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Each biologically active compound induces phenotypic changes in target cells that are characteristic for its mode of action. 

These phenotypic alterations can be directly observed under the microscope or made visible by labelling structural 

elements or selected proteins of the cells with dyes. A comparison of the cellular phenotype induced by a compound of 

interest with the phenotypes of reference compounds with known cellular targets allows predicting its mode of action. 

While this approach has been successfully applied to the characterization of natural products based on a visual inspection 

of images, recent studies used automated microscopy and analysis software to increase speed and to reduce subjective 

interpretation. In this review, we give a general outline of the workflow for manual and automated image analysis, and we 

highlight natural products whose bacterial and eucaryotic targets could be identified through such approaches.  

Introduction 

Using bioactive natural compounds for medical applications is 

part of the human cultural heritage. The most successful 

strategy until today for the identification of their bioactivity 

and their medical application has been coined ‘forward 

pharmacology’.
1
 In this approach, natural products are tested 

in phenotypic assays of high relevance for in vivo 

pharmacology. For example, the assay may probe their ability 

to inhibit the growth of bacterial pathogens or cancer cells, or 

to induce cellular differentiation. The major drawback of 

phenotypic assays is that the molecular interaction partner(s) 

of the bioactive compound remain unknown, rendering a 

rational optimisation of their target affinity and selectivity 

difficult. While a profound knowledge of the molecular 

target(s) of a compound is indispensable for its use as a tool in 

biochemical research
2
 and/or its development as a therapeutic 

agent,
3
 the elucidation of the target(s) starting from 

phenotypic observations is still a tedious and time consuming 

process, as a widely applicable, generic protocol does not 

exist.
1, 4, 5

 The large number of possible binding partners 

render the search for a target similar to a quest for the “needle 

in a giant haystack”.
4
 

One way to generate a specific hypothesis about the mode of 

action of a compound of interest is to correlate the cellular 

phenotype induced upon compound treatment to the 

phenotype of reference compounds with known mode of 

action. This approach is based on the assumption that the 

modulation of a particular target results in a specific 

phenotype that is characteristic for such a modulation; 

therefore compounds that induce highly similar phenotypes 

may share the same molecular target. The cellular phenotypes 

can be molecular signatures (e.g. the cellular transcriptome, 

proteome or metabolome),
6, 7

 bioactivity patterns,
8
 or changes 

in cellular morphology.
5, 9, 10

 An important strength of 

techniques based on such correlation signals is that they 

reflect ‘global’ compound effects that capture direct target 

interactions as well as the downstream consequences of the 

interactions in a hypothesis-free manner. In addition, they 

usually do not require labelling or chemical modification of the 

compound of interest, thereby avoiding an artificial 

perturbation of its cellular interactions. On the other hand, a 

major limitation is that they can only detect matches to known 

modes of action of the reference set; therefore, they are not 

suited to disclose targets that are not addressed by the 

reference set. Moreover, as various algorithms always propose 

‘most similar’ signatures, there is an inherent danger of not 

clearly discerning false positive matches. Therefore, all target 

predictions derived from correlation of cellular phenotypes 

need to be verified by subsequent biochemical or biophysical 

experiments. 

Here, we will review how imaging techniques that monitor 

changes in cellular morphology have been applied to the mode 

of action analysis of natural products and other small 

molecules. The analysis can be done visually by comparing 

microscopic images. The information content of such images 

can greatly be enhanced by staining specific cellular 

components, especially with immunofluorescence techniques. 

The introduction of immunofluorescence has been a decisive 

step in elucidating modes of action by image analysis, as they 

are able to visualize almost every potential target in the cell.
11

 

The second important step was the development of 

microscopes that are able to record large amounts of 
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microscopic images automatically. Using specific image 

analysis software, the information stored in these images 

serves to construct detailed phenotypic profiles of compounds 

that are compared by statistical analysis.
9 

In the following we will give an overview of target 

identification by image analysis starting from a visual 

inspection of cellular morphology and of immunofluorescence 

pictures, followed by a general outline of the workflow for an 

automated image analysis. Natural products whose bacterial 

and eukaryotic targets could be identified through such 

approaches are highlighted along this path. 

Phenotypic changes related to specific modes of 

action  

 

Morphological phenotypes 

Each biologically active compound induces phenotypic changes 

in target cells that are more or less characteristic for its mode 

of action. The simplest cases are striking alterations in the 

morphology of incubated cells that can easily be observed 

under the microscope. Myxothiazole, a strong inhibitor of 

complex III of the respiratory chain
12

 induced striking changes 

in the morphology of L-929 mouse fibroblasts. The cells 

became bigger and more circular in shape with an outspread 

cytoplasm. Their shape resembled that of “fried eggs” (Figure 

1). This fried eggs effect, easily seen directly under the 

microscope or after Giemsa staining, was found to be 

characteristic for this type of inhibitors. The same 

morphological changes were observed again with neopeltolide 

and helped to elucidate the mode of action of this marine 

natural product, which is unrelated to myxothiazole in terms of 

structure and phylogenicity of the producer (Scheme 1).
13

 

 

 

 

 

 

 

 

 

 

Figure 1. L-929 mouse fibroblasts show a “fried eggs effect” when incubated 

with inhibitors of complex III of the respiratory chain.
13

 The cells in the right 

image were incubated with neopeltolide (50 ng/mL) for 1 day. The left 

picture shows control cells. Cells were stained with Giemsa. 

