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High throughput computational and experimental methods for 
accelerated electrochemical materials discovery
Dr. Uzoma Nwabaraa, Dr. Kunran Yanga, Akshay Talekara, Dr. Varinia Bernalesa, Dr. Jorge Gonzaleza, 
Dr. Stuart Miller*a, and Dr. Jinfeng Wu*a

The full integration of sustainable technologies to combat climate change heavily depends on the discovery of cost-
competitive, safe, and durable performative materials, specifically for electrochemical systems that can generate energy, 
store energy, and produce chemicals.  Due to the vast exploration space, scientists have adapted high throughput methods, 
both computational and experimental, for screening, synthesis, and testing to accelerate material discovery.  In this review, 
we analyze such high throughput methodologies reported in the literature that have been applied to electrochemical 
material discovery.  We find that most reported studies utilize computational methods, including density functional theory 
and machine learning, over experimental methods.  Some labs have combined computational and experimental methods to 
create powerful tools for a closed loop material discovery process through automated setups and machine learning.  Either 
way, over 80% of the publications we reviewed focus on catalytic materials, revealing a shortage in high throughput ionomer, 
membrane, electrolyte, and substrate material research.  Moreover, we find that most material screening criteria do not 
consider cost, availability, and safety, all of which are crucial properties when assessing the economic feasibility of proposed 
materials.  In addition, we discover that high throughput electrochemical material discovery research is only being 
conducted in a handful of countries, revealing the global opportunity to collaborate and share resources and data for further 
acceleration of material discovery. Finally, we acknowledge the development of autonomous labs and other initiatives as 
the future of high throughput research methodologies.

1. Introduction
Rising atmospheric and oceanic levels of CO2 and other 
greenhouse gases have been associated with an increase in the 
average global temperature.1,2  This phenomenon negatively 
impacts Earth’s ecosystems, and we have already seen proof 
through extreme weather and temperature anomalies 
worldwide.  Growing demand for energy, food, and other 
resources goes hand in hand with population growth in various 
developing countries.3,4  Such demands contribute to our 
output of these harmful gases, especially if we continue our 
current practices to meet them.5,6  Scientists around the world 
have proposed and researched a plethora of technologies to 
reduce CO2 emissions or mitigate the existing atmospheric and 
oceanic CO2 concentrations. Some of these technologies 
include nuclear, wind, and solar energies, direct air capture, 
large-scale batteries for excess energy storage and powering 
vehicles, hydrogen fuel cells, water splitting, and 
electrochemical CO2 reduction to name a few.7,8

The accelerating climate crisis and rising energy demands 
require sustainable electrochemical technologies for energy 

storage, generation, and chemical production.  Over the past 
two decades, electrochemical technologies have gained much 
attention due to improved material and reactor performance 
and new material discovery, propelling commercialization and 
scale-up.  However, key performance benchmarks (e.g., activity, 
selectivity, energy efficiency) still need to be achieved before 
such emerging technologies can compete economically with 
existing fossil fuel-based processes.9–13  Material bottlenecks—
such as cost, durability, and scalability, continue to limit 
progress.  For example, precious metal catalysts such as 
platinum, gold, and iridium are still state-of-the-art for many 
electrochemical reactions.  At the same time, the substrates, 
ionomers, membranes, and electrolytes used in the reactors 
degrade over long-term operation, posing significant 
challenges.  Additionally, safety concerns must be considered 
when scaling up the production and handling of such materials. 
Overcoming these barriers requires discovering and introducing 
new materials and methods that are more cost-effective, 
stable, and safer to drive feasibility.

In recent decades, many researchers have successfully 
identified, synthesized, and characterized promising materials 
through standard benchtop chemistries and instruments. Yet, 
the conventional approach in these studies involves proposing, 
synthesizing, and testing one material, meaning the research 
and discovery timescale for each material can take months or 
even years.  Despite the multitude of groups across the globe 
committed to developing electrochemical technologies, this 
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rate of material discovery is simply not sufficient, as we have yet 
to reach the needed benchmarks for feasibility.  High-
throughput (HT) computational and experimental methods 
offer a transformative solution by significantly accelerating 
material discovery to meet these global challenges.14–17  Here, 
HT methods involve setups or techniques designed for fully 
synthesizing, characterizing, screening, or analyzing multiple 
materials samples in a shorter time than traditional benchtop 
chemistry and engineering.

Unsurprisingly, the advancement and availability of 
theoretical prediction methods and supercomputing in the last 
20-30 years have encouraged the use of simulated chemistry 
experiments.  These simulations not only predict and explain 
material performance but also suggest new materials for 
synthesis and testing.  Reported computational chemistry 
studies in the literature depict the ability to explore and screen 
materials on the order of 106 in a single project using methods 
such as first-principles density functional theory (DFT) and 
advanced machine learning (ML) techniques, including deep 
learning and active learning (AL).  Moreover, HT 
experimentation has expanded with new setups created to test 
or characterize tens or hundreds of samples in days instead of 
months or years.  As shown in Figure 1, the integration between 
computational and experimental HT approaches is also 
promising and imperative for fast-tracking material discovery, 
which will help progress sustainable electrochemical 
technologies.  Other researchers have stressed the need for 
experimental validation in HT computational screening 
workflows as well.18

By screening millions of material candidates 
computationally and validating the most promising 
experimentally, high-throughput workflows drastically reduce 
discovery timelines. This acceleration is critical for achieving key 
performance benchmarks required for the commercialization of 

renewable technologies, such as green hydrogen production, 
carbon capture, and advanced energy storage.  Here, we review 
high-throughput methods—both computational and 
experimental—from the literature dedicated to discovering 
materials (catalysts, electrolytes, ionomers, etc.) for 
electrochemical energy applications.  The objective of this 
review is to provide an overview of the popular HT techniques, 
state-of-the-art materials, and novel setups to serve as a 
reference point for scientists currently incorporating or 
initiating HT approaches into their research. We first highlight 
notable efforts with exceptional performance or unique setups, 
as well as common focuses and approaches.  Finally, we provide 
an overview and a perspective of gaps that are worth further 
exploration.

2. Computational Methods
Over the past decades, the utilization of computational 
methods for material discovery has typically been driven by 
three major goals: (i) providing a deep understanding of the 
structure and structural dynamics of materials, as well as their 
relationship with properties and catalytic activity, (ii) unraveling 
the underlying structure-function relationships to facilitate the 
discovery of novel materials, and (iii) enabling exploration of 
large chemical spaces to predict materials with superior 
properties.19,20  These goals can be achieved using a variety of 
methods, including quantum mechanical calculations, atomistic 
simulations, and materials informatics.  Nowadays, we can 
tackle more complex systems that encompass multiple 
components; however, modeling the multiple experimental 
parameters and processes that accompany the development of 
these materials poses a great challenge for virtual material 
screening.  HT computational methodologies can effectively 
undertake such multifactorial problems.  Yet two of the most 

Figure 1. Schematic of high-throughput platforms for electrochemical materials discovery: Iterative feedback loop between experimental and computational methods to enhance 
accuracy and speed in material selection and optimization. This figure presents the general workflow framework. The challenges and experimental/computational considerations 
are addressed in detail in the accompanying methodology sections and case studies of this review.
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significant drawbacks of HT computational screening are (i) 
developing a robust, effective, and efficient HT workflow and 
associated databases and (ii) finding the balance between cost 
and accuracy when dealing with complex or large-scale 
systems.21  This section reviews key methodologies and 
descriptors utilized in the HT computational studies examined 
herein, with a particular focus on DFT and ML, two of the most 
common approaches applied in HT material discovery 
campaigns in electrochemistry.
2.1 Common Approaches

2.1.1 Density Functional Theory
Thanks to its relatively low computational cost and 
semiquantitative accuracy, DFT has been widely employed in 
materials science to predict properties based on electronic 
structure.22,23  DFT is rooted in quantum and statistical 
mechanics, relying on principles derived from these fields to 
find approximate solutions to the Schrödinger equation and 
determine the ground-state electronic density of a material.24,25  
Over time, DFT has provided deeper insight into materials’ 
electronic structure, enabling the prediction of properties such 
as bandgaps, which are crucial for classifying new materials as 
metals, semiconductors or insulators.  A critical factor when 
applying DFT is the choice of the density functional, which 
determines the accuracy and predictive power of the 
simulations.22,26–29  While DFT is often employed to provide a 
static view of a system and characterize its intrinsic properties, 
it can also be applied to investigate dynamic behavior and the 
equilibrated structures under different conditions, such as 
temperature and pressure.  In this regard, DFT can be used in 

conjunction with classical or ab initio molecular dynamics and 
Monte Carlo simulations but at the expense of higher 
computational costs.30–33

To further minimize the computational cost associated with 
these calculations and facilitate large-scale material screening, 
DFT has been extensively used to compute descriptors—
quantifiable representations of specific properties that connect 
complex electronic structure calculations and macroscopic 
properties.  An effective descriptor can serve as a valuable 
metric for identifying promising candidates.34,35  A relevant 
example is the study of electrocatalysts, which are typically 
evaluated based on their reactivity toward a particular reaction.  
The reactivity descriptor that can quantify the catalyst’s activity 
is often represented by the Gibbs free energy (ΔG) associated 
with the rate-limiting step (RLS) of the reaction.  In many cases, 
the RLS is determined by the adsorption of one or one set of 
given reactants or intermediates.  With this and the 
development of the computational hydrogen electrode model 
by Nørskov et al.,36 adsorption energy has become a well-
studied descriptor for predicting catalytic activity.  While 
activity and selectivity are crucial metrics for a successful 
catalyst, other essential factors, including chemical and 
electrochemical stability, must be considered.  A 
comprehensive list of commonly used descriptors is provided in 
Section 2.1.2 and Table 1, and a detailed description of the most 
common methodologies in computational HT is given in 
Supporting Information Table S1.  While convergence 
thresholds are system-dependent and therefore not directly 
comparable across studies, readers are directed to the original 
literature for application-specific optimization details.

Table 1 Summary of computational methods, models, algorithms and descriptors utilized for HT screening of catalysts, ionomers and electrolytes. Most studies suggest 
materials to consider for experimental screening based on their computation results. DFT indicates density functional theory, while ML indicates machine learning. All 
acronyms not previously mentioned in the text are defined in table footnotes.

Method(s)
Material Rxn(s)

DFT ML
Descriptor(s) ML Algorithm Suggested Material(s) Year Ref.

