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Abstract 9 

Pork adulteration in minced beef was detected for the first time using a hyperspectral 10 

imaging (HIS) technique. Minced beef samples were adulterated with minced pork in 11 

the range of 2%–50% (w/w) at approximately 2% intervals. Images were acquired 12 

using a visible near-infrared hyperspectral imaging (VNIR-HSI) system and their 13 

spectral data were extracted. Several data pre-treatments and different linear 14 

multivariate analyses, namely partial least squares regression (PLSR), principal 15 

component regression (PCR), and multiple linear regression (MLR), were investigated 16 
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to determine the predictive ability of VNIR–HSI in detecting pork meat adulteration in 17 

minced beef. PLSR had a better performance than that of PCR for predicting pork 18 

adulteration in minced beef. Only four wavelengths centered at 430, 605, 665, and 705 19 

nm were selected as the important wavelengths to build MLR model for visualizing the 20 

distribution of adulteration. The results confirm that HSI can be used to provide a rapid, 21 

low cost, and nondestructive testing technique for adulterate detection in minced meat. 22 

Keywords: Hyperspectral imaging; adulteration; minced beef; minced pork; multivariate 23 

analysis.  24 

1. Introduction 25 

Meat is one of the most commonly consumed high value food items throughout the 26 

world. Because of its high value, there is always an opportunity for fraudulent 27 

replacement of premium quality material with lower–grade, cheaper meats.
1
 Although 28 

the determination of meat authenticity and the detection of adulteration have received 29 

ample attention in the meat industry, the prevalence of meat fraud is not easy to assess.
2 

30 

Therefore, to ensure consumer health and to maintain consumers’ confidence and 31 

satisfaction, it is necessary to have reliable analytical methods to confirm meat 32 

authenticity and detection of meat adulteration. Any such method should be rapid, 33 

noninvasive, accurate, and spatially located.
3
 HSI techniques have shown the potential 34 
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to meet these criteria. The technology has recently emerged as a powerful technique that 35 

integrates spectroscopy and imaging to extract both spectral and spatial information 36 

from a sample. The HSI system generates images in a three-dimensional form called 37 

“hypercube” which facilitates the determination of chemical compositions of several 38 

samples in addition to visualizing chemical distribution within the same sample. 39 

Associated with multivariate data analysis, HSI techniques have proven to be powerful 40 

tools for quantitative and qualitative analyses of a wide range of materials for a large 41 

number of chemical and physicochemical properties.
4-6

 In particular, this technology has 42 

already received considerable attention for assessing different quality attributes and 43 

safety parameters in meat and meat products.
7-22

  44 

Minced beef is the major ingredient in a variety of high volume meat products such as 45 

hamburgers, patties, meatballs, sausages, and salami. It is considered superior and 46 

commands a higher price compared with other types of minced meat, such as chicken 47 

and pork, thereby making it more susceptible for potential fraud or adulteration. 48 

Therefore, developing a smart system based on HSI to detect adulteration is crucial for 49 

the meat industry. However, it is imperative to emphasize that the present HSI system is 50 

not yet ready for implementation in meat processing industries because of its high 51 

dimensionality of spectral data as well as time constraints for image acquisition and 52 
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subsequent image analyses.
5
 Therefore, the challenge is to search for the most sensitive 53 

wavebands for the development of an optimized “multispectral” imaging system that 54 

could be directly implemented in industrial applications. In practice, for the design of 55 

rapid, low-cost, multispectral imaging systems, either the visible-shortwave, 56 

near-infrared region (400-1000 nm) measured by CCD array detectors, or the region 57 

between 900-1700 nm or 900 and 2500 nm, measured with InGaAs detectors, are 58 

available. The 400-1000 nm range is advantageous because of the wide availability and 59 

low cost of charge-coupled device (CCD) detectors compared with InGaAs detectors.
4
 60 

To the best of our knowledge, only one study has detailed the detection of pork 61 

adulteration in minced lamb using NIR-HSI in the spectral range of 900-1700 nm.
15

 No 62 

research has yet been conducted for detecting adulteration in minced beef using HSI. 63 

