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Predicting the performance of oxidation catalysts using descriptor 

models 

 Neetika Madaan,
 
N. Raveendran Shiju and Gadi Rothenberg*

 

Practical solutions in catalysis require catalysts that are active and stable. Mixed metal oxides are robust materials, and as 

such are often used as industrial catalysts. The problem is that predicting their performance a priori is difficult. Following 

our work on simple descriptors for supported metals based on Slater-type orbitals, we show here that a similar paradigm 

holds also for metal oxides. Using the oxidative dehydrogenation of butane to 1,3-butadiene as a model reaction, we 

synthesised and tested 15 bimetallic mixed oxides supported on alumina. We then built a descriptor model for these 

oxides, and projected the model’s results on a set of 1,711 mixed oxide catalysts in silico. Based on the model’s 

predictions, six new bimetallic oxides were then synthesised and tested. Experimental validation showed impressive 

results, with with Q
2
 > 0.9, demonstrating the power of these low-cost predictive models. Importantly, no interaction 

terms were included in the model, showing that even if we think that bimetallic oxide catalysts are highly complex 

materials, their performance can be predicted using simplistic models. The implications of these findings to catalyst 

optimisation practices in academia and industry are discussed. 

Introduction 

Catalysis is a key enabling technology that affects nearly all 

aspects of our industrialised society. Catalysts and catalytic 

processes are essential for the making of fuels and bulk 

chemicals, fine-chemicals and intermediates, as well as 

advanced materials, medicines and foodstuffs.
1
 The 

applications range far and wide, and so does research into new 

catalysts. Scientific papers describe amazing and wonderous 

structures, intricate dendrimers,
2
 molecular “cages”,

3
 and 

hybrid inorganic/organic compounds,
4, 5

 that are limited only 

by human imagination.  

However, the bulk of the industrial applications in real life 

require robust and hardy materials, and the most common are 

metal oxides.
6
 These are already “burned” and have a high 

chemical and mechanical resistance, which is a must for large-

scale processing. But appearances can be deceiving: the 

molecular formula of a mixed oxide may look simple, but the 

actual structure is highly complex. What’s more, unlike the 

uniformity of homogneous complexes,
7, 8

 the catalytic activity 

of solids often stems from breaks and kinks on the surface, 

that in turn depend on minute changes in the synthesis and 

pre-treatment conditions.
9
 Predicting the performance of such 

catalysts successfully is thus a mammoth task. 

There are two approaches for making such predictions. The 

first uses high-power computing and intricate algorithms, that 

combine quantum and classical mechanics. Great advances 

were made in this field in the past decade,
10

 and catalyst 

performance can actually be predicted, but at a high cost.
11, 12

 

The second approach is data-driven, based on modelling 

catalyst performance using a few simple descriptors. Such 

models may be less intuitive, but they are highly practical.
13-15

 

Ultimately, both approaches are needed for finding new 

catalysts and optimising existing ones. 

Recently, we demonstrated the feasibility and effectiveness of 

using simplified radial distribution functions (RDFs) as 

descriptors for supported metal(0) catalysts.
16

 These models 

can predict the performance of heterogeneous catalysts under 

a reducing environment (e.g. for catalytic hydrogenation). 

Here, we take these descriptor models an important step 

further, into the realm of oxidation reactions. The interactions 

of the active site with the support are different for an oxide 

and a metal.
17, 18

 Oxides bind differently and react differently, 

so the catalytic performance of a metallic element is usually 

very different from that of its oxo or peroxo species. 