Catalyst eCO2RR ✔ ✔

ΔGCO

ΔGCHO

ΔGOH

Limiting potential differences

ETR
SVM
GBR

GPR
KRR
XGB

CrN
TiN

Cr3N2

Cr2N
CoN

2023 37

Catalyst eCO2RR ✔ ✔ ΔGCO ANN None stated 2015 38

Catalyst eCO2RR ✔
ΔGCO

ΔGOOH/CHO
N/A N6V4-AgCr 2021 39

Catalyst eCO2RR ✔
ΔGCO

ΔGOH
N/A None stated 2020 40

Catalyst HER ✔ ΔGH N/A

NbS2

Ba2Cu2

C8

Pr4C2Cl5
Ce4C2Br5

IrTe2

NbSe2

Ti2Se2

TaSe2

2020 41

Catalyst HER ✔ ✔

Zero band gap
Thermodynamic stability

Low vacancy formation energy
ΔGH

LSR
GBR
RFR
ANN

VS2

NiS2

ZrTe2

PdTe

MnS2

CrSe2

TiTe2

VSe2

2021 42

Catalyst HER ✔ ✔
RNN
KRR

SVM
RF

OsB2

Sc-N
2020 43
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Catalyst HER ✔ ✔
Thermodynamic stability energy

Dissolution potential
ΔGH

AB
CBC
RNC
LR

HGB
Bagging 
LGBM

GBR
XRT
RF
DT 

SVM 
KNN 
XGB

Pd@B4

Ru@N2C2

Pt@B2N2

Fe@N3

Fe@P3

Mn@P4

Fe@P4

2022 44

Catalyst HER ✔ ΔGH N/A
Zn@MoSvaSe
Cd@MoSvaSe
Co@MovaSSe

2021 45

Catalyst HER ✔ ✔ Rotation angle of heterojunctions LAS MoTe2/WTe2 2020 46

Catalyst HER ✔
Number of valence e- x 

electronegativity of dopants
ΔGH

N/A None stated 2022 47

Catalyst HER ✔
Strain energy (includes

ΔGH, exchange current, overpotential, 
TOF)

N/A Fe-N-SWCNT 2023 48

Catalyst HER ✔ ✔
“Frozen” ΔGH

Relaxation energy
ANN GBDT None stated 2020 49

Catalyst HER ✔ ✔ Distance contribution descriptor SVM Pt33Pd17Ni15.5Cu16P18.5 2023 50

Catalyst HER ✔ ✔ Variety (22)

RF
AB

KNN
KRR
PLS 

 LSR 
RDG 
GBR 
MLP
SVM

CN/MX2 heterostructures w/ Sc and Ti 
intercalated

2024 51

Catalyst HER ✔ ✔ ΔGH

AB
ENR
GBR
KNN
KRR

LAS
PLS
RF 

RDG

28 promising materials in SI 2023 52

Catalyst HER ✔ ✔
ΔGH

Cohesive energy

RF
ANN
SVM
LAS
KNN

Bayesian

Ti3C2I2-Ir
Ti3C2Br2-Cu
Ti3C2Br2-Pt
Ti3C2Cl2-Cu
Ti3C2Cl2-Pt
Ti3C2Se2-Au
Ti3C2Te2-Nb

2022 53

Catalyst
HER

NORR
✔

Adsorption energy
Limiting potential

Ratio of d-band center + ratio of work 
function

N/A
Co-pyromellitic dithioanhydride (HER)

Co-3,8-phenanthroline-5,6-dione (NORR)
Co-phenan-thraquinone (NORR)

2023 54

Catalyst
HER
ORR

✔ ✔
ΔGCO

ΔGH

ΔGO

GNN
Cu3Pt

FeCuPt2
2021 55

Catalyst
HER
OER

✔ ✔
ΔGH

ΔQCu-Cu
ANN None stated 2021 56

Catalyst NRR ✔ ✔
Segregation energy

ΔGN
RF

Zr1Cr
Hf1Cr

2024 57

Catalyst NRR ✔ ✔ Isolated electron number of d orbitals BRT Mo, W 2021 58

Catalyst NRR ✔

Binding energy between metal atoms
Cohesive energy

ΔGN

Limiting potential

N/A
Mo@BM-β12

Mn@BM-β12
2021 59

Catalyst OER ✔
Pourbaix (Nernst eqn)

ΔGO

ΔGOH

N/A
Co-Ir
Fe-Ir
Mo-Ir

2020 60

Catalyst OER ✔ ✔
Transition metal-oxygen bond length

First ionization energy
GBR

IrO2

Fe(SbO3)2

Co(SbO3)2

Ni(SbO3)2

FeSbO4

Fe(SbO3)4

MoWO6

TiSnO4

CoSbO4

Ti(WO4)2

2024 61
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Catalyst
OER
ORR

✔ Area-specific resistance RF
SrZr0.125Nb0.125Co0.625Cu0.125O3

K0.25Sm0.125Sr0.625Nb0.125Co0.75Co0.75O3

Bi0.125Sr0.875Y0.125Ni0.125Co0.75O3

2024 62

Catalyst
OER
ORR

✔

Cohesive energy
ΔGx

Elastic constants 
Phonon distribution 
Formation energy

Dissolution potential

N/A IrN2 monolayer 2021 63

Catalyst
OER
ORR

✔ ✔

ΔGOH

ΔGOOH

ΔGO

ΔGOOH

Coordination number
6 more features

XGB
RF

ETR
GBR

None stated 2024 64

Catalyst ORR ✔ Itinerant electrons
XGB

LGBM
ANN

15 different materials predicted 2024 65

Catalyst ORR ✔

Surface energy
Segregation energy

d-band center
ΔGO

N/A

Ag3(Mn, Fe, or Co)
Ag3(Zr, Mo, or Ru)

Ag3(Ta, W)
Ag-(Mn or Fe)
Ag-(Ta or W)

2016 66

Catalyst ORR ✔

Formation energy
Single atom binding energy

ΔGOH

ΔGOOH

N/A Co-ON3 2022 67

Catalyst
ORR
MOR

✔

Oxygen vacancy formation energy
Single Pt atom adsorption energy
Metal-induced electronic states
Charge variation of deposited Pt

N/A Dependent 2017 68

Ionomer ORR ✔

Proton conductivity
Water uptake

Gas permeability
Band gap

Thermal decomposition temperature
Glass transition temperature

Young's modulus

GPR 60 new polymer candidates 2023 69

Electrolyte ✔
Adiabatic redox energy
Vertical redox energy
Reorganization energy

N/A LiNi0.5Mn1.5O4 2015 70

Electrolyte ✔ Stoichiometrically valid reactions N/A None stated 2023 71

Electrolyte ✔
Redox potential

Solubility
Stability

N/A None stated 2015 72

Electrolyte ✔ ✔ Trajectory GNN None stated 2023 73

Electrolyte MD ✔ Ionic conductivity
minGPT

1Ddiffusion
Diffusion-LM

None stated 2024 74

Electrolyte MD ✔ Ionic conductivity minGPT None stated 2024 75

Electrolyte ✔ ✔ Diffusion Coefficient BO Li3YBr6 2025 76

Electrolyte ✔ Ion Conductivity
GNN
GBDT

Li6PBrO5

Li2Ta2O3F6

Li10Mg7Cl24

Li7Cl3O2

Li2SbF5

Li2AsF5

LiZnPSe4

LiHgPSe4

LiBSe2

LiCuBr2

2024 77

ETR: Extra-trees regressor

SVM: Support vector machine

KRR: Kernel ridge regressor

XGB: Extreme GBR

ANN: Feedforward artificial NN

LGBM: light gradient boosting machine

XRT: Extremely randomized trees

DT: Decision trees

KNN: k-nearest neighbors

LAS: Lasso regression

GNN: Graph NN

NORR: NO reduction reaction

BRT: Boosted-regression-tree

MOR: Methanol oxidation reaction

MD: Molecular dynamics
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2.1.2 Commonly Used Descriptors
Generally, descriptors can be classified into five categories, 
namely thermodynamic, electronic, mechanical, geometric, and 
intrinsic structure.  Thermodynamic descriptors are the most 
frequently used, relying on energetics to evaluate systems’ 
behaviors; they often establish physical relationships with the 
target electrochemical property, are readily calculated, and can 
be a good start for quickly estimating energetic trends. 
Examples of such descriptors include adsorption energies and 
theoretical overpotential terms.  These descriptors can also 
assess competing reactions and their mechanisms.  For 
instance, the adsorption-free energy of the H atom (ΔGH) can 
describe activity towards to hydrogen evolution reaction (HER), 
while ΔGCO, ΔGCHO, and ΔGOH correlate with the electrochemical 
reduction of CO2 (eCO2RR).37  The selectivity between these 
reactions can be evaluated by comparing the critical ΔGs of HER 
and eCO2RR.  Additionally, thermodynamic descriptors can 
reflect structural stability under electrochemical conditions, 
including properties such as surface energy, formation energy, 
segregation energy, decomposition energies57,66,67,78,79, 
dissolution potential44,60,63,78,80 and Pourbaix diagrams.60,78

The second prominent descriptor type involves the 
electronic structure aspect and its derived properties, e.g., d-
band center, band gaps, work functions, phonon spectra, metal-
induced electronic states, and charge variations.  These 
descriptors are typically obtained from DFT-level calculations, 
unveiling atomic interaction and electronic features.  However, 
due to the complex impact of electronic structures on reactivity 
and materials’ properties, these descriptors may not indicate 
the same trend when conducting structure prediction for 
different systems.  Mechanical descriptors, including elastic 
constants, Young’s modulus, and glass transition temperature, 
are frequently reported in the literature, as they are used for 
predicting and comparing experimentally measurable 
properties.  Geometric descriptors are similarly valuable and 
can vary based on material types.  Examples include the rotation 
angle of heterojunctions, the distance contribution descriptor, 
the transition metal-oxygen bond length for mixed metal salts, 
and the coordination number in alloys, among others.46,50  
These descriptors are often directly calculated through 
structural optimization, and no further electrochemical studies 
are needed. Therefore, they are efficient in predicting the 
structures’ properties when there is a clear structure-property 
relationship.  Finally, the intrinsic-structure descriptors gather 
prior knowledge from either theories or experiments, and they 
often do not require DFT calculations.  These descriptors vary 
by material type and their respective properties such as the 
number of valence electrons, dopant electronegativity, the 

number of isolated d-orbital electrons, and the first ionization 
energy.  These properties have been well studied and reported, 
and hence these descriptors can be easily implemented in 
material screening workflows where the studied materials 
normally have well-defined structures.  For HT studies and 
screening, many researchers use multiple descriptors or modify 
common descriptors to increase scrutiny and find more 
applicable materials.
2.1.3 Machine Learning
ML models leverage mathematical relationships and statistical 
methods to generate predictions, often without directly 
incorporating specific chemical knowledge or theories.  The 
training process involves feeding a model a dataset (the training 
dataset), enabling it to recognize patterns, trends, and 
relationships to then make predictions on new, unseen data 
(the testing dataset).81  ML offers a diverse array of learning 
algorithms; the selection depends on several factors, such as 
the prediction task at hand, size and type of data, and data 
quality, to name a few.   Access to different algorithms grants 
the choice of one that best suits the problem at hand and 
minimizes error (e.g., root mean square error, RMSE) while 
considering factors such as model interpretability, complexity 
and computational efficiency.81  Table 1 highlights several 
common ML algorithms employed in the computational HT 
studies examined in this review, which include neural networks 
(NN), random forest regression (RFR), gradient boosting 
regression (GBR) and Gaussian processes regression (GPR).  A 
more detailed table is available in the SI.