Our previous work has shown the potential of using VNIR-HSI as a rapid method to 64 

detect horsemeat adulteration in minced beef.
17

 The present study is a further step 65 

towards the development of a VNIR-HIS system (400-1000 nm) as a rapid and 66 

non-destructive analytical tool to detect adulteration in minced beef by pork. The 67 

specific objectives of the current study were: (1) to build PCR and PLSR models for 68 

predicting pork adulteration in minced beef; (2) to identify optimum wavelengths that 69 

could be used to develop an on-line multispectral imaging system for predicting 70 
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adulteration in minced beef; (3) to develop image-processing algorithms based on 71 

optimum wavelengths, to generate prediction maps for visualization of adulteration 72 

levels in minced beef.  73 

2. Materials and methods 74 

2.1 Sample preparation  75 

Minced beef and pork were collected from a local supermarket. The minced beef 76 

samples were adulterated by mixing minced pork in the range of 2%–50% (w/w), at 77 

approximately 2% increments. The minced beef and pork were individually weighed 78 

and thoroughly mixed and homogenized to obtain a total sample weight of 32 g. A total 79 

of 25 samples (one sample per adulterate level × 25 levels) were prepared and used as a 80 

calibration set. On the other hand, a total of 13 samples were prepared in a different 81 

batch as a testing dataset in the same range at approximately 4% increments. These 82 

samples were used exclusively to validate the performance of calibration model. The 83 

minced meat was placed in a circular metal can and imaged using the HSI system. 84 

2.2 Hyperspectral imaging system, image acquisition, and correction  85 

A laboratory-based VNIR-HSI system in the spectral range of 400-1000 nm was used to 86 

acquire images of the tested samples in the reflectance mode. The detailed description 87 

of the system is presented elsewhere.
23

 In short, the system composed of a 12-bit CCD 88 
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camera (MC1002PF, Texas Instruments, USA), a spectrograph (ImSpector, V10, 89 

Spectral Imaging Ltd., Oulu, Finland), a C-mount lens, a light source consisting of a 90 

150-W tungsten halogen lamp (ColdSpot PCS-UHX, NPI, Tokyo, Japan) and a 150-W 91 

Xe lamp (Super Bright 152S, SAN-EI Electric, Osaka, Japan), a stage control unit 92 

(Model SGSP 26- 200, Sigma–Kaki Co., Ltd., Tokyo, Japan), and a computer supported 93 

with a data acquisition and control software system (SpectrumAnalyzer, version 1.8.5, 94 

JFE, Techno-Research Corporation, Tokyo, Japan). The entire acquisition was carried 95 

out in a dark room (temperature = 20
o
C and humidity = 65%) to avoid any stray light 96 

from the surrounding environment. The image acquisition procedure was operated using 97 

the computer coupled with the Spectrum Analyzer software. The exposure time of the 98 

CCD camera was set to 9.4 ms. The speed of the translation stage was 2.08 mm/s. Each 99 

image was acquired in the spectral range of 400-1000 nm with 5 nm intervals between 100 

contiguous bands, thus producing a hyperspectral image with 121 bands. However, the 101 

spectral data for further processing were limited to 117 bands (420-1000 nm) to avoid 102 

low signal- to -noise ratio.  103 

Spectral data collected from a CCD device contained detector signal intensity and not 104 

actual reflectance values. Therefore, it is generally more useful to correct or transform 105 

the raw data into reflectance or absorbance units. The image correction was carried out 106 

Page 6 of 27Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



7 

 

by acquiring white and dark reference images. The dark reference image (approximately 107 

0% reflectance) was obtained by completely closing the lens of the camera with its 108 

opaque cap, while the white reference image was acquired from a uniform, stable, and 109 

high reflectance white calibration tile made of Teflon (approximately 100% 110 

reflectance). The corrected hyperspectral image (R) was then calculated by using the 111 

following equation: 112 

R = 
DW

DR

−

−0   (1) 113 

R0 is the raw hyperspectral image, W is the reference image, and D is the dark image. 114 