Nevertheless, we show here that by tuning the RDF descriptors 

to the corresponding metal ions, one can predict well the 

performance of supported catalysts under oxidative 

conditions. The theoretical principles are first demonstrated 

using an experimental set of 15 catalysts in the oxidative 

dehydrogenation of butane to 1,3-butadiene. Subsequently, 

we generate a large set of 1,711 bimetallic oxides in silico, and 

use descriptor models to project the experimental results onto 

this dataset. Six promising catalysts from the virtual set are 

then synthesised and tested, validating the model and 

demonstrating the power of data-driven predictive modelling 

in oxidation catalysis. 
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Experimental 

Materials and instrumentation  

Unless stated otherwise, chemicals were purchased from 

commercial sources (>99% pure) and used as received. γ-

alumina (surface area 200 m
2
/g, total pore volume 0.6 cm

3
/g) 

was provided by LANXESS Deutchland GmbH. Surface area 

measurements were performed using N2 at 77 K on a Thermo 

Scientific Surfer instrument and calculated using the BET 

method. Catalytic oxidative dehydrogenation reactions were 

tested in a built-for-purpose computer-controlled sixflow 

reactor setup. This setup enables the testing of six different 

catalysts simultaneously, using six fixed-bed quartz tube 

reactors in parallel. The reactors are kept at one temperature 

but have separately controlled flow rates, allowing for tuning 

the gas hour space velocity (GHSV). The gas composition is 

controlled via four mass flow controllers that dose 

hydrocarbon, oxygen, nitrogen and argon. The temperature is 

controlled using a carbolite furnace and can be set between 

50–1100 °C. Reactor output is analysed on-line by both gas 

chromatography (Interscience compact-GC) and mass 

spectrometry (Granville Phillips, Brooks Automation).
19, 20

 Note 

that while strict calculations should allow for variations in 

concentration due to the expansion (or compression) of the 

gas for reactions occurring in gas flow, we assumed for 

simplicity that the volume remains constant. This enables the 

use of absolute concentrations and is approximately correct 

for a flow reaction at low conversions in a reactor with a 

constant cross-section. 

 

Procedure for catalyst synthesis 

All catalysts were prepared by wet impregnation of γ-alumina 

support (M:N/Al2O3; the composition details are given in Table 

1). Where possible, we used nitrate precursors, as these are 

easily removed by calcination. The exceptions were Nb, Mo, 

W, V and In, where C4H4NNbO9, (NH4)6Mo7O24·4H2O, 

(NH4)2WO4.H2O, NH4VO3 and H2InN3O10 were used, 

respectively. 

Example 1. AgOx:SrOx/Al2O3 (catalyst 1): First, stock aqueous 

solutions were prepared from the Ag and Sr precursors: 0.0386 

g (0.23 mmol) of AgNO3 and 0.0568 g (0.27 mmol) of Sr(NO3)2 

were each dissolved in 10 ml deionized water while stirring. 

The two solutions were then combined, stirred and then 

added to a suspension of 2.90 g γ-alumina in 50 ml deionized 

water. The mixture was then heated at 95 °C overnight in an 

open round-bottomed flask under continuous stirring till all 

the water has evaporated. The remaining cake (2.86 g) was 

ground to a fine powder, which was further dried in an oven at 

120 °C for 24 h and then calcined in static air at 550 °C for 4 h 

(heating rate 2 °C/min). The resulting catalyst was pressed into 

pellets, and then ground and sieved, retaining the 250–350 μm 

fraction for testing. 

Example 2. WOx:MnOx/Al2O3 (catalyst 12) : Stock solutions of 

W and Mn precursors were prepared as follows: 0.0367 g (0.13 

mmol) of (NH4)2WO4  and 0.0756 g (0.42 mmol) of Mn(NO3)2 

were dissolved separately in 10 ml deionized water with 

continuous stirring. The two solutions were combined and 

added to a suspension of 2.89 g γ-alumina in 50 ml deionized 

water. The mixture was then heated at 95 °C overnight to 

evaporate excess water. The remaining solid was dried at 120 

°C for 24 h, calcined at 550 °C for 4 h and finally pressed into 

pellets, ground and sieved, retaining the 250–350 μm fraction 

for testing 

Table 1. Composition of the catalysts prepared and tested in the first iteration. 