Alterations in the shape and size of the cellular nucleus and 

the number of nuclei in a cell can be observed either visually 

or after staining. Propidium iodide and DAPI are sensitive 

fluorescent dyes that can easily be applied to stain nuclei and 

chromosomes in alcohol-fixed cells. Compounds interfering 

with mitotic spindle formation induce a characteristic 

multimininucleation (Figure 2) that is due to mitotic slippage.
14

 

DAPI staining was used to screen for spindle interfering 

compounds like paclitaxel and epothilone, which are used as 

anticancer drugs.
15

 The active principle of some positive 

extracts of the myxobacterium Sorangium cellulosum was 

shown to be disorazol, which had been detected ten years 

earlier as a highly active compound.
16

 The induction of 

multimininucleation gave first hints to elucidate its mode of 

action. In subsequent studies, it was shown that disorazol 

induced microtubule depletion in cells and inhibited tubulin 

polymerisation in vitro.
17

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The morphology of cellular nuclei and their number per cell can 

easily be visualized by DAPI staining. Left: Compounds interfering with 

spindle assembly induce the formation of multimininucleated cells.
17

 L-929 

cells were incubated with disorazol A1 (50 pg/ml) for 2 d. Right: Compounds 

interfering with actin polymerisation induce cells with double nuclei. Human 

A-431 epidermoid cancer cells were incubated with chivosazole F (200 

ng/ml) for 16 h. (Microtubules are stained green, microfilaments red). 

Compounds interfering with actin polymerisation lead to an 

increase of nuclei in the cell, as they inhibit the function of the 

contractile ring, which consists of myosin and actin. In the 

example depicted in Figure 2, the cytokinesis at the end of 

mitosis was inhibited, which resulted in many cells having a 

double nucleus. This phenotype can clearly be discriminated 

from the multimininucleation effect. The observation of 

double nuclei led to the elucidation of the modes of action of 

the myxobacterial products chondramide and chivosazole.
18, 19

 

 

Due to their bigger size, it is much easier to observe specific 

morphological changes in eukaryotic cells than in prokaryotes. 

But in principle it should also be possible to find changes in 

bacterial morphology that are typical for a certain mode of 

action. A striking phenotype was observed with 

acyldepsipeptides (ADEPs), which target ClpP, the core unit of 

a major bacterial protease. ADEPs induced an uncontrolled 

proteolysis which led to inhibition of bacterial cell division. As 

a consequence, a filamentation of Bacillus subtilis was 

observed when incubated with ADEPs.
20

 An unusual 

morphology of altered, elongated mycobacteria was also the 

first hint to a novel mode of action for griselimycins, cyclic 

peptides produces in Streptomyces with a strong activity 

against Mycobacterium tuberculosis.
21

 Half a century later, 

genome sequencing techniques enabled the discovery that 

inhibition of the DNA sliding clamp DnaN caused the unusual 

phenotype.
22

  

Due to the undercritical size of a well-characterized reference 

set, a prediction of bacterial mechanisms based on 

morphology alone is not possible yet. 
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Scheme 1: Natural products that induce specific cellular phenotypes  

Phenotypes based on cellular protein patterns 

Fluorescent and especially immunofluorescence techniques 

are able to specifically visualize almost each protein in the 

cell.
23

 They highly increase the number of phenotypes that can 

be distinguished in cells when incubated with bioactive 

compounds. Alterations of the main structures of the 

cytoskeleton can easily be made visible. F-Actin can directly be 

stained by fluorescently labelled phalloidin, a toxin isolated 

from Amanita phalloides mushrooms. Microtubules are 

stained by an immunostaining protocol using a primary 

antibody against tubulin and a secondary, fluorescently 

labelled antibody that recognizes the primary one.
11

 Recently, 

far-red fluorogenic probes for live-cell imaging of the 

cytoskeleton were designed that show minimal cytotoxicity 

with excellent brightness and photostability. Silicon-rhodamine 

was conjugated to docetaxel and desbromo-desmethyl- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jasplakinolide, which bind to microtubules and F-actin, 

respectively. The interaction with the polar protein surfaces 

switched the fluorophores into the ON state.
24

 Photostatins 

are microtubule inhibitors that can be switched on and off in 

living cells by visible light to optically control microtubule 

dynamics.
25

 

Staining F-actin of cells incubated with the myxobacterial 

compound chivosazole A or F isolated from Sorangium 

cellulosum showed a depletion of microfilaments within 15 

min, resulting in short pieces and small spots of F-actin. The 

spottiness of the actin cytoskeleton after one day of 

incubation could be quantified by image analysis. Follow-up 

experiments proved that the chivosazoles inhibit actin 

polymerization.
19

 On the contrary, chondramides isolated from 

Chondomyces crocatus induced stronger actin filaments with 

knots and finally big F-actin clumps (Figure 3).
18

 In vitro 

experiments with isolated actin showed an enhancement of 

actin polymerisation by chondramides. 
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Figure 3. Phenotypic changes in the F-actin cytoskeleton stained by 

fluorescently labelled phalloidin (red or green). Top left: PtK2 cells treated 

with the vehicle only; top right: Ptk2 cells incubated with chondramide B 

(200 ng/ml) for 2 h; bottom left: F-actin of L-929 cells treated with 

chondramide B (200 ng/mL) overnight; bottom right: PtK2 cells incubated 

with chivosazole F (200 ng/ml) for 15 min. Nuclei were stained blue. 