This equation transforms the reflectance value of all pixels from the raw hyperspectral 115 

image having absolute reflectance values (in arbitrary reflectance units) to relative 116 

reflectance values (unitless).  117 

2.3 Image segmentation and extraction of spectral data 118 

Each hyperspectral image was segmented to isolate the minced meat from the 119 

background of the sample. A binary mask image was constructed by subtracting an 120 

image of lower reflectance (425 nm) from an image of higher reflectance (875 nm) 121 

followed by a simple thresholding at a value of 0.22. Morphological operations were 122 

performed on the resultant binary mask to remove the isolated parts (if any) originating 123 

from the edges of metal cans. This step resulted in a final mask containing only minced 124 
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meat, which was then used as the main region of interest to extract spectral information 125 

from the corrected hyperspectral image. Only one average spectrum was obtained to 126 

represent each sample and the same procedure was repeated for all hyperspectral images 127 

of the tested samples. Background segmentation and extraction of spectral data from 128 

hyperspectral images were programmed in Matlab (The Mathworks Inc., Mass, USA). 129 

2.4 Multivariate spectral analysis  130 

After extracting the spectral data, the next stage is to establish reliable multivariate 131 

calibration models. However, it is necessary to mitigate the noise in the data (if any) to 132 

enhance the signal-to-noise ratio to obtain a good and robust prediction model. 133 

Therefore, prior to the multivariate modelling, different pre-processing routines such as 134 

multiplicative scatter correction (MSC), standard normal variate (SNV) and second 135 

derivative were separately applied to the spectral data.  136 

Calibrations and predictions of adulteration in minced beef samples based on full 137 

spectra (117 variables) were established using two linear chemometric algorithms, 138 

namely partial least-squares regression (PLSR) and principal component regression 139 

(PCR). The calibration models were strictly built using the calibration dataset and 140 

optimized using leave-one-out cross-validation. The performances of the developed 141 

calibration models were further validated using an independent testing set. The optimum 142 
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number of latent factors (LFs) or principal components (PCs) to be included in the 143 

calibration models was selected at the lowest value of prediction error sum of squares 144 

(PRESS) that demonstrates the sum of squares of deviation between predicted and 145 

reference values for cross validation models. The predictability of the models were 146 

evaluated using the correlation coefficient in calibration (Rc), cross-validation (Rcv) and 147 

prediction (Rp) and the standard errors in calibration (SEC), cross-validation (SECV) 148 

and prediction (SEP). 149 

Although HSI has a great potential in a vast number of applications, this technology 150 

suffers from several typical problems, i.e., high cost and complexity in dealing with the 151 

large volumes of data involved.
5
 To solve this problem, one practical solution is band 152 

selection, which aims to use a small portion of bands to represent the whole image 153 

whilst maintaining a good performance of analysis. Removal of less informative bands 154 

is useful not only to save computational cost and storage space but also to improve the 155 

performance and accuracy of the models.
24 

In this study, regression coefficients (also 156 

called β coefficients) resulting from the best model were plotted and the individual 157 

wavelength corresponding to the large values (regardless of the sign) were picked up as 158 

important wavelengths. Selected important wavelengths were then used to establish 159 

multiple linear regression (MLR) models to predict the level of adulteration in minced 160 
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beef and for spatial visualization of adulteration with the aid of multivariate image 161 

processing. All multivariate spectral data analyses were performed in Unscrambler 162 

(CAMO, version 10.3).  163 

2.5 Multivariate image analysis  164 

The advantage of using HSI over spectroscopy resides in applying the model obtained 165 

from the average spectra to each pixel in the image; thus, obtaining a “prediction map” 166 

composed of thousands of predicted values. This prediction map was created by 167 

applying the MLR model to each pixel in the image. At first, the spectral image at 168 

selected wavelengths was unfolded into a two-dimensional matrix. This matrix was then 169 

multiplied by the regression coefficients obtained from the MLR model. The resulting 170 

matrix was refolded to form the prediction map, which exhibits the level of adulteration 171 

within all spots in the sample. A median filter with five neighboring pixels was applied 172 

to smooth and reduce the noise in the resulting map. In the prediction map, the level of 173 

adulteration was visualized by colors, where the adulteration level is ranked according 174 

to a color bar displayed along with the map. A flowchart that explains the complete 175 

analysis of the hyperspectral data starting from image acquisition to multivariate 176 

analysis and ending with the distribution map are shown in Figure 1. All image 177 

processing steps for image visualization were carried out with a program written in 178 
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Matlab. 179 