The integration of ML methods in HT material discovery 
processes has already showcased multiple advantages.29  
Different algorithms allow models to be trained on various data 
types (graph, numeric, image, natural language, etc.) and 
enable many different predictive tasks (regression, 
classification, data generation, etc.).  Thus, ML can be applied to 
a myriad of use cases for materials discovery.  For example, ML 
methods can predict material synthesizability by analyzing 
existing experimental data such as reaction conditions and 
time.  In addition, ML models or their key features can also 
accelerate DFT calculation processes and reduce calculation 
workloads when searching a vast compositional space.  This is 
often done by training ML models using DFT data.  Additionally, 
multiple data sources (experimental, computational, literature, 
etc.) can be integrated into ML models, making HT experiments 
and calculations faster, more scalable, and more suitable for 
complex multifactor-dependent material systems.  Another 
advantage ML methods offer is the ability to implicitly build 
relationships and patterns between independent and 
dependent variables, such as structural features (e.g., 
composition) and macroscopic properties (e.g., conductivity), 

LSR: Least squares regression

RNN: Recurrent NN

CBC: CatBoost classifier

RNC: Radius neighbors classifier

LR: Logistic regression

HGB: Histogram-based GBR

GBDT: Gradient boosting decision tree

AB: AdaBoost

PLS: Partial least square

RDG: Ridge regression

MLP: Multilayer perceptron

ENR: Elastic net regressor

minGPT: Minimal generative pretraining transformer

1Ddiffusion: 1D denoising diffusion probabilistic model

Diffusion-LM: Diffusion language model

BO: Bayesian Optimization
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respectively, within a dataset.  Therefore, scientists can better 
understand materials and then exploit these relationships to 
drive innovation through inverse material design where ML 
models predict hypothetical structures with targeted 
properties.  The versatility of ML makes it a powerful tool for 
creating new solutions to computational materials discovery.

In recent years, the use of generative AI models (large 
language models, diffusion models, reinforcement learning-
based generative models, etc.) in materials design has been on 
the rise.  Yet, generative AI is still limited to applications in 
academia and research as evidence of its applications in 
industry or production/manufacturing environments is lacking.  
In research applications, scientists have applied generative AI to 
aid in materials discovery.  For example, Song et al. and Li et al. 
applied inverse material design via ML to synthesize materials 
with specific properties for electrochemical CO2 reduction or 
high-capacity energy storage, respectively.82,83  Moreover, 
Alverson et al. utilized generative AI models such as variational 
auto-encoders, generative adversarial networks, and genetic 
algorithms as use cases for creating crystals and proposing new 
structures.84  Additionally, Bang, Kim, Hong et al. expanded on 
inverse design using generative AI models to discover materials 
with multiple properties, rather than optimizing a single 
property.85  While generative AI in materials discovery shows 
promise in limited applications in electrochemical materials 
discovery, it shares many of the pain-points seen in other ML 
methods, such as a lack of publicly available robust training 
datasets and the limited ability of models to generalize outside 
of training dataset distributions and to real world 
experimentation.

While ML is a powerful tool that helps improve the quality 
and efficiency of the HT materials discovery process in many 
ways, it comes with drawbacks and challenges.  First, 
insufficient, high-quality data impedes training accurate, 
generalizable machine learning models.86  Data-intensive ML 
models like NN and RFR require large, information-dense 
datasets for suitable performance.  Creating datasets from 
experimental work, especially when traversing all possibilities 
of a material database, is demanding as experiments are 
expensive, time-consuming, require highly skilled experts, and 
often proprietary.  A lack of quality data can lead to poor model 
predictions when exploring beyond a model’s training dataset 
distributions.  Second, integrating multiple data sources (such 
as experimental work and DFT simulations) to train ML models 
lacks standardization, making collaborative efforts to solve 
problems in the field more challenging.87  Third, many ML 
algorithms behave as a “black box”, making their predictions 
challenging to trust and their proposed structure-property 
relationships impossible to explain explicitly.  Nevertheless, 
these challenges can be addressed by building more robust and 
interpretive models and placing an emphasis on standardizing 
data handling practices.87

2.1.4 Density Functional Theory versus Machine Learning
Both DFT and ML are useful methods for HT material screening 
and discovery.  Yet, each has its own advantages that make one 
more suitable for certain applications than the other.  For 
instance, DFT simulations tend to be computationally intensive 

especially when modelling complex systems, large unit cells, or 
exploring a large chemical search space, limiting their feasibility 
for large scale screening.  However, ML models, once trained on 
reliable datasets, can enable rapid predictions of properties at 
a fraction of the cost. This ability to scale easily makes ML 
attractive for large scale screening tasks. 

In contrast, the quality of ML models relies heavily on the 
amount and diversity of high-quality datasets, and their 
predictive ability often degrades when predicting beyond the 
distribution of the training sets.  As a result, real-world 
applications of ML in HT discovery of materials requires careful 
consideration when curating a training dataset and can be aided 
by uncertainty quantification and ongoing benchmarking 
against DFT calculations and real-world experiments.

A hybrid approach that combines DFT and ML leverages the 
complementary strengths of both methods to overcome their 
individual limitations.  DFT calculations provide high-fidelity, 
physics-based training data with reliable energetics and 
electronic properties for well-defined material systems, serving 
as the foundation for accurate ML model development.  The 
quantum chemical calculations ensure that the training dataset 
captures the fundamental physical relationships between 
structure and properties.  Conversely, ML models trained on 
this high-quality DFT data can rapidly screen candidate 
materials at a larger scale with a fraction of the computational 
cost, enabling exploration of vast chemical spaces that would 
be prohibitively expensive using DFT alone.  Readers are 
referred to Section 4 for examples of the combinatorial 
approaches.
2.1.5 Limitations and Considerations in Computational Methods
While theoretical calculations have enabled significant 
advances in electrochemical materials discovery, several 
fundamental limitations affect their application in high-
throughput screening.88  First, accuracy-efficiency trade-offs are 
inherent to all computational methods.  DFT functional 
selection significantly impacts results, with different functionals 
yielding distinct trends that can affect screening outcomes.  
Second, reaction condition complexity presents major 
challenges, as electrochemical processes involve multiple 
variables (electrolytes, pH, applied potentials, temperature, 
etc.) that are computationally expensive to model explicitly.  
Many studies rely on simplified models that may not capture 
realistic operating conditions, such as using DFT energies rather 
than free energies, which are unable to obtain energetics under 
experimental temperatures.  Third, kinetic limitations are often 
overlooked, as most screening approaches use thermodynamic 
descriptors rather than kinetic parameters, potentially missing 
important rate-determining factors and complex reaction 
mechanisms. Finally, transferability issues arise when force 
fields or ML models trained on specific systems are applied to 
broader materials classes without adequate validation.

Data reproducibility remains a major bottleneck in 
computational materials discovery.  Experiments from which 
training datasets are derived may have similar product 
compositions but differ in structure or properties due to 
changes in process parameters.  Reproducibility can be 
improved by thorough capture of metadata and tracking key 
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information such as ingredient lots, sample storage conditions, 
equipment calibration logs, etc.  Initiatives such as the Materials 
Genome Initiative, Materials Acceleration Platform, and, for 
computational datasets, Novel Materials Discovery aim to 
improve reproducibility by hosting datasets that have detailed 
metadata, thus permitting multi-organizational validation of 
workflows.89–91    Reproducibility is also aided by laboratory 
information management systems that can assist in capturing 
metadata, process parameters, and equipment information, 
which allow more systematic and comprehensive 
experimentation records.  Traditional lab equipment with 
automated data logging capabilities (e.g., ThermoFisher, 
HeiDolph) also help reduce data noise and user input errors, 
which benefit experimental reproducibility.  Automated 
chemistry platforms with end-to-end logging, such as 
Chemspeed and Unchained Labs automated platforms, are also 
helping to reduce human-caused variability to ensure 
reproducibility.  Additionally, performing replicate analysis 
under controlled conditions will aid in improving 
reproducibility, allowing researchers to identify outliers.  
Replicate analysis must be balanced with resource limitations 
carefully as it is expensive and can be out of reach for many 
groups.

Standardized procedures enhance reproducibility as using 
agreed upon standards makes collaborative efforts and 
experimental validation simpler.92  Inconsistencies in 
procedures for characterization, calibration, or sample storage 
demand correction through standardization.  Adopting 
community standards for experimental work can help reduce 
noise within experimental datasets and improve 
reproducibility.

In addition to improving experimental data quality via noise 
reduction, researchers can use data curation and filtration 
techniques.  For example, anomaly detection using statistical 
thresholds and certain ML techniques (e.g., clustering or 
isolation forests) can reduce outliers from experimental data.  
Moreover, validating experimental data with computational 
results allows researchers to identify experiments that may 
have strayed from theoretical expectations.  This technique 
could also be used to reduce the cost of replicate analysis as 
only samples that deviate from theoretical expectations would 
require such analysis.

Experiment reproducibility also affects ML, a data-driven 
technique.  The usefulness of ML models depends on how well 
their predictions can generalize to physical experiments.  Thus, 
if ML models are trained on non-reproduceable experimental 
datasets, their predictions may not generalize.