Compounds acting on tubulin through inhibition or 

enhancement of tubulin polymerisation induce a depletion of 

microtubules in the cell, or they give rise to microtubule 

bundling, respectively.
26

 The observation of microtubule 

depletion led directly to the elucidation of the mode of action 

of tubulysins.
27, 28

 Both categories of compounds interfere with 

the high dynamics of these structures, which are particularly 

sensitive during mitotic spindle formation. Abnormal spindles 

with multipolar configuration were reported for compounds 

interfering with tubulin polymerisation like tubulysins and 

disorazols.
17, 27

 Multiple asters are typical phenotypes of 

microtubule stabilizing natural products like paclitaxel, 

epothilones, and taccalonolides (Figure 4).
29, 30

 Detailed studies 

with GFP-ß-tubulin expressing HeLa cells also showed 

differences due to the compound’s specific mode of action. 

Paclitaxel-induced asters often coalesced over time resulting in 

fewer, larger asters whereas numerous compact asters 

persisted once they were formed in the presence of the 

taccalonolides.
30

 

 

 

 

 

 

 

 

 

 

Figure 4. Microtubules in interphase and mitotic PtK2 cells stained in green 

by a tubulin specific antibody. Control cells show a normal bipolar mitotic 

spindle (left), cells incubated with epothilone B (50 ng/mL) overnight show 

multiple asters instead (right). Nuclei and chromosomes were stained blue 

by DAPI. 

Also compounds that do not target tubulin directly can induce 

specific phenotypic changes of spindle formation. A prime 

example is monastrol, an inhibitor of the motor protein 

kinesin-5, which is needed to separate the centrosomes.
31

 

Monastrol induces monopolar spindle formation. 

 

The endoplasmic reticulum (ER) is an organelle that forms a 

network that spans over the whole eukaryotic cell. Its 

structure can be visualised by staining HSP90B1 (also known as 

endoplasmin, gp96, grp94 and ERp99), a chaperone protein 

that is located in the ER membrane.
32

 Observing phenotypic 

changes in the ER structure, i.e., in the HSP90B1 distribution, 

helped elucidating the modes of action of the myxobacterial 

products archazolid and apicularen, which showed the same 

phenotype as concanamycin, a known inhibitor of V-ATPase.
33

 

It also gave a valuable hint for the mode of action of 

cruentaren, whose phenotype resembled oligomycin, a known 

inhibitor of F-ATPase (Figure 5).
34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. PtK2 cells were incubated with different ATPase inhibitors 

overnight, fixed and stained green for HSP90B1, a marker for the ER. The 

cells were treated with (from top to bottom) the vehicle only, oligomycin A, 

apicularen A (left panel) and thapsigargin, cruentaren A, and archazolid A 

(right panel). Each type of inhibitor induced a different phenotype, and 

inhibitors with the same mode of action showed the same phenotype. The 

images obtained with F-ATPase inhibitors oligomycin and cruentaren are 

similar, as well as those with V-ATPase inhibitors apicularen and archazolid. 

Thapsigargin, an inhibitor of Ca-dependent ATPase, induced a third 

phenotype. 

Page 4 of 11Natural Product Reports



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  

Please do not adjust margins 

Please do not adjust margins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High content image analysis 

Automated microscopy as a basis for high content analysis and 

cellular profiling  

As illustrated above, the visual assessment of phenotypical 

changes of cells can add a significant measure to target-/mode 

of action-predictions of yet mechanistically uncharacterized 

compounds. However, comparing greater numbers of 

microscopy images taken from differently treated cells by the 

naked eye and evaluating various phenotypical parameters 

makes the process extremely time-consuming, with only a 

relative small number of cells being visualized at a time. 

Eventually, such analyses bear the risk of introducing a bias to 

the evaluation due to subjective estimations made by the 

experimenter, especially when comparing minute variations in 

fluorescence staining. 

Thus, to combine more subtle and unbiased approaches with a 

higher throughput, an automation of the whole image-

acquisition/data-gathering/evaluation-process is inevitable. 

Fluorescence microscopy has already been well-established 

since the end of the 1980s. Yet, the evolving number of 

multicolour fluorescent dyes, the introduction of high 

throughput plate readers, advances in digital imaging 

microscopy together with the emergence of high-performance 

computer hardware were prerequisites for the invention of 

the first automated microscopes in the mid-to-late 1990s.
35, 36,

 
37

 Nowadays a number of commercial providers (Supporting 

Information, Table S1) and a growing number of open-source 

informatics tools for image analysis are available.
38, 39

 Modern 

automated microscopes can read whole microtiterplates 

within minutes depending on the exposure time, the number 

of images acquired per well, the number of fluorescence 

channels used and the image resolution. This implies that 

imaging of one microtiterplate can easily produce tens of 

gigabytes of image data, which in turn requires proper storage 

systems.
38

 As the whole acquisition process underlies 

automation, the data generated can be regarded as 

completely unbiased and statistically more robust than images 

taken by the experimenter from a manually operated 

microscope. On this account, automated microscopy has been 

regarded “as a technology to bridge the gap between depth 

and throughput of biological experiments”
39

 and thus provides 

the basis for high content screening (HCS), high content 

analysis (HCA) and cellular profiling. 

