1)
values of conjugate 1-BCN are larger than those of complex 1
(Φem ≤ 0.0047, ΦΔ = 0.05; Table 1). These results confirm that
both the emission and 1O2-photosensitisation properties of
complex 1 can be activated through the bioorthogonal SPNAC
reaction with BCN derivatives, which effectively eliminates the
nitrone-associated quenching pathway.

Fig. 1 (a) Electronic absorption and (b) normalised emission spectra of
complex 1 in CH2Cl2 (black) and CH3CN (red) at 298 K and in alcohol
glass at 77 K (blue).

Table 1 Photophysical data and 1O2 generation quantum yields (ΦΔ) of
complexes 1 and 1-BCN

Complex Medium (T/K) λem
a/nm τo

b/μs Φem
c ΦΔ

d

1 CH2Cl2 (298) 664 4.80 0.0047
CH3CN (298) 668 2.97 0.0043 0.05
Glasse (77) 668, 730 sh 8.79

1-BCN CH2Cl2 (298) 666 4.28 0.072
CH3CN (298) 668 2.67 0.062 0.76
Glasse (77) 667, 729 sh 9.63

a λex = 350 nm. b The lifetimes were measured at the emission maxima
(λex = 355 nm). c The Φem values were determined in degassed solvents
using [Ru(bpy)3]Cl2 (Φem = 0.040 in aerated H2O, λex = 455 nm)66 as a
reference. d The ΦΔ values were determined in aerated solvents using
[Ru(bpy)3]Cl2 (ΦΔ = 0.57 in aerated CH3CN, λex = 450 nm)67 as a refer-
ence. e EtOH/MeOH (4 : 1, v/v).

Table 2 Emission wavelengths (λem), emission enhancement factors (I/
Io) and emission lifetimes (τ) of complex 1 (10 μM) upon reaction with
BCN–OH or BCN-Phos-n (250 μM) in aerated PBS (pH 7.4)/MeOH (9 : 1,
v/v) at 298 K for 24 h

Entry λem I/Io
a τ/μs

1 695 — 0.05
1 + BCN–OH 684 5.8 0.13
1 + BCN-Phos-1 687 4.2 0.15
1 + BCN-Phos-2 690 3.8 0.14
1 + BCN-Phos-3 703 3.1 0.12
1 + BCN-Phos-4 686 3.3 0.13
1 + BCN-Phos-5 674 24.7 0.33
1 + BCN-Phos-6 677 14.1 0.25
1 + BCN-Phos-7 706 4.5 0.19

a Io and I are the emission intensities of the complex (10 μM) in the
absence and presence of BCN–OH or BCN-Phos-n (250 μM),
respectively.

Research Article Inorganic Chemistry Frontiers
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We also investigated the phosphorogenic response of
complex 1 towards the BCN-Phos-n derivatives. Incubation of
complex 1 with the BCN-Phos-n analogues in aerated aqueous
buffers led to substantial emission enhancement (I/Io =
3.1–24.7) and lifetime extension (τ = 0.12–0.33 μs) (Table 2 and
Fig. 2b). Notably, the BCN-Phos-5 and BCN-Phos-6 treatment
resulted in a larger increase in emission intensity (I/Io = 24.7
and 14.1) and lifetime (τ = 0.33 and 0.25 μs), accompanied by a
notable blue shift in the emission maximum from 695 nm to
674 and 677 nm, respectively (Table 2 and Fig. 2b). The more
significant photophysical changes compared to other
BCN-Phos-n analogues are likely due to the formation of a
more hydrophobic pendant after reaction with BCN-Phos-5
and BCN-Phos-6, which feature two lipophilic methyl or
methoxy groups on each of the phenyl rings of the TPP+ unit,
resulting in a greater reduction in the polarity of the proximal
environment of the complex. Such a result aligns with our pre-
vious observations that luminescent iridium(III) polypyridine
complexes display higher emission intensities and longer life-
times in less polar solvents or upon bioconjugation to
proteins.68–73

Cellular uptake, localisation and (photo)cytotoxicity of
complex 1

We then studied the phosphorogenic response of the nitrone
complex towards the BCN-Phos-n derivatives in live HeLa cells.
The cells were first incubated with BCN-Phos-n (5 μM) for 2 h,
washed with PBS (pH 7.4), and then treated with complex 1
(5 μM) for an additional 2 h prior to imaging. Laser-scanning
confocal microscopy (LSCM) images reveal negligible emission
from HeLa cells incubated with complex 1 (Fig. 3a). However,
intense intracellular emission was observed upon pretreatment

Fig. 2 (a) Emission spectra of complex 1 (10 μM) in the absence (black)
and presence of BCN–OH (250 μM) (red) in aerated PBS (pH 7.4)/MeOH
(9 : 1, v/v) upon incubation at 298 K for 24 h. (b) Emission spectra of
complex 1 (10 μM) in the absence (black) and presence of BCN-Phos-1
(red), BCN-Phos-2 (blue), BCN-Phos-3 (magenta), BCN-Phos-4 (olive),
BCN-Phos-5 (navy), BCN-Phos-6 (violet) and BCN-Phos-7 (orange)
(250 μM) in aerated PBS (pH 7.4)/MeOH (9 : 1, v/v) upon incubation at
298 K for 24 h. Excitation wavelength = 350 nm.