3. Results and discussion 180 

3.1 Spectral features of the tested samples  181 

Figure 2a depicts the average raw reflectance spectra of all samples in the spectral range 182 

of 420-1000 nm. The spectra of the tested samples with different adulteration levels 183 

showed similar trends throughout the whole spectral range. Despite the similarity, the 184 

studied original spectra were different in reflectance values at different adulteration 185 

levels as indicated by the distance between spectral plots. In general, objects present 186 

similar spectral patterns will indicate their similarity in chemical composition. However, 187 

different concentrations of the major chemical compositions in the tested object make 188 

the difference in reflectance values. Some information regarding chemical composition 189 

and molecular structure can be obtained from the spectra for a particular absorption 190 

feature. In the visible region, the reflectance spectra had three absorption bands around 191 

430, 560 and 595 nm. Absorption band at 430 nm is known as Soret absorption band 192 

due to a respiratory pigment haemoglobin
25

 and absorption bands at 560 and 595 nm are 193 

associated with respiratory pigments, principally deoxymyoglobin or oxymyoglobin. 
26, 

194 

27
 All of these pigments are responsible for red meat color.

28
 In addition, two small 195 

absorption bands were observed in the NIR region at 970 and 990 nm. The band at 970 196 
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nm could be assigned to the O-H stretch second overtone in water 
29, 30

, while the band 197 

at 990 nm could be ascribed to the second overtone C-H stretch related to fat.
26

  198 

To correct the scatter effect, different spectral pre-treatment techniques such as SNV, 199 

MSC and second derivative (Savitsky Golay smoothing, 9-points window, 2nd order 200 

polynomial) were applied and the resulting spectra are shown in Figure 2a (raw), 2b 201 

(MSC), 2c (SNV) and 2d (second derivative). It is apparent that all the pre-treatments 202 

effectively suppressed the scatter effect. SNV and MSC worked similarly in data 203 

preprocessing and provided equivalent results as shown in Figure 2 (b and c), and this 204 

agreed well with some previous investigations.
8, 30

 As expected, several new absorption 205 

spectral bands (655, 720, and 775 nm) are apparent in the second derivative spectra as 206 

illustrated in Figure 2 (d); those were difficult to understand in the original reflectance 207 

spectra as shown in Figure 2 (a).  208 

3.2 Spectral analysis at full wavelength range 209 

Spectral data at full wavelength range (420-1000 nm) with 117 variables were modelled 210 

using two linear multivariate methods namely PCR and PLSR and the results were 211 

compared to determine the best calibration method. For both PCR and PLSR, prediction 212 

results with raw spectra data were compared with the spectral data after treatment with 213 

different pre-processing methods (SNV, MSC, and 2nd derivative). The performance of 214 
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the calibration models was optimized by leave-one-out cross-validation and then 215 

validated by external validation in an independent validation set.  216 

The detailed results of PCR and PLSR are listed in Table 1, where for each model, 217 

LFs/PCs, Rc, Rcv, Rp, SEC, SECV and SEP are reported for raw as well as pre-treated 218 

spectral data. Although these pretreatment methods reflected some improvement in the 219 

calibration models but such improvement was not significant enough because the 220 

number of LFs/PCs were much higher than those utilized in case of raw spectra. Since 221 

these models utilized more LFs/PCs compared to raw spectra, it was believed that the 222 

good calibration performance was a result of modeling the noise that was not eliminated 223 

by the corresponding pretreatments, therefore, these models were too optimistic and the 224 

good performance was not reliable. Only the models based on raw spectra will be 225 

discussed in the following sections. 226 

It is clear from the Table 1 that PLSR performed better and always required fewer LFs 227 

than PCR. Therefore, PLSR is more parsimonious than PCR in predicting pork 228 

adulteration in minced beef. It was not surprising because PCR estimates each PC of the 229 

spectral matrix (X) to maximize the amount of explained variance without using the 230 

response variable (y), so there is no guarantee that the calculated PCs are important with 231 

respect to the response variable for prediction, while PLSR decomposes both X and y to 232 
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calculate LFs that are really important for better prediction.
31, 32  

Using the raw spectra, 233 

the level of pork adulteration in minced beef was predicted by the PLSR with Rc of 234 

