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Activation of gaseous PH3 with low coordinate 

diaryltetrylene compounds  

Jonathan W. Dube,a Zachary D. Brown,b Christine A. Caputo,b Philip P. Power,b and 
Paul J. Ragognaa

The reaction of phosphine gas with a low coordinate diaryl 

germylene or diarylstannylene results in both oxidative 

addition and arene elimination at the group 14 atom. The 

products were characterised by 31P NMR spectroscopy and 

X-ray crystallography, and represent the first P – H bond 

activation by a heavy group 14 element compound. 

The activation of small molecule substrates by coordinatively 

unsaturated main group molecules is a continuously expanding 

area of research.1 Of particular intrigue is the fact that these 

commodity, and typically unreactive, chemicals can be 

activated directly without the use of transition metals. The 

activation of dihydrogen by a main group compound under 

ambient conditions was first achieved by using a digermyne (A; 

Figure 1).2 Subsequent studies have shown that frustrated 

Lewis pairs (FLPs, ie. B),3 stable singlet carbenes (eg. C),4 

diaryltetrylenes (D),5 heavier p-block alkyne analogues,2,6 

silylenes,7 and group 13 dimetallenes (E)8 can also accomplish 

the same feat. Several of these unique systems also activate 

ammonia under ambient conditions, a feature that is not as 

common for transition metals.9  

 

 
Figure 1. Examples of main group compounds that activate small molecules. 

Note that Dipp = 2,6-diisopropylphenyl and that Mes = 2,4,6-trimethylphenyl. 

 Bertrand et al. have shown that unique, stable N-

heterocyclic carbenes (ie. C) can also insert into B – H, Si – H, 

and P – H bonds.9 While primary and secondary phosphines 

were used in work reported previously, reactions involving 

phosphine (PH3) are rare.11 Driess et al. have recently shown 

that a Si(II) center (F)12 inserts into the P – H bond of 

phosphine to produce a ligand stabilized Si(H)(PH2) fragment.13  

 The primary mode of reactivity for low valent main group 

centers is to undergo oxidative addition across the X – H (X = 

H, B, N, Si, P) bond. For the N-heterocyclic carbenes and 

heavier analogues there are few examples to the contrary. The 

diaryltetrylenes (D, EAr2; E = Ge, Sn; Ar = C6H3-2,6-Mes2)
13 

however, have displayed different reactivity based on the group 

14 element. In the reaction with ammonia, germanium 

exclusively favours the oxidative addition pathway, while tin 

exclusively favours arene elimination to remain in the +2 

oxidation state (Scheme 1).5 In this context, we report an 

extension of the reactivity studies on diaryltetrylenes to PH3, 

ammonia’s heavier congener. In contrast to ammonia, both 

oxidative addition and arene elimination products are observed 

for germanium and tin, and also in different ratios relative to 

each other.     

 

 
Scheme 1. Reactivity of ammonia with a diarylgermylene (left) and a 

diarylstannylene (right) highlighting the oxidative addition and reduction 

elimination pathways (Ar = C6H3-2,6(C6H2-2,4,6-Me3)2 = C6H3-2,6-Mes2). 

 The reaction of the diarylgermylene (GeAr2; Ar = C6H3-2,6-

Mes2) with an excess of PH3 (80 psi) in a stainless steel 

pressure reactor for three hours results in the complete 
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consumption of the purple starting material to give a colourless 

solution. Analysis of a fraction of the concentrated reaction 

mixture by 31P{1H} NMR spectroscopy revealed the presence 

of two signals (δP = -232; -180), which integrate to an 

approximate 80:20 ratio. The 31P NMR spectrum was 

particularly informative revealing the signals to be proton 

coupled as a triplet of doublets and a triplet (δP = -232, 1JP-H = 

181 Hz, 2JP-H = 11.2 Hz; δP = -180, 1JP-H = 183 Hz), consistent 

with the formation of both the oxidative addition product, 

Ar2Ge(H)(PH2) (1), and the arene elimination product, 

{ArGe(µ-PH2)}2 (2) (Scheme 2). The 1H NMR spectrum of a 

recrystallized sample of 1 revealed a doublet of triplets (δH = 

5.33, 2JP-H = 11.2 Hz, 3JH-H = 4.3 Hz), consistent with a 

germanium hydride adjacent to a PH2 functionality. The 

phosphorus hydrides were also observed as a doublet of 

doublets in the 1H NMR spectrum (δH = 1.29, 1JP-H = 181 Hz, 
3JH-H = 4.3 Hz) and agree nicely to the other coupling constants. 

The FT-IR spectrum also reveals signals consistent with a P – 

H (ν = 2310 cm-1) and a Ge – H stretch  (ν = 2069 cm-1). 