Fig. 3 (a) LSCM images of HeLa cells incubated with complex 1 (5 μM,
2 h; λex = 488 nm, λem = 650–750 nm) without or with pretreatment of
BCN-Phos-n (5 μM, 2 h) at 37 °C. Scale bar = 25 μm. (b) Flow cytometric
results of HeLa cells under different treatment. The cells were treated
with blank medium (2 h) (grey); complex 1 (5 μM, 2 h) (black);
BCN-Phos-5 (5 μM, 2 h) and then complex 1 (5 μM, 2 h) (red); and
BCN-Phos-6 (5 μM, 2 h) and then complex 1 (5 μM, 2 h) (blue) at 37 °C.

Fig. 4 LSCM images of HeLa cells pretreated with BCN-Phos-5 or
BCN-Phos-6 (5 μM, 2 h) and then incubated with complex 1 (5 μM, 2 h;
λex = 488 nm, λem = 650–750 nm) and MitoTracker Green (100 nM,
30 min; λex = 488 nm, λem = 506–526 nm) at 37 °C. Scale bar = 10 μm.
PCC = 0.79 (BCN-Phos-5) and 0.81 (BCN-Phos-6).

Inorganic Chemistry Frontiers Research Article
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of the cells with BCN-Phos-5 or BCN-Phos-6 (Fig. 3a). Flow
cytometric analysis confirmed that complex 1-treated cells
exhibited a 2.15- and 2.94-fold increase in emission intensity
when pretreated with BCN-Phos-5 and BCN-Phos-6, respect-
ively (Fig. 3b and Table S2, ESI†). Additionally, ICP-MS analysis
indicated that the cellular uptake of complex 1 remained
similar without (1.83 fmol per cell) and with pretreatment of
BCN-Phos-5 and BCN-Phos-6 (1.77 and 1.74 fmol per cell,
respectively) (Table S3, ESI†). These results confirm that the
observed intracellular emission enhancement is attributable to
the SPANC reaction of complex 1 with BCN-Phos-5 and
BCN-Phos-6, rather than an increase in cellular accumulation
of the complex. However, similar emission enhancement was
not observed for cells pretreated with other BCN-Phos-n deriva-
tives (Fig. 3a and S3 and Table S2, ESI†), consistent with their
smaller emission enhancement in solutions (I/Io = 3.1–4.5;
Table 2 and Fig. 2b). Co-staining experiments with
MitoTracker Green showed that the luminescent isoxazoline
cycloadducts formed from the reaction of complex 1 with
BCN-Phos-5 and BCN-Phos-6 were enriched in the mitochon-
drial region of the cells, with Pearson’s correlation coefficients
(PCC’s) of 0.79 and 0.81, respectively (Fig. 4). The mitochon-
drial accumulation of the isoxazoline cycloadducts is likely
due to their cationic and lipophilic character.74–80

We also examined the (photo)cytotoxicity of complex 1
towards HeLa cells with or without BCN-Phos-n pretreatment
using the Neutral Red uptake (NRU) assay. Complex 1 exhibi-
ted moderate dark cytotoxicity (IC50,dark = 18 μM) and substan-
tially enhanced photocytotoxic activity (IC50,light = 0.37 μM)
upon irradiation at 525 nm (10 mW cm−2) for 5 min (Fig. 5a
and Table S4, ESI†). Notably, the (photo)cytotoxicity of the
complex was further increased when the cells were pretreated
with BCN-Phos-5 or BCN-Phos-6, with IC50,dark values decreas-
ing to 9.6 and 6.3 μM and IC50,light values decreasing to 0.14
and 0.22 μM, respectively (Fig. 5b and c and Table S4, ESI†).
The enhanced dark cytotoxicity of the complex can be attribu-
ted to its increased accumulation in the mitochondria after
the SPANC reaction with BCN-Phos-5 or BCN-Phos-6, which
probably interferes with mitochondrial functions.79 Notably,
the photocytotoxicity of the complex was further enhanced fol-

lowing the reaction, which is attributed to the increased 1O2

generation by the resultant isoxazoline cycloadducts. These
results highlight that the therapeutic potential of the complex
can be enhanced via a judicious selection of its bioorthogonal
reaction partners.

Conclusions

In summary, we developed a novel iridium(III) nitrone complex
as a bioorthogonally activatable phototheranostic agent, and a
series of BCN-modified phosphonium cations serving as mito-
chondrial-targeting vectors to direct the nitrone complex to the
mitochondria via the bioorthogonal SPANC reaction for
imaging and PDT applications. Notably, the complex displayed
more pronounced emission turn-on upon reaction with
BCN-Phos-5 and BCN-Phos-6 compared to other BCN-Phos-n
analogues, attributed to the presence of additional hydro-
phobic methyl or methoxy groups on the phenyl rings of the
TPP+ unit that resulted in a more hydrophobic pendant.
Similar emission changes were observed in live cells pretreated
with BCN-Phos-5 or BCN-Phos-6. Owing to their cationic and
lipophilic character, the resultant luminescent isoxazoline
cycloadducts were enriched in the mitochondria. Importantly,
the (photo)cytotoxicity of the complex further increased when
the cells were pretreated with BCN-Phos-5 or BCN-Phos-6. Our
findings demonstrate that the theranostic potential of tran-
sition metal nitrone complexes can be enhanced through the
strategic structural manipulation of their bioorthogonal reac-
tion partners. We believe that our work will contribute to the
development of effective mitochondria-targeting agents for
diagnostic and therapeutic applications.
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