0.991, SEC of 1.955%, Rcv of 0.987, and SECV of 2.378%, while the level of pork 235 

adulteration in minced beef was predicted by the PCR model with Rc of 0.992, SEC of 236 

1.862%, Rcv of 0.986, and SECV of 2.416%. The developed models, when applied to an 237 

independent validation set, were capable of predicting with Rp of 0.974, and SEP of 238 

4.441% using PLSR and Rp of 0.977, and SEP of 4.366% using PCR.  239 

The results obtained in this study are in line with those reported by previous 240 

investigations with regard to predicting pork adulteration in minced lamb
15

 and 241 

horsemeat adulteration in mince beef
17

 using HSI. Using NIR-HSI, Kamruzzaman et 242 

al.
15

 quantified pork adulteration in minced lamb with Rcv of 0.995 using PLSR. On the 243 

other side, Kamruzzaman et al.
17

 obtained Rp of 0.990 for horsemeat quantification in 244 

minced beef using VNIR-HSI. Many researchers successfully used spectroscopic 245 

techniques for predicting adulteration in minced meat. For instance, Meza-Márquez et 246 

al.
33

 reported Rp of 0.999 for predicting adulteration in minced beef mixed with 247 

horsemeat using MIR spectroscopy and Morsy & Sun
34 

reported Rcv of 0.954 for 248 

quantifying pork in fresh minced beef using NIR spectroscopy. Schmutzler et al.
35

 249 

successfully applied Fourier transform-NIR (FT-NIR) spectroscopy for detection of 250 
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pork adulteration in veal product. Raman spectroscopy was also used to detect offal 251 

(kidney, liver, heart and lung) adulteration in beefburgers
36

 and horsemeat meat 252 

adulteration in minced beef.
37

 Overall, the results obtained in this study demonstrated 253 

the ability of the HSI technique to predict the percentage of adulteration in minced beef 254 

with pork meat. 255 

Based on model performance in terms of LFs/PCs, Rc, Rcv, Rp, SEC, SECV and SEP, it 256 

seems that, out of the two models tested, the PLSR model with raw spectra was the 257 

most appropriate for adulterate detection in minced meat. Thereafter, only PLSR model 258 

with raw spectra will be used to select important wavelengths.  259 

3.4 Selection of important wavelengths  260 

Using the full spectral range could imply the risk of overfitting; noise and nonlinearities 261 

that result in less accurate models. Therefore, for effective hyperspectral image analysis, 262 

there is a need to select some bands that carry significant information while reject those 263 

that carry redundant information. Optimum wavelengths may be equally or more 264 

efficient than full wavelengths, if the wavelengths that carry most information are 265 

selected.
38

 In this study, the weighted regression coefficients resulting from the best 266 

PLSR model were used to select important wavelengths where variables having large 267 

regression coefficients (irrespective of sign) were considered (Figure 3). As a result, 268 
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five (430, 490, 605, 665, and 705 nm) wavelengths were identified. However, the 269 

wavelength at 490 nm was excluded because this wavelength did not enhance the 270 

predictability of the model when considered with other four selected wavelengths. 271 

Therefore, the remaining four wavelengths (430, 605, 665, and 705 nm) were then used 272 

as effective wavelengths to replace the full range spectra for predicting pork 273 

quantification in minced beef. The selected wavelengths can be used as a basis to design 274 

and develop multispectral imaging systems for real time applications. 275 

3.5 Spectral analysis at effective wavelengths 276 

Once the important wavelengths were selected, a MLR model was created using only 277 

these particular wavelengths. The MLR model had a good performance with Rc of 278 

0.992, SEC of 1.831%, Rp of 0.985, and SEP of 4.172%. Although the variable numbers 279 

needed for prediction were substantially reduced from 117 to 4, however, the prediction 280 

ability of MLR model with only four important wavelengths was better than the original 281 