HCA has proven to be powerful for the generation of cellular 

profiles. Besides possessing the capability to analyse processes 

like protein phosphorylation, receptor/ligand interactions, 

cellular uptake, protein expression, cell cycle regulation, 

enzyme activation or cell proliferation, HCA excels at 

discerning cell-morphological changes from images of 

thousands of individual cells, which are generally not traceable 

by conventional biochemical methods. Morphological changes 

include intracellular protein translocation, organelle structure 

changes (e.g. changes in mitochondrial membrane potential, 

cytoskeletal remodelling, formation of micronuclei or 

quantification of internalization) and three dimensional 

structure modifications.
38

 This approach then allows for 

High throughput screening (HTS): HTS describes the process of testing 

large numbers of chemical compounds (in the order of >10
5
/week) for 

biological activity in pre-designed testing systems, which usually are 

biochemical in vitro assays. Due to the focus on throughput and speed 

mostly single read out measurements in 384- or 1536-well 

microtiterplates are performed.
43, 58, 59

 HTS is mostly used for the 

identification of bioactive compounds from libraries of synthetic small 

molecules and/or natural products.  

High content screening (HCS): HCS is regarded as a combination of high 

throughput screening with cellular imaging. The data obtained are 

multiple image-based measurements derived from a cell-based assay. 

Phenotypic screens for cellular effects of bioactive compounds usually 

draw on HCS. In a HCS experiment assay handling and data evaluation 

are more complex, thus going along with a lower throughput of tested 

compounds (in the order of 10
4
/week). HCS requires robotic handling 

platforms and an automated imaging system for the arrayed cell sample 

(384 well) as well as specialized image analysis software and 

bioinformatics data management for the interpretation of the 

multidimensional results. Cellular morphology or alterations in the 

amount of cellular components (proteins, RNAs, ions) are most 

commonly visualized by using fluorescent protein-tags, fluorescent 

proteins or physiological indicator dyes. A special benefit of HCS is the 

possibility to monitor effects on a single cell level. The stored images 

provide the opportunity to visually inspect the cellular morphology 

induced by hit compounds and to discriminate from false positives.  

High content analysis (HCA): HCA bears on the same instrumentation 

and methods as HCS. In contrast to HCS, which usually aims at 

screening medium sized (>10
4
) compound collections, HCA is generally 

performed on a lower number of compounds. Instead, the total 

parameters (descriptors) extracted from each image are higher (up to 

100). When multiplying the number of single cells analyzed with the 

serial dilutions of each compound, a HCA campaign can easily generate 

billions of single data-points.
9
 Hence, HCA requires considerably more 

efforts regarding data processing and data reduction as compared to 

HCS.
55, 59, 60 

 

Cellular Profiling: Cellular profiling is applied for comparing cellular 

reactions to bioactive compounds with each other. In general, profiling 

refers to the generation of distinct profiles or footprints from datasets 

in order to identify or predict certain patterns or correlations. In a 

biological context, methods like transcriptional profiling and proteomic 

profiling start from molecular measurement of cellular responses to 

different perturbations. Data gathered are in turn used to generate 

profiles which allow for receiving information on compound activity and 

target mechanisms. However, the aforementioned biological profiling 

techniques are limited as they can only measure an average from a 

population of treated cells. Cellular profiling circumvents this problem 

by considering data obtained from single cells and therefore bears 

heavily on HCA. Evaluation of HCA incorporates the use of descriptors 

that were calculated from image analysis for creating a multi-

dimensional cellular profile (e.g., intracellular protein translocation, 

organelle structure changes, overall morphology changes, three 

dimensional structure modifications),
38

 reflecting the phenotypic 

signature of a cell treated with a given compound.  
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profiling of dose-dependent phenotypic effects induced by 

different compounds targeting distinct cellular processes, e.g., 

cytostatic agents, transcription inhibitors, translation inhibitors 

or agents interfering with DNA replication. 

The following sections will briefly outline how to conduct a 

HCA and how the data collected have been used to generate 

cellular profiles in order to classify orphan compounds. 

 

Acquiring primary microscopy data from biological samples  

The first step in the process of a HCA is the creation of arrays 

of biological samples in microtiterplates. Typically human-

borne cell lines or primary cells are chosen as models for in 

vivo systems. One should always bear in mind that each cell 

type might respond in a different way to a given compound 

depending on its proteome, its membrane permeability or its 

physiological origin in general.
40

 

Arrayed cells are treated with test and reference compounds 

at various concentrations in order to obtain reliable 

comparative phenotypic profiles. After treatment cells are 

usually fixed, washed and stained in an automated manner.
38, 

41
 This procedure implies that any data obtained reflect a 

single endpoint. Thus, the half time of cellular responses to a 

certain treatment needs to be estimated by the experimenter, 

and the time of fixation has to be set accordingly.  