Limited sharing of experimental data in publications also 
acts as a bottleneck for the reproducibility and validation of 
results within the research community.  Therefore, researchers 
practice data (i.e., datasets, methodologies, metadata) sharing 
on platforms like Zenodo, Figshare, Kaggle, or GitHub to 
promote reproducing experiments.  When sharing information 
on data-driven methods such as ML, not only is it important to 
provide model weights, but also information such as training 
and testing datasets, the source of the datasets, dataset 
metadata, data cleaning procedures, data preprocessing steps, 

and training procedures (e.g., feature selection, 
hyperparameter optimization).    
2.2 Notable Computational Studies

2.2.1 Water, CO2, and Nitrogen Electrolysis
Water electrolysis is a potentially greener alternative to steam 
reforming and coal gasification for making hydrogen fuel.11,93  In 
HER, protons from split water are reduced to produce H2 gas.94  
The electrochemical reduction of CO2, eCO2RR, can produce a 
variety of carbon products such as hydrocarbons and alcohols, 
therefore being a possible closed-loop, chemical production 
process.95  Nitrogen electrolysis or the nitrogen reduction 
reaction (NRR) refers to breaking the N2 triple bond to make 
ammonia as an alternative to the Haber-Bosch method.96  A big 
challenge with water electrolysis and eCO2RR is finding 
materials that are less expensive and more stable so that their 
respective products can become more cost-competitive.  As for 
NRR, breaking the triple bond requires a highly active catalyst 
and a lot of energy.  However, most reported materials have yet 
to produce significant current densities to make this alternative 
attractive.97  Hence, applying HT methods for these fields 
greatly benefits their advancement.

At first, Mao et al. used the aforementioned H adsorption 
energy (ΔGH) as the descriptor for HER activity of Cu-based alloy 
nanoclusters with varying dopant concentrations.56  The DFT 
study depicted that changing the dopant concentration evolved 
the structure of the alloy, which affected the excess energy 
(structure stability), the number of active sites, and the ΔGH.  
From here, the authors figured that doping created a significant 
charge difference between Cu vertex and edge sites and 
associated that with ΔGH.  Therefore, the researchers proposed 
the average partial atomic charge difference between these 
two adjacent sites, ΔQCu-Cu, as a new descriptor that is easier to 
compute than ΔGH.  Finding a more accessible descriptor to 
compute reduces the costs of computational material discovery 
via DFT, thus making this method more accessible to all 
researchers.

Yohannes et al. evaluated transition metal nitrides as 
eCO2RR catalysts using activity, selectivity, and stability DFT 
descriptors.37  Again, adsorption energies, ΔGCO and ΔGCHO, are 
used as descriptors to mark activity toward C1 products.  
Additionally, the authors uncommonly apply the adsorption 
energy of hydroxyl, ΔGOH, to predict the stability of the catalyst 
against –OH poisoning.  If bound too strongly, the *OH can stay 
on the surface and hinder active sites for eCO2RR or reduce to 
water, thus stealing electrons and decreasing efficiency.  
Moreover, HER is parasitic to eCO2RR, so the authors again use 
H adsorption energy, ΔGH, to predict eCO2RR selectivity on a 
catalyst surface over HER.  High selectivity (Faradaic efficiency) 
for eCO2RR reduces downstream separations costs, making HER 
an undesired side reaction.  With these descriptors, several Co-
, Cr-, and Ti-based nitrides were suggested as catalysts worth 
further eCO2RR experimentation.  This study showcases how 
adsorption energy can be applied in unique ways to probe 
properties outside of activity.

While most researchers funnel down materials with each 
step having a new criterion (single-objective approach), 
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Kavalsky et al. performed a multiobjective optimization 
combining DFT and ML methods to discover single-atom alloy 
(SAA) electrocatalysts for NRR.57  The researchers first 
employed sequential learning to train an ML model and build 
their full catalyst design space, which was then evaluated using 
DFT as implemented in the Autocat workflow shown in Figure 
2.98  The scores of three crucial performance metrics, stability, 
cost, and activity, were evaluated simultaneously to help 
discover electrocatalysts for nitrogen reduction.  The chosen 
multiobjective descriptors were segregation energy (stability), 
Herfindahl-Hirschman index (material cost), and ΔGN (activity), 
which presented Zr1Cr, Au1Re, Ag1Re, Ti1Fe, and Hf1Cr as 
promising performers (Note that X1Y denotes a single dopant of 
species X into a host of species Y in the context of SAA as shown 
in Table 1).  The authors stated that this tactic catches suitable 
materials that single-objective screening would typically omit.  
This work indicated that considering small compromises in 
specific material properties when constructing such models can 
strengthen discovery. 
2.2.2 Fuel Cell and Battery
Fuel cells have been proposed as an alternative electricity 
production to fossil fuel-based methods, especially for 
commercial vehicles and transit.  Although there are many 
different types, the hydrogen fuel cell is the most popular since 
its only emission is water and its fuel, hydrogen, is the single 
most abundant molecule on earth. In a hydrogen fuel cell, the 
hydrogen oxidation reaction (HOR) occurs at the anode, where 
hydrogen is oxidized to protons, which are then transported to 
the cathode side. At the cathode, the oxygen reduction reaction 
(ORR) takes place, where oxygen reacts with the protons and is 
reduced to water. The most common complementary reactions 
in a fuel cell are the oxygen evolution reaction (OER) and HER.  
OER is also used as the oxidation half-reaction for water and CO2 
electrolysis.  All these reactions—HOR, HER, ORR, and OER—
typically require precious metal catalysts such as Pt, Ru, Pd, and 
Ir.  This necessity makes these reactions attractive for study 
using HT methods to discover cheaper, high-performing 
electrocatalyst materials. 

Unlike most material science labs focused on HT screening 
catalysts, Tran et al. used ML to explore polymers for ionomers 
and membranes in fuel cells.69  This study aimed to find 
alternatives to Nafion, the state-of-the-art polymeric material 
for fuel cells and electrolyzers.  Although proven effective in 
many circumstances, Nafion, a cation exchange ionomer, is 
expensive and not always best suited for its application.  
Replacing Nafion could also address safety concerns.  Nafion 
classifies as a per- and polyfluoroalkyl substance, PFAS, which 
presents health effects due to its slow break down and 
persistence in the environment; traces of PFAS have been found 
in the blood of people and animals globally.99,100   In any case, 
the authors used eight key properties (e.g., ion conductivity, gas 
permeability, band gap, etc.) of Nafion as a benchmark for 
screening 30,000 previously-reported polymers using multiple 
ML models.  The authors identified 60 new polymers as possible 
replacements because their predicted properties outperformed 
those of Nafion.  Yet, this study did not include any safety-
centered metrics to evaluate candidates for health effects and 
handling, identifying a need to improve this method.  This 
work’s strategy is enabled by polymer informatics, hoping to 
further leverage ML for future works in discovering 
unencountered polymers.

Large-scale batteries, both solid-state and redox flow, can 
function as electrical grid stabilizers during periods of low 
demand by storing excess energy supply for later use.  This 
application requires battery materials to be resilient against 
multiple charges and discharges during their lifetime.  
Therefore, researchers have employed HT methods to scope 
out new battery electrolytes with multiple oxidation states for 
charge storage, high ionic conductivity, wide potential ranges 
for stability, and high earth abundance for costs.

Researchers often use the so-called HOMO-LUMO gap, 
which is an electronic property calculated as the difference 
between the highest occupied molecular orbital (HOMO) and 
the lowest unoccupied molecular orbital (LUMO), to assess the 
stability descriptor of battery electrolytes’ solvents.  Generally, 
a larger HOMO-LUMO gap is associated with more stable 
materials.  This approach enables rapid assessment without 
requiring the optimization of oxidized or reduced electrolyte 
molecules.  However, the Knap lab indicated the impact of 
molecular geometry relaxation during electrolyte oxidation, 
providing evidence by screening the electrochemical stability of 
100 carbonate and 300 phosphate molecules as solvents for Li 
battery electrolytes.70  Initially, the Knap lab’s HT screening 
model focused on the oxidation and reduction potentials of 
isolated solvent molecules to determine their stability windows.  
Additionally, the model involved geometry optimization as 
some less stable (smaller gap) molecular formations of the 
electrolyte decomposed under different conditions.  After 
presenting these results, the authors commented on their initial 
method and stated the importance of also including 
intermolecular interactions with other solvent molecules as 
well as Li ions.  To enhance the prediction of the electrochemical 
stability of isolated electrolyte, the authors explicitly 
incorporated solvent molecules into their models. This 
approach allowed the authors to simulate H-abstraction and Li+ 

Figure 2. Closed-loop workflow for discovery of SAA electrocatalysts. The 
workflow starts from selection of a material from the design space, followed by 
structure geometry optimization and the subsequent N-atom adsorption 
calculation. The calculated results are used to retrain the ML surrogate model, 
which encodes activity, cost, and stability metrics and outputs the candidate 
scores. The highest scoring candidate is selected for evaluation. Reproduced with 
permission from Reference 98. Copyright 2024 Royal Society of Chemistry.
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semi-fluorination scenarios more accurately.  While preferred 
DFT models typically center on simple representations and 
minimal intermolecular interactions, making them a 
straightforward yet insightful tool, Knap et al. note that more 
accurate results require more extensive and computationally 
intensive DFT calculations that may be beyond the reach of 
most researchers.

3. Experimental Methods
The methodology for most experimental electrochemical tests 
involves material synthesis or preparation, material deposition 
or casting, electroanalysis, and pre- and post-testing 
characterization.  The step-by-step process very much depends 
on the reaction and the type of material being tested.  

Therefore, unlike computational studies, setups across labs can 
vary vastly, leading to many customized setups for both 
benchtop and HT experimentation.  While insightful, this variety 
in experimental setups hinders data comparison across 
research labs.  Yet, researchers thoroughly detailing their 
methods and custom setups in publications stimulates more 
similarities as others incorporate proven procedures into their 
own setups.  Meanwhile, continuous efforts to commercialize 
HT experimental setups will drive method standardization, thus 
minimizing differences in procedures from lab to lab.  Table 2 
summarizes the experimental literature we evaluated in this 
review, including the material type, the cell used, and the top-
performing material(s).  Table S2 provides more details about 
the methods including substrates and electrolytes.  This section 
highlights notable experimental setups and methods for 
electrochemical applications.

Table 2. Summary of experimental HT methods for electrochemical material discovery, production, synthesis, characterization, and analysis.  All acronyms not previously 
mentioned in the text are defined in table footnotes.

Material Rxn(s) HT Application Cell(s) Deposition Method Best Material(s) Year Ref.