Catalyst Composition
a
 

1 AgOx:SrOx/Al2O3 

2 CrOx:ZrOx/Al2O3 

3 PbOx:InOx/Al2O3 

4 NbOx:NiOx/Al2O3 

5 MgOx:CrOx/Al2O3 

6 GaOx:MoOx/Al2O3 

7 LaOx:BiOx/Al2O3 

8 LiOx:WOx/Al2O3 

9 YOx:KOx/Al2O3 

10 CuOx:TeOx/Al2O3 

11 VOx:MgOx/Al2O3 

12 WOx:MnOx/Al2O3 

13 CoOx:MnOx/Al2O3 

14 VOx:MoOx/Al2O3 

15 PtOx:InOx/Al2O3 

a 
In all cases, the loading of each metal is 1 wt%. 

Procedure for catalyst testing 

Each catalyst was tested for 100 mg and 20 mg, catalysts were 

placed in the reactor tube over a plug of quartz wool, forming 

a cylindrical catalyst bed roughly 4 cm in height and 4 mm in 

diameter. In each run using the sixfow reactor, one reactor 

was kept empty as a blank (this blank was changed between 

runs to minimise systemic error). The catalysts were activated 

in situ before reaction in a flow of 45 ml/min Ar and 5 ml/min 

O2 at 500 °C. After activation, total reaction feed of 50 ml/min 

was passed in each reactor, with the volumetric ratio ranging 

O2 : C4H10 : Ar = (0.25–1) : 1 : (8.25–8). Reactions were run for 

24 h on stream at both 550 °C and 650 °C, giving a total of 

eight different conditions for each catalysts (reaction 

conditions A–H, see Table 2). Reactant conversion and product 

selectivity were monitored on-line using gas chromatography 

and mass spectrometry. The conversion of butane was 

calculated as χbutane = (MFin – MFout)/MFin, where MFin and 

MFout are the molar flows of butane at the reactor inlet and 

outlet, respectively. Similarly, the selectivity of each product 

was calculated as Sproduct = MFproduct/(MFin – MFout), where 

MFproduct is the molar flow of the product at the reactor outlet.  
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Table 2. The eight sets A–H of experimental conditions used for catalyst screening. 

Conditions 

set 

Catalyst 

amount(mg) 

O2:nBu 

ratio 

Reaction T(°C) 

A 100 0.25 550 

B 100 0.25 650 

C 100 1 550 

D 100 1 650 

E 20 0.25 550 

F 20 0.25 650 

G 20 1 550 

H 20 1 650 

Computational methods.  

Descriptor calculation, analysis and data mining were 

performed on a Sony Vaio laptop with Intel® Core™ i7-4500U 

processor. A variable importance (VIP) analysis was done 

following the method of Hageman et al.
21

 Principal 

components analysis (PCA) and partial least squares (PLS) 

regression models were run using the JMP pro software. The 

principal components were calculated by using the NIPALS 

algorithm, which calculates the components in their order of 

explaining the variance in the data. All models were validated 

using leave-one-out cross-validation. A discussion on the 

merits of validation methods is published elsewhere.
22

 

Results and discussion 

Generating the initial dataset 

Aiming at both high conversion of n-butane (herein: χbutane) 
and a high selectivity to 1,3-butadiene (herein: Sbutadiene) we 

synthesised and tested a varied set of 15 bimetallic oxide 

catalysts. We chose Fe, Cu, Ag, Sr, Cr, Zr, Pb, In, Nb, Ni, Mg, Ga, 

Mo, La, Bi, Li, W, Y, K, V, Te, Co, Mn, Pt, and Zn (see Table 1 

above). The rationale for choosing these metals is threefold: 

First, they are commercially available and most of them are 

relatively cheap, so they could be also applied in an industrial 

environment; second, some are known to be good 

dehydrogenation catalysts while others are known as good 

catalyst promoters. Finally, we also added some metals at 

random, reducing the bias in the set (a discussion on selecting 

metals for oxidation catalysis is published elsewhere
23

). 