Hereafter, microscopic images are acquired by automated 

microscopes making use of laser- and/or image-based 

autofocus optics, so that microtiterplates are rapidly imaged.
23

 

By choosing lower magnifications (5× – 10×) higher cell 

numbers can be imaged at a time, which is generally desirable 

for cellular profiling approaches to obtain statistically more 

meaningful results.  

 

From image data to numeric data  

Each image set contains large amounts of imaging data. For 

example, if cells were imaged using three different channels 

and four sites of a well were visualized per sample, the 2D-

readout of a whole 384-well will create 4608 single images. 

Such numbers cannot be inspected by eye and thus the huge 

amount of information contained in respective images has to 

be extracted bioinformatically, i.e. it has to be converted to 

numeric data. For example, the size of an object can be 

expressed by the constituting number of pixels. It should be 

noted that high quality images are fundamental for a reliable 

gain of information, as algorithms will generate numeric data 

even out of bad images (e.g., blurry, out of focus, artefacts).  

The process of image conversion into numeric data comprises 

three key steps that have recently been reviewed in detail: I) 

image pre-processing, II) object identification and 

segmentation and III) feature extraction.
38, 42

 In brief, after 

image pre-processing (involving background corrections and 

other procedures), objects have to be identified and 

segmented. In the example given in Figure 6, cell nuclei were 

stained with the DNA-binding, blue-fluorescent dye Hoechst 

33342 (Hoechst). The line drawn across the Hoechst-stained 

nucleus marks the section for which a fluorescence intensity 

profile was generated. This step exemplifies the direct 

conversion of image information into numeric data, as the 

fluorescence intensity is now expressed as relative grey values. 

With the intensity profile at hand, minimal fluorescence 

intensity may be determined as a threshold value for the 

identification of this nucleus (red arrowhead). Each pixel with a 

higher intensity is then considered as part of the nucleus of 

that particular cell. Based on the intensity levels a mask for all 

Hoechst-stained objects in the image is calculated by the 

software. 

 

 

 

 

 

 

 

 

Figure 6. Conversion of image data to numeric data. The microscopic image 

on the left shows Hoechst stained nuclei of eukaryotic cells. The white line 

marks the detection region for the fluorescence intensity profile shown in 

the middle. A threshold value (red arrowhead) is set for defining a cellular 

object by its fluorescence intensity. The pixel area above this threshold is 

then considered as cellular object and marked by software generated masks 

as depicted on the right. 

A subsequent segmentation step is essential for separating 

cells grown as a confluent layer in order to assign the features 

correctly to each individual cell. 

Feature extraction refers to the act of measuring values from 

shapes or portions of objects in a given image. Such features, 

also termed descriptors, are extracted from the information 

covered by the respective thresholded masks, representing 

detection areas. In the case of DAPI-stained nuclei depicted in 

Figure 7, features like number, size, shape, fluorescence 

intensity or nuclear texture might be extracted, as they are all 

integral part of the thresholded mask defined by the object-

identifying algorithm.
43

 Such features are captured for each 

cell of an analysed image area; they serve for the generation of 

cellular profiles induced by different compound treatments. 

Remarkably, a higher number of features does not necessarily 

generate more significant cellular profiles.
44, 45

 It is more 

relevant to select features that reasonably represent the 

cellular reaction in response to a given compound. For 

instance, in a setup that aims at probing cytostatic agents, a 

feature like “shape of tubulin-staining” will add more 

informative content to a cellular profile than a feature like 

“average intensity of nuclear staining”. 

 

From numeric data to target identification  

With the cellular profile in form of numerical features 

(descriptors) at hand, the mode of action of a compound of 

interest can be predicted by comparing its descriptor set to the 

sets of reference compounds with known modes of action. 

Figure 8 depicts exemplary cellular profiles of 28 different 

references and one compound assumed to have an unknown 

mode of action (denoted “X”). Each profile consists of 15 

features derived from three fluorescence channels. 
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Figure 7. Conversion of image data into features. The multicolour image 

shows triply stained cells. The nucleus is stained with DAPI (blue), ER-

membranous compartments are visualized with Alexa Fluor 488-conjugated 

concanavalin A (green) and the cytosolic isoform of clusterin (CLU) was 

immunodetected using a cyanin 3-labeled antibody. For the single channel 

images thresholds were determined. All pixels included for analysis are 

combined below the channel-specific thresholded mask. From the 

respective masks, distinct features can be extracted that are characteristic 

for every object. 

For comprehensive visualization, the response of a given 

feature has to be normalized, so that the relative intensity 

range for all features is equal. Based on this, a colour intensity 

range can be applied expressing the relative change of a 

feature in response to a certain treatment. In a next step, 

hierarchical cluster analysis was performed to calculate the 

extent of similarity between cellular profiles of differentially 

treated samples.
46

 The Euclidian distance as a similarity 

measure between the different profiles is then plotted as a 

dendrogram to indicate clustering of given compounds. In the 

example given in Figure 8, compound X is closely clustering 

together with reference compound 20, pointing towards a 

potential similar mode of action. 