Catalyst eCO2RR Electroanalysis 3-electrode
Automated liquid handler 

deposition robot
Au6Ag2Cu2 2021 101

Catalyst eCO2RR Electroanalysis SECM* Polishing Sn/SnO2 2020 102

Catalyst eCO2RR Synthesis H-cell Spin cast Cu0.8In0.2 2017 103

Catalyst eCO2RR
Material ID

Electroanalysis
SFC Magnetron sputtering Pd-Zn 2019 104

Catalyst HER Production 3-electrode Dip coating HC-MoS2/Mo2C 2020 105

Catalyst HER Electroanalysis 3-electrode Sputtering Pd63Ni16Fe21 2023 106

Catalyst HER Electroanalysis 3-electrode Sputtering Ni56.5Co35Ti8.5 2022 107

Catalyst HER
Synthesis

Characterization
Electroanalysis

SDC Sputtering Co56Cr8Fe19Mo7Ni10 2022 108

Catalyst HER Material ID
SDC

Flow cell
Co-sputtering
Spray-coating

Co23Cu34Mo17Pd14Re12 2024 109

Catalyst
HER
OER

Synthesis PEMǂ MEA^ Spark ablation IrO2 2022 110

Catalyst OER
Synthesis

Electroanalysis
Flow cell

3-electrode
Drop casted

CoO
Co(50%)Ni(50%)

CoNiFe(up to 12.5%)
2022 111

Catalyst OER Electroanalysis SDC Drop casted Not stated 2013 112

Catalyst OER
Material ID

Electroanalysis
Characterization

SDC
Ink jet printing-assisted 

co-op assembly
FeO.3Ni0.7Ox

Fe0.23C0.13Ni0.07Ti0.57Ox
2013 113

Catalyst OER
Material ID

Electroanalysis
SDC
RDE# Inkjet printing Ni30Fe7Co20Ce43Ox 2014 114

Catalyst OER
Material ID

Electroanalysis
SDC
RDE

Inkjet printing (Ni0.1La0.1Co0.3Ce0.5)Ox 2014 115

Catalyst OER
Material ID

Electroanalysis
SDC Reactive co-sputtering Mn0.4Sb0.22Sn0.08Ti0.3 2023 116

Catalyst OER
Synthesis

Electroanalysis
25 compartment 3 

electrode cell
Automated pipetting 

robot
La0.2Sr0.8Fe1-yCoyO3 2023 117

Catalyst OER
Characterization
Electroanalysis

SDC
Combinatorial reactive 

magnetron co-sputtering
Ni1-y-zFeyCrzOx 2017 118

Catalyst
OER
ORR

Synthesis
Joule heating method 

(synthesis)
3-electrode cell

Not stated Fe-CoO 2023 119

Catalyst ORR Electroanalysis SFC N/A Not stated 2012 120
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3.1 Scanning Cells

The scanning cell (flow, droplet, and electrochemical 
microscopy) may be the most effective approach for HT 
electroanalysis of electrochemical materials.  Various labs have 
established this technique where a motorized, programmable 
stage hosting samples of materials is moved to electrically 
contact a stationary cell.102,109,112–116,118,120,121,123,125  A few 
examples of scanning cells for HT screening are depicted in 
Figure 3.  Although typically catalysts, other sample materials 
for testing may be different membranes, substrates, or 

ionomers.  At each sample, the cell can conduct a myriad of 
electrochemical tests before moving on.  The number of 
samples depends on the size and reach of the stage (size of 
setup) and the individual sample size, meaning that tens or 
hundreds of compositions can be screened in the time it 
traditionally takes to test two or three.  Researchers who have 
built custom scanning cells initially performed repeatability 
experiments (at least 3) to ensure good reproducibility, validate 
their setups, and minimize error before collecting data.112,127,128  
Small deviations may arise from problems such as bubble 

Catalyst ORR
Synthesis

Electroanalysis

SDC
RDE

RRDE
Drop cast printing

PtPdRhNi
PtPdFeCoNi

2020 121

Catalyst ORR Electroanalysis
Scanning gas diffusion 

electrode half cell
Ultrasonic spray coating Pt/C 2024 122

Catalyst
ORR
HER

Material ID
Electroanalysis

SDC Co-sputtering
Ti14Ni17Cu16Zr21Pd17Hf15 (ORR)
Ti11Ni13Cu18Zr17Pd19Hf22 (HER)

2022 123

Catalyst
HER
OER

IPA oxidation
Synthesis

Customized PEM 
electrolyzer

Spark ablation
NiFe

Ni(O)OH
2020 124

Catalyst IPA oxidation Electroanalysis SDC
Combinatorial magnetron 

co-sputtering
Drop cast

Pt1Ru1Ir1.5/C 2023 125

Catalyst MOR Electroanalysis
Customized 25 

compartment MEA 
assembly

Not stated PtRu 2002 126

Gas diffusion 
electrode

eCO2RR Electroanalysis AutoGDE (SFC) Evaporation N/A 2024 127

Multiple
eCO2RR

HER
Electroanalysis SFC N/A Cu foil 2014 128

*scanning electrochemical microscopy cell

ǂ proton exchange membrane

^ membrane electrode assembly cell

# rotating disk electrode cell

Figure 3. Examples of scanning cells for HT material screening.  (a) Scanning droplet developed at JCAP. Reproduced with permission from Reference 112.  Copyright 2023 Royal 
Society of Chemistry.  (b) Scanning droplet cell with expanded views of (top) droplet contacting the sample and (bottom) compositional library deposited on Cu foil substrate. 
Reproduced with permission from Reference 121.  Copyright 2020 National Academy of Sciences.  Scanning flow cells with an (c) incorporated channel for inline ICP-MS and (d) an 
outlet for online EC-MS measurements and surrounding argon to block air diffusion.  Reproduced with permission from Reference 122.  Copyright 2014 AIP Publishing LLC.
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formation and material degradation, but overall, these 
researchers claim high reproducibility when testing with 
scanning cells, possibly due to lowered human error.  Gregoire 
et al. concluded that the smaller droplet size and thus a smaller 
working electrode area leads to this improved 
reproducibility.112

The Joint Center for Artificial Photosynthesis, JCAP, 
designed and built its own scanning droplet cell (SDC) to 
conduct HT screening and mapping mainly of OER catalysts.112–

116  This setup, displayed in Figure 3a, invokes a stationary 3-
electrode cell, equipped with counter and reference electrodes, 
that comes in electrical contact with the working electrode via 
a controlled-area electrolyte droplet.  Again, the working 
electrode sits on a motorized X-Y stage, which moves to change 
the sample.  The cell does not press down on the working 
electrode substrate and thus is an open system exposed to the 
atmosphere, which is not a concern for studying OER.  The 
researchers created compositional libraries of catalysts using 
inkjet printing or co-sputtering and then mapped them with the 
SDC.  The publications from this group boast automated 
screening of anywhere from 100 to 5400 different catalyst 
compositions and the creation of their corresponding activity 
maps (current vs. composition).  Their work has led to the 
proposal of several different candidate materials for OER 
catalysis that are worth exploring further.

Unlike a SDC, a scanning flow cell (SFC), equipped with a 
gasket, does touch down onto the working electrode surface to 
create a seal and thus a closed system.104,120,122,127,128  The 
electrolyte is ushered to and from the surface while tests are 
conducted instead of staying stationary in a droplet.  SFCs are 
better for reactions where purity or oxygen reactivity may be a 
concern or reactions that require product quantification, like 
eCO2RR.  Mayrhofer et al. reported a customized SFC for testing 
ORR catalysts.120  Their initial reported design had argon 
surrounding the cell tip to discourage air diffusion, and they 
conducted proof-of-concept experiments to determine catalyst 
geometric area, O2 saturation time, and any flaws in the design.  
This SFC was improved upon by adding online product analysis 
via electrochemical mass spectroscopy (EC-MS)128 and later gas 
flow and dissolution analysis via inductively coupled plasma-
mass spectrometer (ICP-MS), as shown in Figure 3c and d.122  
Screening with SFCs typically takes longer than with SDCs 
because of the extra time needed to properly make contact and 
to clean the surface after detaching.  Even so, SFCs are an 
imperative tool for materials screening and discovery as many 
reactions, including those discussed here (e.g., HER, eCO2RR), 
require closed systems for proper electroanalysis.

Although not consistent with the scope of this review, we 
would like to highlight that many labs have developed 
successful electrochemical scanning cells for other studies, such 
as corrosion or photoelectrochemistry, which are also pertinent 
to material development and mitigation efforts.129–137

3.2 Multi-compartmental and optical setups

Up to this point, we have discussed HT experimental methods 
conducted sequentially. One after another, a cell contacts a 
sample and then evaluates the material’s performance.  

Nevertheless, some laboratories have transitioned from single 
cell setups to advanced HT systems to assess samples in parallel, 
commonly referred to as multi-compartmental setups.

One example of these setups is the one developed and 
patented by Smotkin et al., which consists of a segmented MEA-
type fuel cell capable of screening 25 catalyst samples at 
once.126,138–140  While the samples shared a common counter 
electrode and the reactant flowed to each in series, each 
catalyst in the array was isolated by a Teflon gasket and 
equipped with its own sensor to control potential and measure 
current.  Instead of a multi-channel potentiostat, this study 
utilizes a voltage follower, a current follower, a programmable 
computer card, and LabView to set the potential output and 
acquire the current.  The authors comment on their initial 
design and point out areas of improvement, such as the need to 
make sample preparation scalable.  Although their reports focus 
mainly on bimetallic PtRu catalysts, their setup can easily be 
adapted to screen a library of different materials 
simultaneously. 