The bimetallic mixed oxide catalysts 1–15 were prepared using 

wet impregnation (for details see the experimental section). X-

ray diffraction and BET surface area analysis of several samples 

(CoOx:MnOx/Al2O3, MgOx:CrOx/Al2O3, LaOx:BiOx/Al2O3, and 

VOx:MoOx/Al2O3) confirmed that the crystal structure of the 

alumina remained unchanged (details included in the 

supporting information). The BET surface area values of these 

catalysts were all in the range of 200–240 m
2
/g. This is what 

we would expect considering the low metal loadings and high 

surface area of alumina support. The 15 bimetallic oxide 

catalysts were then tested in the oxidative dehydrogenation of 

n-butane (eq 1). This reaction has an interesting history: It was 

a popular subject of research following WW II, when synthetic 

rubber was in short supply. The interest subsided in the 1960s, 

when large-scale cracking of naphtha provided a steady stream 

of 1,3-butadiene. It then resumed around 2010, with the 

advent of shale gas and the political unrest in the Persian Gulf. 

Following our work on ethane
24

 and propane
25

 oxidative 

dehydrogenation, we were approached by Lanxess Deutchland 

GmbH, one of the main users of 1,3-butadiene, to collaborate 

on using predictive modelling methods for finding new butane 

oxidative dehydrogenation catalysts. 

Table 3 shows the conversion and butadiene selectivity results 

for the four reaction conditions A–D. Running the reactions 

using lower catalyst loadings (conditions E–H) yielded lower 

conversions, but very similar selectivity results (results shown 

in Figure 1 only). The reactions at lower catalyst loadings were 

run to confirm that the same mechanism is in effect at both 

regimes. This was confirmed by the similar product selectivity 

at lower conversions. Figure 1 shows the conversion and total 

butenes selectivity results for all 15 catalysts at all eight 

condition sets. The remaining difference to 100% is due to 

oxidation to CO and CO2. No deactivation was observed over 

24 h on stream, and control experiments on three different 

catalysts running for 100 h showed also no deactivation. 

Table 3. Catalyst performance data in ODH of n-butane under condition sets A–D.  

Con

ditio

ns 

550 °C 650 °C 

A B C D 

0.25:1:8.75(n

Bu:O2:Ar) 

1:1:8(nBu:O2:A

r) 

0.25:1:8.75(nBu:

O2:Ar) 

1:1:8(nBu:O2:Ar

) 

Catal

yst 

χbut

ane 

(%) 

Sbutadi

ene 

(%) 

χbutan

e  

(%) 

Sbuta

diene 

 (%) 

χbutane 

(%) 

Sbutadi

ene 

(%) 

χbutan

e  

(%) 

Sbutadi

ene 

(%) 

1 4.7 3.8 18.5 1.2 16.5 2.2 40.0 2.0 

2 9.0 4.0 26.5 3.3 13.7 6.0 36.2 3.7 

3 5.3 8.5 10.0 0.3 12.5 12.8 29.5 7.5 

4 8.5 8.0 14.4 5.2 15.5 13.7 37.0 6.0 

5 9.0 5.3 27.0 3.2 14.2 8.2 35.5 5.5 

6 4.5 5.0 10.0 3.5 15.0 5.0 34.8 4.0 

7 14.

0 

6.0 36.0 4.0 17.5 5.0 40.0 2.2 

8 15.

2 

6.0 40.0 5.0 20.6 3.5 43.5 1.6 

9 6.0 1.6 16.0 1.1 15.0 1.9 36.5 1.7 

10 7.8 11.2 22.3 6.5 11.7 8.2 30.5 6.2 

11 9.5 8.0 14.5 7.0 16.5 9.3 42.0 8.3 

12 13.

0 

9.0 37.0 6.0 15.5 6.0 40.0 5.0 

13 10.

3 

6.3 26.5 4.5 15.0 6.0 40.0 4.5 

14 10.