Several profiling approaches have been described where 

different strategies have been applied in order to classify 

reference compounds. In these broadly conceived studies, the 

number of cellular features extracted from microscopic images 

vastly exceeds the 15 features depicted in our example. A 

simple cluster analysis is not feasible anymore, as underlying 

mathematical algorithms cannot incorporate any number of 

descriptors. Hence, numeric data obtained from these HCA 

must further be converted bioinformatically by the use of 

different mathematical strategies (Table S2). In an important 

comparative study by Ljosa et al., a single image dataset was 

used to create compound profiles following different 

bioinformatical approaches (Figure 9). Subsequently, the 

accuracy of the obtained mode of action predictions was 

determined; the authors concluded that “the profiles that best 

represented the phenotypes were obtained using factor 

analysis”, with an accuracy of 94 % in correctly classifying 

compounds with different modes of action.
47

 

 

 

 

 

 

 

 

 

 

Figure 8. Profile clustering for detecting similarities. A. Exemplary compound 

profile consisting of measured features for the different fluorescence 

images and channels. B. Hierarchical cluster analysis of 29 compound 

profiles (28 reference compounds and one unknown X). The dendrogram on 

the left visualizes the relationship between different profiles. Highly similar 

profiles are clustered together whereas diverging profiles are located far 

away from each other.  

Application examples for cell-based profiling  

In a study by Young et al. arrayed cells were treated with a 

total of 6,547 different compounds, 58% of which were of 

natural origin.
48

 HCA was performed with the stained cells and 

cellular profiling was achieved by mining the numerical data 

obtained with factor analysis (Figure 9 E). A total of 36 

cytological features were extracted and reduced to 6 

significant factors. For instance, 12 of the original features 

were combined to a single factor “nuclear size”. From the 

relative change in the value of the different factors, cellular 

profiles were generated by cluster analysis. Eventually, the top 

5% of the whole screening set (211 compounds) whose 

induced phenotypic responses were significantly different to 

the average control phenotypes (i.e. they show the highest 

Euclidean distance) were identified as hits. 96% of all hit-

compounds with similar structure showed strikingly similar 

phenotypes, such as the cyclic depsipeptides aurantimycin A 

and diperamycin or the glucocorticoids clobetasol-17-

propionate and dexamethasone. However, it became evident 

that a given phenotype must not necessarily point to a single 

structural class of compounds. Instead, structurally different 

classes of compounds may produce similar phenotypes, as 

shown for entobex. The latter clustered together with 

abovementioned glucocorticoids, but is structurally completely 

unrelated to these. In additional studies, the authors 

performed a computed target prediction of their hit-

compounds by means of an annotated chemogenomics 

database (WOMBAT). Through combining the results obtained 

from the target-prediction algorithm together with the 

phenotype profiles it was confirmed, that phenotypes 

correlate well with the predicted compound targets. 
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Figure 9. Overview of bioinformatic strategies for generating compound profiles. (Top) Experimental design. Cultured cells in microtiter plates are 

compound treated, labeled, fixed, and imaged. Then features are extracted from respective images. One of the profiling methods under investigation 

condensed these measurements into a profile (vector of numbers) that describes each sample. A sample with unknown mechanism of action (MOA) 

was predicted to have the same MOA as the sample whose profile is most similar to that of an unknown sample. (Bottom) Illustrations of five profiling 

methods. (A) Means of raw per-cell features. (B) Kolmogorov-Smirnov (KS) statistic relative to negative control. (C) Normal vector of decision plane of 

linear support-vector machine (SVM) versus negative control. (D) Proportion of cells in each component of a Gaussian mixture (GM). (E) Latent feature 

extraction using factor analysis. Figure modified from Ljosa et al.
47

  

Even though there is no example of mode-of-action 

identification of an uncharacterized compound given in this 

study, it successfully merges complex imaging data with 

additional databases in order to predict mechanisms of action. 

In a study by Slack et al., cellular profiles were generated 

based on cellular subpopulations.
45

 A total of 35 different 

compounds were screened. Ten of these had either 

miscellaneous or undefined modes of action (e.g. green tea 

polyphenols, valproic acid). For each cell acquired, a 1,536-

dimensional feature vector was computed and subsequently 

reduced to 25 dimensions by PCA. Based on the principal 

components, subpopulations of cells were identified by 

application of a Gaussian mixture model (see Table S2, Figure 9 

D). The authors found that drugs of similar mechanism often 

yield similar subpopulation profiles. Interestingly, analysing a 

higher number of subpopulations (> 5) did not necessarily 

allow for a more accurate classification of compounds. Green-

tea phenols and valproic acid both clustered with 

glucocorticoid (GC) receptor agonists. Additional biochemical 

experiments confirmed that a GFP-tagged GC-receptor is 

internalized by these compounds. However, two other 

compounds that clustered with GC-receptor agonists did not 

induce positive results in the biochemical assay, implying that 

the classification of compound treatments into mechanisms of 

action by the Gaussian Mixture Model is susceptible to false 

positives. In fact, the accuracy of this model was calculated to 

be 83% compared to the abovementioned factor analysis 

model with 94% accuracy.
47

 