Confirmation of the solid-state structure of 1 was obtained from 

an X-ray diffraction study on single crystals grown from a 

saturated hexane solution at -35°C. There is a significant 

presence of GeH2Ar2 in the crude reaction mixture (40-50%), 

which cannot be efficiently separated from 1.15 While the origin 

of this species is not clear, its identity was unambiguously 

confirmed by 1H NMR and FT-IR spectroscopies as well as by 

single crystal X-ray diffraction. The analogous reaction of the 

diarylstannylene (SnAr2) with PH3 (80 psi) requires longer 

reaction times (24 hours) to go to completion, as evidenced by 

the disappearance of the characteristic purple colour. The 

proton decoupled and coupled 31P NMR spectra again revealed 

two signals (δP = -249, -227), in this case in an approximate 

68:32 ratio. The phosphorus – proton coupling constants are 

comparable to those of the analogous germanium species (δP = -

249, 1JP-H = 174 Hz, 2JP-H = 18.6 Hz; δP = -227, 1JP-H = 174 

Hz). Phosphorus – tin coupling is also observed with the values 

being consistent with a tin – phosphorus covalent bond (δP = -

249, 1J117
Sn-P = 496 Hz, 1J119

Sn-P = 518 Hz; δP = -227, 1J117
Sn-P = 

597 Hz, 1J119
Sn-P = 621 Hz). The 1H NMR spectrum reveals the 

characteristic doublet of triplets for the Sn – H (δH = 6.15, 2JP-H 

= 18.6 Hz, 3JH-H = 3.6 Hz) while the FT-IR spectrum displayed 

resonances consistent the P – H and Sn – H bond vibrations. 

The solid-state structure of the oxidative addition product, 

Ar2Sn(H)(PH2), 3, was obtained as structural confirmation, 

while unfortunately structural verification of the arene 

elimination product, {ArSn(µ-PH2)}2, 4, has proven elusive 

despite considerable effort. This is likely a result of the fact that 

completely separating 3 and 4 was not possible under the 

conditions employed. 

 The solid-state structures of the oxidative addition products 

1, and 3 are shown in Figure 3. The structures are nearly 

identical, and also similar to the ammonia insertion product, 

with the tetrel center in a distorted tetrahedral geometry. The 

Ge-H and Sn-H distances are 1.58(4) and 1.90(5) Å. The Ge – 

C bond lengths are 1.981(3) and 2.003(3) Å, while the Ge – P 

bond length is 2.3194(11) Å. The analogous bond lengths for 3  

 
Scheme 2. The reaction of phosphine with the diaryltetrylenes (E = Ge, Sn) to 

give both the oxidative addition (1 or 3) and arene elimination (2 or 4) products. 

Ratios determined by 31P{1H} NMR spectroscopy of the crude reaction mixture. 

 
Figure 2. Plots of 31P{1H} and 31P NMR spectra for the reaction of EAr2 (E = Ge, Sn) 

with phosphine. Inset: FT-IR spectrum of 1 focusing on hydride vibrations. 

                  
Figure 3. The solid-state structure of 1 (left) and 3 (right). Ellipsoids are drawn at 

50% probability, hydrogen atoms, with exception to the main group hydrides, 

and hexane solvate (1) are removed for clarity. Selected bond lengths (Å) and 

angles (°): 1 Ge – H 1.58(4), Ge – P 2.3194(11), P – H 1.34(4), P – H 1.02(4), C – Ge 

– C 112.5(1), P – Ge – H 102.1(13); 3 Sn – H 1.90(5), Ge – P 2.5997(17), P – H 

1.391(10), P – H 1.384(10), C – Sn – C 138.1(2), P – Sn – H 96.1(14). 

are 2.193(6), 2.181(6), and 2.5997(17) Å, respectively. For both 

1 and 3 the phosphorus – hydrogen bond lengths fall within the 

range of 1.32 and 1.42 Å with the exception of one very short 

outlier (1.02(4) Å in 1).16 The C – E – C bond angle has 

increased considerably from the free diaryltetrylene14 for 3 

(138.1(2)° cf. 114.7(2)° for SnAr2) while the same angle in 1 is 

slightly smaller than in GeAr2 (112.5(1) cf. 114.4(2) for 

GeAr2). The P – E – H bond angles are much smaller in 

comparison, consistent with the use of unhybridized p-orbitals 

in the bonding, and also an obvious result of the steric pressure 

of the terphenyl substituents. 
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 In conclusion, a diarylgermylene and a diarylstannylene 

react with phosphine gas under ambient conditions to produce 

both oxidative addition and arene elimination products, the 

structures of the oxidative addition products being confirmed 

crystallographically. This study represents a rare example of 

activation of a P – H bond at a low coordinate main group 

center, and the first of the heavier group 14 elements (Ge, Sn).  
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