Certain setups rely on optical techniques to screen samples 
for electrolysis.  These optical methods incorporate cameras to 
visualize all samples simultaneously and interpret their reaction 
kinetics.  For instance, Zou et al. designed a HT bubble screening 
tool to study Pd-Ni-Fe alloys for HER.106  Co-sputtering all metals 
at once created a compositional library on a Cu electrode, which 
was later submerged in a glass 3-electrode cell for testing.  The 
researchers positioned a camera at the bottom of the cell to 
record the gaseous H2 bubbles forming from HER across the 
electrode.  Then, the authors associated the bubble diameter 
(volume) with the activity at that position and composition, as 
shown in Figure 4a.  Hence, the larger the bubble, the better the 
activity, resulting in an activity map.  The authors discovered 
Pd63Ni16Fe21 to be the optimal composition for their proposed 
alloy.  Moreover, Hitt et al. observed eCO2RR activity of an array 
of 72 different catalyst compositions using a camera positioned 

Figure 4. (a) HT bubble screening setup for measuring HER activity with an example of 
the camera view below.  The camera below the working electrode allows for visualization 
of the H2 bubbles forming on the catalyst compositional library. WE: working electrode; 
CE: counter electrode; RE: reference electrode. Reproduced with permission from 
Reference 106. Copyright 2023 Elsevier B.V. (b) An exploded (top) and live (bottom) view 
of a custom, 72-sample HT cell for measuring eCO2RR activity based on color change with 
a pH indicator.  The authors validated the setup by depositing the same catalyst in each 
location and ensuring the pH color did not vary. Reproduced with permission from 
Reference 101. Copyright 2021 Springer Nature Ltd.
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over a customized gas-fed 3-electrode cell with an optically 
transparent window (Figure 4b).101  Here, the authors added a 
pH indicator to the electrolyte and left it unstirred.  Thus, as 
eCO2RR proceeded over all catalyst samples at various applied 
potentials and protons were consumed, the pH increased, and 
the color of the electrolyte changed.  The onset of the color 
change was related to the onset potential of eCO2RR for that 
catalyst.  Lower values suggested a more active catalyst, and the 
authors created an activity map with their data.  Au6Ag2Cu2 was 
the most active catalyst for CO production from eCO2RR.  
Although both examples, the bubble screening and pH sensing, 
demonstrate rapid catalyst screening, they cannot perform 
product quantification and assume uniform potential 
distribution across the electrode.  Yet, these studies aimed to 
quickly identify the best material, which they succeeded in and 
followed up with a full electroanalysis of that material in a 
traditional single cell.
3.3 Other Notable Efforts

Many material deposition methods listed in Table 2 involve a 
liquid phase by which the material is first formulated into an ink, 
solution, or dispersion (e.g., drop-casting, spray coating).  
Sputtering, a type of physical vapor deposition, is another 
common method for depositing metal particles, specifically, but 
does not require first dispersing the metal in a solvent.  The 
advantages of sputtering include greater control of particle size, 
composition, thickness, and loading than wet deposition 
methods, and it is possible to create compositional libraries 
with this technique.141  As an alternative to sputtering and other 
deposition methods, a Dutch company, VSParticle, designed a 
nano-printer for printing (semi)conductive particles.  This 
innovative technology, depicted in Figure 5, employs spark 
ablation followed by impaction to form and deposit 
nanoparticles.110,124  While sputtering typically requires the 
target material and a high-energy ion source by way of ionizing 
Ar to Ar+, spark ablation only requires the target metal, 
electricity, and an inert and thus is a “chemical-free” deposition.  
With adjustable parameters such as voltage, current, flow rate, 
and nozzle size, this nano-printer boasts the ability to make 
highly tunable nanoparticle films of varying compositions, 
thicknesses, loadings, and particle sizes in a matter of hours.  In 
fact, Becker et al. printed 64 (8x8) NiFe electrodes of various 
compositions to test in their customized cell, with each 
electrode only taking 1-320 seconds to print.124   In a different 
study, Sapountzi et al. fabricated IrO2-coated membranes using 

spark ablation for conducting OER at a fifth of the loading (cost) 
compared to commercially available catalyst coated 
membranes (CCMs)110, underscoring the importance of 
deposition method when designing cost-competitive materials.

The materials listed in Table 2 have potential for use in a 
myriad of electrochemical applications, yet most were studied 
at the lab scale.  If a certain catalyst or electrolyte, for example, 
proves performative and cost-effective, then the next step 
would be scale-up of its production.  Zhang et al. took that next 
step by reporting HT production of two-dimensional MoS2 
flakes for fabricating thermally treated MoS2/Mo2C (HC-
MoS2/Mo2C) catalyst for HER.105  The reported method involved 
extracting raw Mo concentrate (MoS2, MoO2, MoO3, and 
others) from an active open pit mine and exfoliating it with 
Mo2C to form two-dimensional MoS2 flakes.  These MoS2 flakes 
were then dispersed in water to make an ink for dip-coating a 
high-surface area Cu foam substrate in.  Lastly, the dipped 
substrate was heated in a CH4/H2 mixture to form the final 
electrode which exhibited a high activity of 1 A cm–2 at an 
overpotential of 347 mV.  While HC-MoS2/Mo2C’s performance 
is comparable to that of state-of-the-art Pt/C, the authors 
determine that the price of the Mo concentrate precursor is 5x 
cheaper than Pt.  This reduction in material cost plus their HT 
method made HC-MoS2/Mo2C ~30x cheaper than commercial 
Pt/C.  Choosing to omit any purification steps helped to reduce 
cost of production while showing the resilience of the catalyst 
even with the existence of impurities originating from the mine.  
The authors anticipate their method being extended to other 
natural materials for HT electrocatalyst production.
3.4 Analytical Characterization

Physical characterization performed before and after 
electroanalysis plays an imperative role in scientific methods of 
HT material discovery.  Researchers incorporate analytical 
characterization (morphology, composition, crystallization, 
etc.) in traditional benchtop studies to answer questions about 
a material’s performance.  Thus, HT experimental methods also 
require HT characterization techniques to identify the most 
feasible materials for electrochemical applications.  Scientists 
have innovated new techniques to address speed-related 
bottlenecks in common analytical methods such as X-ray 
diffraction (XRD) and X-ray fluorescence.142,143  Incorporating 
multi-sample and automated stages into instruments increases 
the number of samples that can be characterized while reducing 
analysis time.  Parallel chambers for in systems for Fourier-

Figure 5. Schematic of the VSParticle nanoparticle printing technology. A certain wattage is applied to metal electrodes which causes the metal to ablate and particles to detach. The 
particles agglomerate to form nanoparticles as they are carried by inert Ar to a vacuum chamber where they are printed via nozzle onto a substrate of choice held by a XYZ-stage. 
Reproduced with permission from Reference 110. Copyright 2022 MDPI.
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transform infrared spectroscopy, ultraviolet-visible 
spectroscopy, and N2 adsorption/desorption allow for samples 
to be loaded and analyzed simultaneously.  Various labs [and 
manufacturers] have also employed robotic arms for machine-
tending to automate menial measurements such as mass 
loading to increase process efficiency.144  Machine 
manufacturers for these common techniques have already 
rolled out their HT versions of their instruments.145–148  Taking it 
a step further, researchers have gone insofar as to start 
incorporating ML into physical characterization techniques to 
improve their efficacy. Szymanski et al. developed an 
autonomous and adaptive XRD by coupling ML with the physical 
diffractor to hasten phase detection, leading to in situ 
identification of short-lived intermediates during solid-state 
reactions.149  This application serves as a nice segue into the 
following section where we discuss combined computational 
and experimental methods.

4. Combined Methods

Synergistic approaches that integrate both computational and 
experimental methods are essential for accelerating material 
discovery.  While conducting studies that employ both 
techniques requires greater effort, the resulting insights are 
often significantly deeper and more insightful.  There are 
several approaches to combining these techniques, rather than 
a single recipe. For instance, experiments can be performed first 
to generate datasets that train ML models through supervised 
learning.  Additionally, a ML or DFT model can suggest materials 
for subsequent synthesis and testing to validate their 
effectiveness. This new data can then be reintroduced into the 
ML model, enhancing its capabilities.  Hence, by combining 
computational and experimental methods, researchers can also 
develop iterative processes to design and discover materials.  
This section discusses remarkable work reported in the 
literature in which computational methods are incorporated 
into experimental setups.  Table 3 summarizes all the literature 
with combined computational and experimental methods we 
evaluated in this review with information such as the model, 
descriptor, material type, cell, and the top performing 
material(s).  A more detailed version of this table is provided in 
the Supplementary Information.

Table 3. Summary of HT studies that combine both computational and experimental methods for material discovery. All acronyms not previously mentioned in the text 
are defined in table footnotes.

Model(s)
Material Rxn(s) Cell(s)

DFT ML
DFT Descriptor(s)

ML 
Algorithm

Top Material(s) Year Ref.

Catalyst eCO2RR 3-electrode ✔
Pore limited diameter

Coordination of unsaturated metal sites
Adsorption capacity

N/A MOFs⁑:
GAFRUD
CAJQEL

cg400449c
2022 150

Catalyst eCO2RR Flow cell ✔ ✔
ΔGCO

ΔGH

Formation energy
GNN CuAl 2024 79

Catalyst HER N/A ✔ ΔGH N/A BiPt alloy 2006 151

Catalyst HER RDE ✔ A-site ionic electronegativity N/A (Gd0.5La0.5)BaCo2O5.5+δ 2019 152

Catalyst OER H-cell ✔ N/A BO
Co0.2Mn0.7Ni0.1Ox

Co0.6Fe0.3Ni0.1Ox
2023 153

Catalyst OER 3-electrode ✔ ✔

Bond length between metal ion & atom 2
Average charge of active site

Electron affinity for metal center
Ionic radius of active site atom

GBR
Ni covalent organic 

framework
2021 154

Catalyst OER 3-electrode ✔
Decomposition energy

Pourbaix (Nernst equation) 
Cubic Pm3m space group

N/A LaAlO3 2022 78

Catalyst OER 3-electrode ✔ ✔

Electronic structure (O2p bandcenter, 
M3d bandcenter, Bader charges)

ΔGO

ΔGOH

ΔGOOH

RF
BO
LAS

Co2.5Ga0.5O4 2024 155

Catalyst ORR

Multi-channel 
(4) flow double 
electrode cell

RDE

✔ N/A
SVM
GBR

Fe4.8%Zn95.2% 2020 156

Catalyst ORR RRDE◊ ✔ ΔGOOH N/A Cobalt Porphyrin 2022 157

Catalyst ORR
SECM
RRDE

✔ ΔGO on Fe N/A FeNiCuCoPt/CNFs 2024 158

Catalyst ORR MEA ✔
d-band center

ΔGO

ΔGOH

N/A Pt3Co 2020 159
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4.1 Computational screening then synthesis

Recently, Microsoft in collaboration with a research group from 
the Pacific Northwest National Laboratory (PNNL) reported the 
discovery of electrolytes for solid state batteries driven by high-
performance, cloud-based computing.161  Starting with known 
crystal structures, the authors chose 54 elements and obtained 
their common oxidation states to perform ionic substitution in 
the pre-existing materials.  All in all, over 32.5 million initial 
structural candidates were generated for screening.  From here, 
the study moves to a 10-step funneling method to evaluate the 
selected candidates.  The first step narrowed down materials by 
their phase stability Ehull < 50 meV/atom (Ehull is the relative 
energy above the convex hull and obtained by using ML-based 
potentials166), bringing the number down to under 6 × 105 