Caie et al. 2010 correlated phenotypic drug response with 

several cancer cell types of different genetic background.
49

 A 

library of well-characterized drugs was investigated and HCA 

was run in a four-wavelength assay with four different cancer 

cell lines. After segmentation of imaged cells by identifying 

nuclear and cytoplasmic boundaries, 100 features were 

extracted. The multiparametric phenotypic response was then 

simplified by PCA. Compounds inducing distinct phenotypes 

compared to the control cells were classified by calculating the 

multidimensional Mahalanobis distance. To further compare 

the phenotypic responses across the different cancer cell 

types, a Kohonen neural network (self-organizing map) was 

calculated (Table S2). The resulting map visualized the 

phenotypic data for each compound across dose response and 

the four cell types used. It was found that some compounds, 

for example the microtubule stabilizer epothilone B, induced 

similar phenotypes across all cell lines tested. In case of the 

translation inhibitor emetine, phenotypic responses of the cell 

lines cluster differently, indicating highly sensitive, cell-specific 

responses against this particular drug. It was speculated that 

p53 is important for emetine activity, as the phenotypic profile 

of MCF7-p53 was significantly different to MCF7-wt, thus 

pointing to p53 as a mediator of emetine function. The authors 

then performed a k-nearest neighbour classification to make a 

prediction of a particular compound’s mode of action. The 

analysis revealed that the different compound classes 

clustered well together in MCF7-wt, MCF7-p53 and MiaPaCa2 

cells, providing proof of concept. In OvCar3 cells, however, 
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mechanistically unrelated compounds were ranked as nearest 

neighbours, e.g. proteasome inhibitor 1 was closely clustered 

with kinase inhibitor PP2 and protein synthesis inhibitors 

anisomycin and cycloheximide. This illustrates that the 

manifestation of a certain cellular profile can be dependent on 

the cell type analysed. 

Perlman et al. developed a cytological profiling approach 

comprising multidimensional measurements of cells treated 

with a wide concentration range of a reference drug set, 

selected to cover common mechanisms of toxicity or 

therapeutic action.
9
 One hundred compounds, including many 

natural products, were screened and a sum of 93 descriptors 

were extracted from stained cells. For generating compound 

profiles, the descriptors were plotted as a cumulative 

distribution and then reduced to a single number that 

represented the point of maximum difference between the 

control and treated population (Figure 9 B). Heat plots were 

generated for all reduced descriptors at different compound 

concentrations. For 61 of the 100 compounds, a strong 

response was obtained by this analysis. Structurally unrelated 

compounds sharing a common target showed similar response 

profiles. By applying a titration-invariant similarity score (TISS) 

the authors compared dose-response profiles obtained from 

analyses of different starting dosages. Unsupervised clustering 

of compound profiles by their TISS value revealed that 

compounds with similar targets can be successfully clustered 

together. For the subset of kinase inhibitors no clustering was 

observed even in case of overlapping targets, maybe due to a 

variable inhibition of other kinases. The authors also included 

three poorly characterized compounds in their profiling 

approach. One of these, austocystin, clustered together with 

transcription and translation inhibitors. According to 

unpublished preliminary data, the authors were able to verify 

inhibition of transcription of this compound in vitro. In this 

case, HCA correctly assigned a compound to a mode of action 

class. Of note, austocystin D was later on shown to be 

activated by CYP-enzymes and to induce DNA damage.
50

 

The image set of Perlman et al. was reanalysed in a study by 

Loo et al.. They aimed at providing a multivariate method for 

classification of single cells in order to obtain better profiling 

accuracies.
44

 Based on more than 300 descriptors the cells 

were displayed in the high-dimensional descriptor space. A 

support-vector machine (SVM) determined the optimum 

hyperplane that separated control from treated cells (Figure 9 

C). By applying a SVM recursive feature elimination algorithm, 

20 - 40 features were identified to be essential for the 

classification of most of the compounds. Similar normal 

vectors in a concentration series were clustered to yield a 

representative dosage (d)-profile. Significant d-profiles were 

then used for category prediction and the authors observed 

better classification accuracy, as also the kinase inhibitors 

grouped together in their analysis. 

A profiling study by Tanaka et al. draws on simple comparison 

of means for each descriptor in order to construct cellular 

profiles (Table S2, Figure 9 A). They found that the compound 

hydroxy-PP induced a distinct phenotype that did not correlate 

with that of structurally related kinase inhibitors and micro- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Compounds for which image based profiling was applied to 

identify their MoA (left side). Respective reference compounds with similar 

phenotypic effect and cellular target are depicted on the right side. 

tubule polymerization inhibitors.
51

 It was not possible to assign 

hydroxy-PP a certain mode of action by comparison to 

reference compounds, thus it was postulated that hydroxy-PP 

must exert a different mode of action. The cellular target was 

then identified as carbonyl reductase 1 through a chemical pull 

down with immobilized hydroxy-PP. In this particular case, 

HCA gave the hint for a novel mode of action. 