5 

7.0 20.0 5.4 16.5 10.2 37.4 8.0 

15 9.0 14.0 20.0 3.0 12.0 14.0 22.0 6.0 
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Figure 1. Summary plot showing the percentage total selectivity for butenes vs. the percentage conversion of n-butane for catalysts 1–15 under condition sets A–H. 

Choosing relevant catalyst descriptors. 

In general, there are three approaches for modelling catalyst 

performance. One option is based on an in-depth analysis of 

the reaction mechanism, combined with high-level quantum 

mechanics models. Although these models are 

computationally very expensive, they often provide accurate 

data, that can then be used for making good predictions. 

Examples in heterogeneous catalysis include work from the 

groups of Norskov and Blijgaard,
10

 Neurock
26

, Van Santen
27

 

and Sautet,
28

 as well as from our group.
29

 Yet these in-depth 

models are typically too expensive to be applied to large data 

sets. 

The second approach is using purely data-driven models. 

These “black-box” models are based on statistical analysis, 

often combined with stochastic optimization methods, such as 

neural networks or genetic algorithms.
23, 30

 Such models are 

fast, but connecting their results to ‘chemical intuition’ is 

difficult, and they cannot adapt well to new factors. Here, we 

opted for a third approach, using so-called ‘grey models’, that 

combine simple descriptors based on chemical principles with 

statistical modelling. As we will show, such models are 

effective in predicting catalyst performance, giving a good 

cost-to-benefit ratio. 

Previously, we showed that descriptors based on radial 

distribution functions (RDFs) derived from Slater-type orbitals 

(STOs) are effective for modelling and predicting the 

performance of hydrogenation catalysts.
31, 32

 These RDF 

descriptors are robust. Their calculation is straightforward, and 

their implementation is easy. Here, we will show that the same 

approach works also in an oxidative environment, but instead 

of using the parameters for metals, we now apply the 

analogous parameters for their oxide salts. This is an important 

generalizing step – the same paradigm that works well for 

monometallic and bimetallic catalysts applies also to 

monometallic oxides and mixed metal oxides.

 

Figure 2. Graphs showing a typical radial distribution function (RDF) based on the Slater-type orbitals used for deriving the four descriptors for (mixed) oxides (left), and examples 

of these orbitals for AgOx:SrOx/Al2O3 (catalyst 1) and WOx:MnOx/Al2O3 (catalyst 12). 

 

Figure 3. Biplot representation following a principal component analysis (PCA) of the experimental results, showing the distribution of the conversion and selectivity of catalysts 1–

15 running under reaction conditions A–H in the space of the two first principal components. Each symbol represents one catalyst under one set of reaction conditions. The arrows 

indicate the direction and magnitude of the descriptors and the figures of merit. For example, the fact that the FFWHion arrow is opposite to Sbutadiene(%) means that oxides with a 

higher FFWHion value will give less butadiene. Similarly (and unsurprisingly) the conversion of butane is strongly correlated with the oxygen:butane ratio.

Basically, we reduce the combined STOs of the frontier orbitals 

of each metal to four parameters: The distance from the 

nucleus where the probability of finding the electrons is 

highest, rapex, the value of the RDF at this distance, Rapex, the 

peak width at half height, FWHH, and the skewness of the 

peak, Skew (the latter is calculated as the area on one side of 

the peak divided by the area on the other side, see Figure 2). 