(Figure 6a and b).  The following levels encompassed criteria 
pertaining to solid electrolytes such as Li conductivity, redox 
potential, and cost.  Distinctively though, each criterion step is 
performed with either ML or DFT based on the need for quicker 
(cheaper) screening or higher accuracy, respectively.  
Essentially, this strategy demonstrates using ML for a large 
dataset because it requires less computing time and then 
switching to DFT once the dataset has been tapered down for 
more reliable but not excessively expensive analysis.  
Consequently, the authors identified 18 electrolytes that had 
not been previously reported and focused on four to further 
investigate through synthesis and characterization.  The top 
candidate was NaxLi3-xYCl6 based on its structures and 
conductivities, making it a suitable choice for a solid electrolyte 
(Figure 6c and d).  Even with such an expansive search and a 
detailed screening, the authors conclude that relaxing the 
criteria for the filters could help detect additional candidates, 
which echoes Kavalsky et al.’s call to consider small 
compromises when screening materials.57

Sarwar et al. recently performed HT-DFT calculations to 
study the electrocatalytic activity and stability of over 2000 
Pt3M bimetallic alloys for ORR, where M represents a list of 21 
metals.159  The researchers evaluated the effectiveness of 
descriptors such as surface d-band center and ΔGO and 
investigated the impact of M surface segregation under vacuum 
and O- and OH-induced conditions.  By conducting experimental 
studies, the authors were then able to correlate the O-induced 
segregation energy with the percentage of M metal loss 
(leaching).  Moreover, the computational findings indicated 
that the d-band center might not be a reliable descriptor once 
surface segregation effects occur as d-band center could not 
predict the decrease in ORR activity once the M metal migrated 
to the surface (leaching).  This phenomenon was confirmed with 
the electroanalysis data as ORR activity displayed an enhanced 
correlation with ΔGO than with d-band center.  Therefore, the 
authors concluded that ΔGO could serve as a better descriptor 
when considering the surface and binding energy changes post-
segregation.  This discovery suggests that some descriptors may 
be suited for certain catalyst morphologies, which could 
motivate more tailored DFT calculations for specific material 
configurations. 

Coupling experimentation and computation for Karim et al. 
involved conducting experiments not only after but also before 
creating their ML model.156  At first, the researchers prepared 
36 different catalysts samples using a HT automated synthesis 
platform and followed up by testing them all for ORR activity.  
The electrochemical cell for running ORR was a customized 
multi-channel flow cell capable of screening four catalyst 
samples at a time.  Out of the resulting dataset, 60-80% were 
used to train five ML models with the synthesis parameters (Fe 
atomic %, pyrolysis T, and Fe precursor) as inputs.  Each ML 
model utilized a different algorithm to help find the minimal 
(optimal) RMSE and mean absolute percentage error.  The best-
performing algorithms were gradient boosting and support 

Catalyst
ORR
OER

Sealed glass cell ✔
Dissolution reaction energy
Energy above convex hull

N/A
26 OER oxide candidates
2 ORR oxide candidates

2022 80

Electrolyte
HER
ORR
OER

Button cell ✔
Oxygen vacancy

Hydration energy
ΔGC2O

ΔGH2O
N/A BaSnxCe0.8-xYb0.2O3-δ 2024 160

Electrolyte ✔ ✔

Li mole fraction
Band gap

Redox potential
Stability

Li diffusivity
Cost

Shear modulus
Density

GNN NaxLi3-xYCl6 2024 161

Electrolyte ✔ N/A
LR

GPR
1,4-dioxane 2022 162

Electrolyte ✔ ✔ N/A BO
dioxane:dimethyl 

sulfoxide @ 0.8.0.2 vol%
2024 163

Electrolyte ✔

Energy above convex hull
Reaction energy

Band gap
Ionic conductivity

N/A Li3OCl 2025 164

Electrolyte ✔ Li-phonon band center N/A
Li3ErCl6 and 17 other 

candidates
2019 165

⁑metal organic framework
◊rotating ring disk electrode

LR: Linear regression
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vector regressions.  From here, the authors used these two 
optimal models to predict ORR activity as a function of the 
synthesis parameters, which represents outputting new 
catalysts.  Taking it a step further, the researchers synthesized 
new catalysts under these predicted parameters and tested 
them for ORR activity to validate the model.  The new material 
not only met but exceeded its modeled performance.  
Continuing this method of synthesis, testing, training, and 
predicting could allow the authors to iteratively improve their 
model and find the next best materials for ORR before 
expanding to other reactions.
4.2 Integrated robotic platforms

Robotic platforms have been introduced in various applications 
to increase experimental throughput, minimize human error, 
and improve researchers' safety regarding hazardous materials. 
Moreover, robotic platforms' speed provides larger initial 
datasets for training ML models and allows suggested materials 
to be synthesized, tested, and fed back into the model 
simultaneously in batches rather than one by one with 
traditional benchtop chemistry.

To find the optimal solvent for electrolytes in redox flow 
batteries, researchers at PNNL and Argonne National 
Laboratory developed an automated workflow that linked 
robotic HT synthesis and analysis with ML, as shown Figure 7.163  
In short, they built a closed-loop, ML-guided HT 
experimentation setup to further speed up screening.  To start 
their study, the authors listed 22 possible solvent candidates 
and then created an additional 2079 candidates based on binary 
mixtures of various volume ratios of the original 22.  Next, their 
automated robotic platform synthesized 58 of these candidates 
(both singular and binary solvents) for model training at a rate 
of ~39 min per sample.  Each electrolyte sample was prepped 
for nuclear magnetic resonance (NMR) and then manually 
transported to an auto-sampling NMR machine for quantitative 

analysis of 1H NMR spectra.  The integrated peak areas were 
used to calculate solubility.  The results from these 58 samples 
first trained a surrogate model to determine whether Bayesian 
Optimization (BO), a type of AL, would be effective with this 
dataset.  The surrogate model training was then validated with 
40 additional solvent candidates and then asked to identify the 
solvent with the highest solubility out of its 98 samples.  Once 
the surrogate model was verified, the authors deployed BO to 
complete their ML-guided, closed-loop setup and then ran 
three cycles.  Each cycle started with (1) the model suggesting 
40 solvent samples, (2) synthesis and evaluation as described 
above, and (3) feeding the results back into the model.  BO only 
took one cycle to identify dioxane:dimethyl sulfoxide @ 0.8:0.2 
vol% as the solvent with the highest solubility.  Since the 
subsequent cycles did not detect a better solvent, the authors 
halted their evaluation meaning their model only needed 218 
measurements from the >2000 sample dataset to output the 
optimal solvents and solvent ratio. The detailed automated HTE 
system for solubility measurement is given in Figure 8. This 

Figure 6. (a) Material screening based on phase stability. (b) Workflow of discovering solid electrolytes with miscellaneous screening criteria. (c) Ionic conductivities of NaxLi3−xYCl6 
measured at different temperatures. (d) Relationship between crystal structure and ionic conductivity. Reproduced with permission from Reference 161. Copyright 2024 American 
Chemical Society.

Figure 7. Schematic of the closed-loop electrolyte screening process based on ML-guided 
HT experimentation platform. Reproduced with permission from Reference 163. 
Copyright 2024 Springer Nature Ltd.
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demonstration of BO underscores how active (machine) 
learning can drive experimentation toward minimizing the time 
and calculations (cost) needed to screen larger datasets and 
discover materials. 

Understanding that the search space for catalyst multi-
element electrocatalysts is too vast even for automated HT 
robotic platforms, Kodera and Sayama also incorporated ML 
into their robot system to explore catalysts for OER and HClO 
production using seawater.153  Their fully automatic robot was 
able to conduct synthesis and electroanalysis of 88 catalyst 
samples per day.  The authors started by setting their system to 
synthesize and analyze different combinations of four elements 
(Co, Mn, Fe, Ni), chosen based on their reported performance, 
to obtain 286 data entries.  With this data, the authors 
investigated composition optimization using BO by having the 
ML model and robot run cycles; the model suggested 10 
materials which the robot system then synthesized and 
analyzed.  The cycles were halted after four loops when the 
model identified the top 10 performing materials of the 286 
original samples.  Thus, only 40 samples were needed to 
validate and optimize the model.  The authors stress that, as 
stated in the previous paragraph, BO-guided experiments 
reduce the time needed to evaluate datasets and optimize 
materials.  In addition, the authors propose choosing more 
elements, expanding the abilities of their robot platform, and 
using multi-objective optimization like Kavalsky et al.57

5. Discussion
The methods reviewed here show much promise for material 
discovery to advance electrochemical technologies for energy 
and chemical applications.  Computational methods present the 
opportunity to explore not-yet-synthesized materials and 
screen high volumes of data, while HT experimental methods 
make and test a myriad of samples.  Table 4 compares the pros 
and cons of computational and experimental methods to sum 
up some of the points we’ve discussed in this review.  Learning 
from these approaches and setups will hopefully allow more 
labs and researchers to adapt HT practices and thus find 
solutions to the roadblocks for implementation at scale.  While 
collecting and summarizing this data, we identified some trends 
and new focus areas worth capturing and noting in this section.

The distribution of methods reviewed in this article is 
depicted Figure 9a as a bar graph.  We can see that most reports 
conducted HT studies via computation, which we expect since 
it is faster, safer, and less resource-intensive than experiments.  
There is a significant discrepancy, however, in the material type 
(Figure 9b).  Of all the publications we discovered and analyzed 
for this review, over 80% focus on catalysts no matter the 
reaction.  Although responsible for driving the reaction, the 
catalyst is not the only component of an electrochemical 
reactor.  These percentages in Figure 9b are only based on the 
thorough search we conducted in the literature space and thus 
not representative of the entire field; yet we still suggest that 
critical components such as membranes, ionomers, and 
substrates remain underexplored using high-throughput 
methods although they are necessary in such systems.  These 
components are critical to the long-term operation, durability, 
and efficiency of electrochemical systems.  Many degradation 
mechanisms that lead to failure and insufficient lifetimes in 
electrochemical systems are associated with not only the 
catalyst but also the substrate (or membrane) it is deposited on 
and/or the ionomer that binds it together, if applicable.167  The 
development of polymer informatics platforms could facilitate 
the discovery of next-generation ionomer and membrane 
materials that rival or outperform current standards such as 
Nafion and other PFAS polymers that also present 
environmental liabilities.  Moreover, highly conductive 
electrolytes provide ion transport but may be corrosive or 
detrimental to all components in the system in the long term.  
Although ~12% of the reports investigate electrolytes, most 
pertain to batteries and not those for fuel cells and 

Table 4 List of pros and cons of computational and experimental HT methods

HT Method Pros Cons

Experimental

Physical observations & 
real-world results

High data reliability
Accounts for synthesis 

conditions

Spatial and time limits
More resource intensive

Safety/environmental 
constraints

Computational

Massive screening (>103 
materials)

Cost-effective and rapid 
testing

Safe exploration

Model accuracy 
limitations

Requires experimental 
validation

Difficulty capturing 
synthesizability

Figure 8. (a) Schematic representation of the automated HTE system for solubility measurement. The automation process consists of powder (b) and solvent (c) dispensing, (d) 
saturated sample monitoring, and nuclear magnetic resonance (NMR) sampling (e) and analysis (f). (g) Evaluated experimental time per sample for different solubility 
measurement methods. Reproduced with permission from Reference 163. Copyright 2024 Springer Nature Ltd.
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electrolyzers.  Therefore, this review underscores the need for 
broader HT efforts that investigate all materials involved in 
electrochemical reactors to address performance bottlenecks 
effectively.  Nevertheless, we understand that constructing 
compositional libraries and datasets for materials such as 
polymers and substrates is more complex than for catalysts.  
Polymers for ionomers and membranes are not as simple to 
model as metal catalysts due to their larger size, intricate 
structures, and heterogeneous nature.168  These 
macrostructures generally feature complex arrangements with 
numerous degrees of freedom, which increases the 
computational demand of simulations.  Like polymers, 
substrates–materials onto which catalysts are deposited—are 
also macrostructures and generally heterogeneous.  Accurately 
capturing complex interactions and dynamic behavior of these 
polymers and substrates with their surroundings requires 
advanced computational techniques and a considerable 
number of resources.