PLSR or PCR models at full wavelength range (117 wavelengths). The following 282 

quantitative function was obtained to generate prediction maps to show how the 283 

magnitude of adulteration varies from sample to sample, even from spot to spot within 284 

the same sample: 285 

y=- 32.31-251.99 × X430 + 732.19× X605 −406.48 × X665 + 222.08 × X705        (2) 286 
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where X is the reflectance spectra with corresponding footnotes indicating the specific 287 

wavelengths, y is the predicted adulteration level.  288 

3.6 Generation of the prediction map  289 

In contrast to spectroscopy, HSI offers simultaneous measurements of spectral and 290 

spatial information; therefore, it can be used to know the chemical compositions, their 291 

quantity, and location in the sample. Because each pixel in the hyperspectral image has 292 

its own spectrum, the spectrum of any point in the sample can be used for calculating 293 

the concentrations of its constituents (e.g., the level of pork in minced beef). The results 294 

of this process are called prediction images, in which each constituent is displayed and 295 

mapped in a different visual appearance according to its concentration. It was performed 296 

by applying the MLR model (equation 2) to each pixel of the image. The predicted 297 

value of each pixel was then mapped with a linear color scale, where the different 298 

adulteration levels from large to small were shown in a different color from red to blue. 299 

In this map, pixels with similar spectral characteristics would have a similar predicted 300 

value of the color component, resulting in a similar scale in the generated prediction 301 

map. Figure 4 shows some examples of the prediction images produced for pork 302 

adulteration in minced beef. The level of adulteration from sample to sample and within 303 

the same sample was very appealing and easily distinguishable from the resulting 304 
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prediction images. These distributions are difficult to be observed by the naked eyes. 305 

Although detection of adulteration is a complex task, the results suggest that HSI could 306 

become a useful tool for rapid and nondestructive prediction of adulteration in minced 307 

meat. Previously, HSI was also successfully for creating such prediction maps of pork 308 

adulteration in minced lamb
15

 and horsemeat adulteration in minced beef. 
17

  309 

4. Conclusions 310 

In this study, a HSI technique employed in the visible and near infrared region was 311 

investigated for rapid detection and quantification of pork adulteration in minced beef. 312 

The results of this study demonstrate that VNIR-HSI in combination with appropriate 313 

data analysis can be reliably and accurately applied to detect and quantify the amount of 314 

adulterant added to the minced beef. The amount of adulteration in minced beef by pork 315 

was predicted using MLR model with Rp of 0.985 and SEP of 4.172% with only four 316 

important wavelengths. This model was then applied back to the image to visualize the 317 

adulteration pixel by pixel within the sample. The ability of the HSI technique to map 318 

the level of adulteration is unique, and is not available from the single point 319 

spectroscopic techniques. If properly adjusted and calibrated, HSI techniques could be 320 

implemented on a wide scale for laboratory and industrial usage.  321 
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 404 

 405 

Figure captions 406 

Figure 1. Flowchart of analyzing hyperspectral images for the detection and 407 

visualization of adulteration in minced beef.  408 

Figure 2. Spectral features of raw and with various pre-treatment procedures in the 409 

spectral range of 420-1000 nm: (a) raw, (b) MSC, (c) SNV and (d) 2
nd

 derivative.  410 

Figure 3. Selection of important wavelengths using regression coefficients of PLSR 411 

model  412 

Figure 4. Pixel wise prediction maps of adulteration at different levels. The number 413 

below each prediction map is the percentage of pork meat in minced beef. 414 

 415 

 416 
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 417 

 418 

Table 1. PLSR and PCR models at full spectral range based on raw as well as 419 

pre-treated spectral data (the best model indicated in bold).  420 

Model   Pre- 

processing 

LFs/PCs Rc Rcv Rp SEC (%) SECV (%) SEP (%) 

PLSR 

None  3 0.991 0.987 0.974 1.955 2.378 4.441 

2
nd

 D 7 0.997 0.992 0.991 1.114 1.907 3.097 

MSC 6 0.996 0.989 0.980 1.367 2.190 3.764 

SNV  6 0.996 0.989 0.980 1.362 2.192 4.471 

PCR 

None  5 0.992 0.986 0.977 1.862 2.416 4.366 

2
nd

D 8 0.995 0.989 0.990 1.454 2.227 3.170 

MSC 6 0.994 0.987 0.979 1.668 2.392 3.777 

SNV  6 0.994 0.987 0.979 1.661 2.386 4.467 

LFs=Latent factors, PCs=Principal components, and SEC, SECV and SEP are the 421 

standard errors in calibration, cross-validation and prediction, respectively. 422 

  423 

 424 

 425 

 426 
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Figure 1 428 
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Figure 4 436 
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