However, considering that the (mixed) oxide system is more 

complex than the pure metallic one, we introduced three 

additional parameters as descriptors: electronegativity,
33

 

atomic radius
34, 35

 and ionization potential.
36

 

To construct a statistical model that can predict the 

performance of these mixed oxide catalysts, we first used 

principal component analysis (PCA) and partial least squares 

(PLS) regression for distinguishing important parameters from 

marginal ones. This must be done to avoid over-fitting and 

ensure that  the model will be based on the simplest and most 

robust parameters (a tutorial on using PCA and PLS in catalysis 

research is published elsewhere
37

). Figure 3 shows a biplot 

representation based on the PCA analysis. The symbols on the 

graph show the distribution of the conversion and selectivity 

for catalysts 1–15 running under reaction conditions A–H. In 

this graph, the axes are the two first principal components 

(PCs, also called ‘latent variables’). These two PCs explain 53% 

of the variance in the data. The arrows indicate the direction 

and magnitude of the descriptors, the reaction conditions, and 

the figures of merit. The direction of the arrows gives the 

relation between the parameters: If two arrows are close 

together, it means that the two parameters are highly 

correlated. Similarly, if two arrows are close together yet 

pointing at opposite directions, it means that the two 

parameters are inversely correlated. Finally, if two arrows are 
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orthogonal to each other, it means that the two parameters 

are uncorrelated 

Looking at the biplot in Figure 3, we see that the conversion of 

n-butane (χbutane) is very closely grouped with three reaction 

parameters: catalyst amount, O2:n-butane flow and reaction 

temperature. Indeed, this is what you would expect. Further, 

we see that the selectivity of total butene is inverse to χbutane 

(cf. Figure 1). Sbutadiene is correlated with the RDF descriptors. It 

depends directly on the parameters Rapex and Skew, and 

inversely on rapex and FWHHion. Interestingly, the product 

selectivity does not depend directly on the reaction conditions. 

This does not mean that Sbutadiene and Sbutenes are independent 

of each other. As Borgna et al.
14

 suggested, butenes produced 

by ODH could be recycled for making 1,3-butadiene. Figure 4 

shows the loading of each sample on the first two principal 

components (PC1 and PC2). PC1 is sensitive to the type of 

catalyst, yet insensitive to any changes in the reaction 

conditions. This is important, because PC1 explains the largest 

amount of variance in the data, and the largest change in the 

production of butadiene comes when you change the catalyst 

precursor. Conversely, PC2 is much more sensitive to changes 

in the reaction conditions. 

 

 

Figure 4. Bar chart showing the loading coefficients of each sample on the two first 

principal components. 

Predicting the performance of new ODH catalysts 

Now that we have pinpointed good descriptors for these 

catalysts, we can use these for building a model for predicting 

the performance of new catalysts. Therein lies the real value of 

descriptor models. We use these models for screening a large 

space of virtual catalysts, and then test in the lab those 

catalysts for which the model predicts the desired 

performance (so-called ‘figure of merit’, see flowchart in 

Figure 5).
19

 In this specific case, we are searching for bimetallic 

supported oxides that will give both high conversion of butane 

and a high selectivity for 1,3-butadiene. Thus, we want to 

maximise both χbutane and Sbutadiene. In addition, we need to 

synthesise and test some catalyst candidates with low 

predicted values. This may seem counter-productive, and it is 

always a sore point of discussion with the people who actually 

carry out the experiments. Yet testing “bad” candidates is 

essential for confirming the model’s viability and robustness 

over a wide range of data. 

 

 

Figure 5. Schematic flowchart showing the iterative process of hypothesis formulation, 

data collection, regression modelling, screening of virtual catalysts (meta-modelling), 

and testing in the lab (experimental validation of the model results). 

First, we created and modeled our training set of 15 bimetallic 

supported oxide catalysts (catalysts 1–15). We applied a partial 

least squares (PLS) regression model, using the descriptor 

values based on the metal ion STOs as input. These differ from 

the pure metal STOs that we used earlier for modelling 

hydrogenation catalysts.
16

 The reason is that the pristine 

catalysts are metal oxides, and in an oxidative environment, 

metal(0) species are unlikely. The correlation coefficients (see 

Figure 6) using the metal ion STOs were good: R
2
 = 0.865 for 

χbutane and R
2
 = 0.610 for Sbutadiene. These numbers may seem 

low, but they are actually impressive, especially considering 

the simplicity of the descriptors, and the fact that no 

interaction parameters were included for these bimetallic 

oxides. Control experiments showed that the correlation with 

metal(0) STO descriptors was much lower, R
2
 = 0.5748 for 

χbutane and 0.2321 for Sbutadiene, respectively), confirming the 

hypothesis that oxide models are more suitable for modelling 

metal oxides than pure metal models. All of the models were 

validated using leave-one-out cross-validation. 