Another potentially critical direction involves extending HT 
methodologies beyond material-level screening to capture 
device-level performance metrics. Current HT platforms 
typically evaluate properties such as onset potential, 
overpotential, or adsorption energy in simplified environments. 
However, real-world performance is governed by how materials 
function within integrated systems. Developing modular 
experimental platforms that can vary multiple components 
simultaneously—for instance, testing combinations of catalysts, 
ionomers, and membranes within the same electrochemical 

cell—would allow for the co-optimization of interdependent 
variables. Incorporating accelerated stress tests and diagnostics 
into HT setups could also provide early insights into material 
degradation pathways and lifetime expectations, enabling more 
predictive screening of materials for industrial relevance.

As mentioned in Section 2.1, many DFT studies successfully 
utilize activity descriptors, whether ΔG or partial atomic 
charges, and stability descriptors to screen catalyst materials.  
While activity and stability an imperative, many of the 
computational methods reviewed here do not consider the 
cost, availability, safety, both environmental and personal, and 
complexity of synthesis when proposing new materials.  Some 
of these suggested materials are dangerous, expensive, and 
synthetically impractical, which makes their window for scale-
up very slim and complicated.  In addition, some materials may 
be sourced from carbon-intensive processes, which defeats the 
purpose of green technologies and calls for carbon neutrality 
analysis when discovering and proposing new materials.  This 
issue presents opportunities to discover new descriptors that 
can screen for these properties, such as hazard diamond ratings 
or toxicity of precursors, material biodegradability,  and earth 
abundance indices, cost indexes of metals (like that used by 
Kavalsky et al.57).  Jia et al. applied cohesive and formation 
energies as descriptors for ease of synthesis which more 
researchers can expand on.63  Integrating life cycle assessment 
into computational models makes it possible to evaluate the 
environmental impact and predict the long-term behavior of 
materials.186–188  There is also the opportunity to identify and 

Table 5 Roughly estimated costs of some types of HT equipment for both experimental and computational methods.  This list does not cover all instruments that 
may exist in a HT laboratory. Costs were sourced from vendor quotes and websites.

Experimental Computational
HT Equipment Method Average Cost (USD) HT Equipment Average Cost (USD)

Scanning flow/droplet cell169,170 Electroanalysis $110,000-$150,000
X-ray diffraction147 Characterization $300,000

X-ray fluorescence146,174 Characterization $100,000
Confocal microscopy175,176 Characterization $70,000-$250,000

1-rack high performance 
computing cluster with 10 

CPU nodes171–173

$200,000-$400,000

Nanoprinter177 Synthesis $350,000
Automated synthesis platform182,183 Synthesis $70,000-$500,000

Robotic arm184,185 Versatile $25,000-$100,000
Supercomputing time178–181 $0.005-$0.0625 per hour

Figure 9. Analysis of HT literature reviewed. (a) Bar graph depicting the number of publications using either experimental methods, computational methods, or a combination of 
both for HT material discovery. (b) Pie chart detailing the type of materials studied in the literature we reviewed and the percentage of papers that focused on that material.  Catalyst 
materials dominate the HT literature found.
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explore other properties and descriptors not named here that 
are important for a material’s feasibility.  These descriptors can 
be extracted from databases, developed using cheminformatics 
tools, or derived from techno-economic proxies such as 
precursor cost or process energy intensity.  When it comes to 
experimental methods, more scientists can consider comparing 
the cost of their suggested material(s) to the state-of-the-art on 
top of comparing the performance and commenting on the 
safety of the material(s) they suggest.

In this review, we examined studies that benefit from 
combining ML and DFT approaches to make their HT screening 
even more powerful as a tool.  However, it is worth mentioning 
that access to effective and significant computational resources 
applicable to the generation of databases required to train ML 
models is a challenge for many researchers around the world.  
The same can be said for experimentation, as fully equipped, 
functioning labs are expensive to build, let alone automated HT 
systems.  In fact, Table 5 roughly estimates and compares the 
cost of HT experimental equipment, HT supercomputers, and 
supercomputing time.  The price of a fully functioning HT lab can 
easily reach $100,000 USD in equipment alone, not considering 
overhead, utilities, maintenance, etc., to keep it up and running.  
Access to well-equipped shared facilities such as those found at 
universities and national labs would remove the burden of 
procuring such equipment, making HT experiments cheaper.  
Yet, access to such facilities can be limited to specific users and 
user rates may apply, which can add to cost over time as more 
experiments are conducted and more materials are screened.

Going off method costs, we also examined where these HT 
studies were being conducted.  Looking at Figure 10, we see that 
most of the HT studies we evaluated here were performed by 
researchers in only a handful of countries (19).  However, the 
motivation for such studies stems from a global issue.  We 
understand that our review, while thorough, is not exhaustive 
and can only offer a glimpse of what is occurring in this field.   
Either way, we in countries with access to these resources can 

push the envelope and collaborate with those in countries that 
do not.  To democratize participation, future work should 
prioritize the development of low-cost, open-source datasets, 
modelling tools and cloud-based simulation platforms that 
reduce entry barriers. Similarly, the establishment of shared 
robotic facilities or “HT-as-a-service” centers, where 
researchers can remotely submit and analyze samples, could 
dramatically broaden global engagement. Capacity-building 
programs, research exchanges, and international consortia that 
foster technology transfer and technical training will be 
particularly important in regions where energy transitions are 
most urgently needed.  Such collaborations can offer more 
unique perspectives on HT material discovery, leading to new 
and improved ideas.

Detailed information on data preprocessing steps and links 
to datasets were missing in many of the papers that we 
analyzed in this review.  Such information is pertinent as it 
allows researchers to make informed decisions about 
comparing model performance and therefore finalize model 
use for their own studies.   Access to datasets and preprocessing 
steps helps one determine model generalizability, and helps 
improve model interpretability, especially when it comes to 
“black box” models such as neural networks or ensemble 
learning models.  Furthermore, sharing preprocessing steps 
allows the research community to (1) validate model 
performance and results through independent 
experimentation, leading to more robust models and 
computational methods, and (2) modify and build upon these 
models and datasets.

We recognize that researchers have already taken steps to 
make HT computational methods and experimental setups 
available to everyone.  Published works may include how to 
obtain the data and links to open-source code (e.g., GitHub).  
Some authors go insofar as to ask readers to comment or build 
on their results and are open to connecting with other 

Figure 10. Heat map highlighting the countries of the authors of the reports evaluated in this review.  The darker the shade of blue, the more that country has been associated with 
a publication via authorship.  If a country is grey, then no author from the literature we reviewed was affiliated with that country.  Map generated using Microsoft Bing.
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researchers about their work.  For uses such as training ML 
models, finding material properties, or simply comparing 
results, researchers have created open datasets for people to 
pull from and/or augment.  One example is the Open Catalyst 
Datasets, which are meant to aid in ML model training.177,178  
This dataset is part of the larger Materials Project which allows 
researchers to access computed information on known and 
hypothetical materials.191  Researchers at Toyota and the 
Massachusetts Institute of Technology collaborated to create a 
cloud platform for sharing polymer electrolyte data.192  Many 
other material databases have been designed for similar 
purposes that scientists continue to add to and use for their 
research.193–195  Equally important is the development of 
standardized experimental formats and reporting guidelines 
that support machine readability and enable cross-laboratory 
benchmarking.  Practicing open-source research should be 
continued as it is an imperative tool for materials discovery and 
is becoming more prevalent among researchers, especially in 
the fields we discussed here.  A coordinated community effort 
to develop open-access HT datasets, curated with rich metadata 
including synthesis conditions, characterization protocols, and 
failure modes, would dramatically expand the reproducibility 
and generalizability of future research.

6. Outlook
Automated and HT methods for materials discovery can help 
drive electrochemical technologies toward feasibility at scale.  
Using computation and experimentation is necessary for 
identifying and validating materials, and combining both, 
although difficult, brings about very effective methodologies.  
Even so, there is room to upgrade models and tweak setups to 
obtain more accurate results and uncover new chemistries. 
Quantum computing, for example, could exponentially speed 
up molecular simulations.  Although challenges remain, this 
technology may enable more accurate modeling of complex 
electrochemical interfaces.196  Although we did not discuss it in 
detail here as it would require an in depth analysis and 
discussion, scientists have begun developing fully self-driving 
labs that incorporate artificial intelligence like those established 
in the Acceleration Consortium at the University of Toronto.197–

200  The Cronin group at the University of Glasgow has explored 
self-driving labs for material discovery but also from a safety 
and efficiency perspective to decrease risks for researchers and 
reduce human error.201  These systems require robust data 
infrastructures, including standardized ontologies, seamless 
interoperability between hardware and software, and feedback 
mechanisms that enable machine learning models to learn not 
only from successful trials but also from failed experiments. To 
realize this vision, future research must also address challenges 
around system integration, error propagation, and the real-time 
decision-making capabilities of optimization algorithms such as 
Bayesian frameworks.  With all this in mind, we consider that 
chemistry-related research toward scalable solutions, and not 
just for energy applications, may be headed toward fully 

autonomous laboratories where computation and 
experimentation work hand-in-hand.  The future of HT 
electrochemical materials discovery lies in its ability to become 
more holistic, inclusive, and application-driven. This will require 
concerted effort not only to advance the tools and techniques 
themselves, but also to redefine what success looks like in 
materials discovery—balancing performance with scalability, 
environmental responsibility, and real-world relevance.
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