 

Phenotyping of prokaryotic cells 

All of the above mentioned profiling approaches phenotyped 

eukaryotic cells. For microscopic imaging of prokaryotic cells a 

particular challenge is given by their comparably small size and 

potential movement due to flagella. In a first in field study 
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performed by Nonejuie et al., the phenotypic effects of 

inhibitors targeting the five major pathways namely 

translation, transcription, DNA replication, lipid synthesis and 

peptidoglycan synthesis, were evaluated.
52

 Images of E. coli 

cells immobilized on agarose pads were manually acquired 

using an inverted microscope with a 100× objective. Hereafter 

images were modified and evaluated on single image basis by 

image editing and analysis programs. Eventually cellular 

profiles were generated by extracting 14 features from the 

edited images. Following PCA different inhibitor classes were 

successfully separated from each other and characterized 

correctly. As a proof of concept spirohexenolide A, a natural 

product with activity against Gram-positive bacteria and E. coli 

lptD4213 and formerly unknown MoA, was shown to possess a 

similar profile as the antibacterial peptide nisin. Further 

experiments validated that spirohexenolide A compromised 

membrane integrity and the proton motive force, as known for 

nisin. The study provides a proof-of-concept for the validity of 

phenotypic profiling of bacterial cells.  

Perspectives 

A major bottleneck in the exploration of natural products as 

tools for chemical biology research and as lead structures for 

therapeutic applications is the identification of their mode of 

action on a molecular and cellular level. As the initial 

bioactivity of natural products has been often discovered in 

phenotypic assays (like growth inhibition of bacterial or 

eukaryotic cells) that do not capture target information, a 

mode of action assignment is particularly relevant for natural 

products compared to other sources of bioactive compounds. 

Assignments based on image analysis have been successfully 

applied in multiple cases, as outlined in this review. Most 

application examples involve a visual inspection of images, 

while the use of automated HCA is still limited, maybe due to 

its technical complexity and the limited number of labs with 

fully established HCA workflows.  

The central assumption of target identification by image 

analysis is that the modulation of a particular target results in 

a specific phenotype. However, not all phenotypes may 

become clearly visible with the applied set of antibodies and 

descriptors. Provided that no antibody is included that 

captures a given kind of phenotypic alteration, evaluation of 

HCA might lead to false negative results. Furthermore if a 

compound has an effect merely on cellular metabolism or a 

signalling pathway without inducing a visible morphological 

change, immunostainings may not applicable for target 

identification. In this case the use of physiological indicator 

dyes can be taken into consideration. Yet, the repertoire of 

these is limited and only few specific processes can be 

monitored, e.g., Ca
2+

-distribution by Ca
2+

-sensitive fura-dyes. 

Eventually, the applied concentration of compounds to be 

screened is a critical parameter that has to be carefully 

considered. Too high concentrations may induce apoptosis, 

thus masking any specific morphological change occurring at 

lower concentrations. This may lead to a false positive 

classification, e.g., with general apoptosis inducers. On the 

contrary, too low concentrations may give false negative 

results, as the characteristic phenotypic effects are not yet 

induced. Hence target prediction via cellular profiling can 

easily become ambiguous or lead into the wrong direction. 

Even so, it has to be pointed out that cellular image profiling is 

always preliminary and has to be proven by more specific 

biochemical or biophysical methods.  

Nevertheless the potential of HCA itself can be further 

enhanced: Assaying more complex model systems, such as 3D 

cell cultures or even whole tissues by HCA will further increase 

the impact of cellular profiling in the course of drug discovery, 

as they better resemble the physiological state in a living 

system. Promising advances in this direction have been made 

in the quantification of tumor model phenotypes across whole 

tissues.
53

 In terms of target identification it may be 

advantageous to use an ‘easy to handle’ model system for 

profiling and apply more complex model systems for final 

validation. 

An emerging alternative method for cellular profiling by 

automated microscopes could be imaging flow cytometry 

(IFC). IFC represents a combination of flow cytometry with 

microscopic imaging and allows for analysis of 300-1000 

events per second, albeit at lower spatial resolution compared 

to microscopic analysis.
54

  

So far only data from fixed endpoints assays have been used 

for cellular profiling. Yet, modern instrumentation already 

permits kinetic measurements that capture the dynamics of 

cells and biological processes over time, thereby adding a 

significant dimension to cellular profiling analysis.
55

 Hence, 

automated live cell imaging has recently been regarded as an 

important trend.
56

 Indeed, live cell HCA combined with RNA-

interference techniques has successfully been applied for 

profiling gene knockdowns on basis of the induced cellular 

phenotypes.
57

 

Also for prokaryotic cells HCA-based profiling could be of 

interest in order to classify the mode of actions of novel 

antibiotics. One disadvantage to overcome so far is the high 

amount of manual work that is necessary for bacterial 

profiling. Until now microscopic analysis of prokaryotic cells in 

microtiter plates is not possible due to the minor size and 

movement of living bacteria. They can only be imaged at high 

resolution and by applying techniques that prevent motility. 

Overall, we see a high potential in HCA for accelerating the 

target identification process, in particular when the method is 

combined with orthogonal target identification techniques: In 

such a workflow, HCA could be utilized to quickly identify a 

compound’s cellular target if this belongs to a known mode of 

action class. The compound can then be directed to specific 

target-based biochemical and/or biophysical assays to verify 

the hypothesis generated by HCA. For compound profiles that 

cannot be matched, direct identification techniques like 

genetic screens or pulldown probes need to be applied. Such a 

systematic approach may render the assignment of a biological 

profile for natural products more efficient and increase their 

value for life sciences significantly. 
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