 

 

Figure 6. Predicted vs. experimental values for χbutane (%, graph a) and Sbutadiene (%, graph 

b) obtained using the bimetallic oxide catalysts 1–15. 

We then created a large set of virtual bimetallic oxides, 

comprised of 1,711 bimetallic combinations of 59 elements in 

total (see Figure 7). Calculating the descriptor values for these 

1,711 virtual catalysts is very fast (especially as there are no 

interaction parameters). It takes only seconds using a simple 

laptop. We then projected the results of the descriptor models 

for the 1,711 virtual catalysts on the set of the 15 real 

catalysts, and selected six bimetallic supported oxides 

catalysts. These were then synthesized and tested in the lab. 

Figure 8 shows the so-called parity plot of the predicted vs. the 

experimental results, both for the conversion of butane and 

the selectivity to 1,3-butadiene. The plot shows that there is a 

good fit between the model’s predictions and the actual 

experimental data. Note that we selected not only catalysts 

with an expected high performance (high conversion and 

selectivity) but also ones for which we had low expectations. 

This is important, because it shows the wide operational range 

of the model. There is an understandable bias in published 

papers towards good results – publishing papers about badly 

performing catalysts is a tough sell, but if you want to predict 

the performance of catalysts, your model should cover a wide 

range. This means testing both good and bad candidates. 

 

 

Figure 7. Periodic table showing the 59 metals used for creating the 1,711 bimetallic 

oxide catalyst combinations in silico. 

Figure 8. Parity plot showing the predicted vs. experimental butane 

conversion (a) and 1,3-butadiene selectivity (b) of the six new bimetallic 

oxide catalysts that were synthesised following the model’s predictions. The 

formulas of catalysts A–C cannot be disclosed for proprietary reasons. 

Reaction conditions: Each reactor was loaded with 100 mg catalysts. All 

catalysts were first activated in situ before each reaction in a flow of 45 

ml/min Ar and 5 ml/min O2 at 500 °C. After activation, a feed of 50 ml/min 

was passed for 24 h in each reactor, with an O2:C4H10:Ar volumetric ratio of 

1:1:8. Conversion and selectivity were monitored by GC and on-line MS (see 

the experimental section for details). 
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The good performance of the models in the case of mixed 

metal oxide raises the question of the importance (or in this 

case, lack of importance) of the interaction parameter. 

Basically, if no interaction parameter is included, it means that 

the model is limited to a linear combination of the effects of 

oxide A and oxide B. That is, for a catalyst containing two 

metals, M1 and M2, the figure of merit would be FOM = 

f(M1Ox) + f(M2Ox), giving some weighted average of the effects 

of the two oxides. This does not necessarily mean that there is 

no interaction effect at all. Rather, it may reflect the fact that 

these catalysts contain relatively little active material, 1 wt% of 

M1 and 1 wt% of M2. When these are impregnated on the 

alumina support and calcined, the actual sites where mixing 

occurs between the oxides are probably few and far between 

(see Figure 9, left). In such a case, the weighted average would 

give (and indeed gives) a good description of the catalytic 

properties of the surface. Avoiding the interaction term in the 

model makes sense, because such a second-order term would 

increase the chances of over-fitting. In the case of a main 

metal and a promoter metal (see example in Figure 9, right) 

there may be more justification for including interaction 

parameters (e.g. in the dehydrogenation of alkanes catalysed 

by Pt/Sn). 

 

Figure 9. Cartoons of a catalyst surface containing small amounts of two oxides, where 

the chances of formation of a mixed oxide are lower (left) and of a second catalyst 

surface containing large amounts of a main oxide and small amounts of dopant, where 

the chances of formation of a mixed oxide sites are higher (right). 

Conclusions 

Complex catalytic reactions such as the oxidative 

dehydrogenation of butane to butenes and butadiene can be 

modeled efficiently using heuristic descriptor models. These 

data-driven models are ‘quick & dirty’ – they cost practically 

zero in computer time, yet deliver surprisingly accurate results. 

The fact that such models work well also under oxidation 

conditions may not surprise mathematicians, who consider a 

model’s performance as a function with a figure of merit and 

residuals. But for chemists, this means that the RDF 

descriptors based on Slater-type orbitals can now be applied 

across a wide range of catalytic processes. Since they perform 

well for metal(0) catalysts and metal oxides, they should in 

principle also do well in predicting the activity and selectivity 

of metal sulfides, nitrides and carbides. We hope that this 

work will encourage colleagues in academia and industry to 

apply these models as they search for new, active, selective 

and robust catalytic materials 
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Figure 1. Summary plot showing the percentage total selectivity for butenes vs. the percentage conversion 
of n-butane for catalysts 1–15 under condition sets A–H.  
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Figure 2. Graphs showing a typical radial distribution function (RDF) based on the Slater-type orbitals used 
for deriving the four descriptors for (mixed) oxides (left), and examples of these orbitals for 

AgOx:SrOx/Al2O3 (catalyst 1) and WOx:MnOx/Al2O3 (catalyst 12).  
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Figure 3. Biplot representation following a principal component analysis (PCA) of the experimental results, 
showing the distribution of the conversion and selectivity of catalysts 1–15 running under reaction conditions 
A–H in the space of the two first principal components. Each symbol represents one catalyst under one set 

of reaction conditions. The arrows indicate the direction and magnitude of the descriptors and the figures of 
merit. For example, the fact that the FFWHion arrow is opposite to Sbutadiene(%) means that oxides with a 
higher FFWHion value will give less butadiene. Similarly (and unsurprisingly) the conversion of butane is 

strongly correlated with the oxygen:butane ratio.  
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Figure 4. Bar chart showing the loading coefficients of each sample on the two first principal components.  
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Figure 5. Schematic flowchart showing the iterative process of hypothesis formulation, data collection, 
regression modelling, screening of virtual catalysts (meta-modelling), and testing in the lab (experimental 

validation of the model results).  
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Figure 6. Predicted vs. experimental values for χbutane (%, graph a) and Sbutadiene (%, graph b) obtained 
using the bimetallic oxide catalysts 1–15.  
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Figure 7. Periodic table showing the 59 metals used for creating the 1,711 bimetallic oxide catalyst 
combinations in silico.  
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Figure 8. Parity plot showing the predicted vs. experimental butane conversion (a) and 1,3-butadiene 
selectivity (b) of the six new bimetallic oxide catalysts that were synthesised following the model’s 

predictions. The formulas of catalysts A–C cannot be disclosed for proprietary reasons. Reaction conditions: 

Each reactor was loaded with 100 mg catalysts. All catalysts were first activated in situ before each reaction 
in a flow of 45 ml/min Ar and 5 ml/min O2 at 500 °C. After activation, a feed of 50 ml/min was passed for 

24 h in each reactor, with an O2:C4H10:Ar volumetric ratio of 1:1:8. Conversion and selectivity were 
monitored by GC and on-line MS (see the experimental section for details).  
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Figure 9. Cartoons of a catalyst surface containing small amounts of two oxides, where the chances of 
formation of a mixed oxide are lower (left) and of a second catalyst surface containing large amounts of a 
main oxide and small amounts of dopant, where the chances of formation of a mixed oxide sites are higher 

(right).  
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Mix & match: We show that combining simple heuristic models with experimental validation is an effective 
method for optimising supported mixed oxide catalysts.  
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