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Chains of nanoscale plasmonic resonators are capable of sub-diffractional waveguiding and have applications in 

nanophotonics and thermal radiation transport. Practical uses have largely been limited, however, due to high optical 

losses or low group velocities. Here, we predict the waveguide performance of a material structure capable of overcoming 

these limitations: plasmonic resonators embedded in high-dielectric nanowires. Due to the enhanced near-field coupling 

between resonators, we find that the group velocities and propagation lengths for doped Si plasmonic resonators in 

intrinsic Si nanowires can be increased by up to an order of magnitude compared to the case of isotropic vacuum 

surroundings. We investigate the impact of resonator aspect ratio, doping, and spacing on waveguide performance, and 

we find that propagation lengths are maximized for large aspect ratios and high dopant concentrations at small spacings. 

To study these complex anisotropic systems, we develop a new analytical “absorption spectra” method to extract 

waveguide information from simple far-field absorption experiments (or simulations) of only two coupled resonators. 

Introduction 

Collective, resonant charge oscillations in nanoparticles, 

known as localized surface plasmon polaritons (SPPs) in metals 

and localized surface phonon polaritons (SPhPs) in polar 

dielectrics, can confine light to volumes far below the 

diffraction limit. In addition to applications in chemical 

sensing,
1
 energy conversion,

2
 and photocatalysis,

3
 among 

others,
4
 nanoscale polaritonic particles may serve as sub-

diffractional waveguides for nanophotonic devices when 

organized into extended one-dimensional arrays.
5-10

 These 

types of particle chains also have the potential for enhanced, 

guided near-field thermal radiation if designed for the mid- or 

far-infrared.
11-15

 The ability to confine and transmit light at 

such small dimensions has important implications for photonic 

circuits,
16

 plasmonic sensing,
17

 and other optical applications. 

However, the performance of nanoparticle chain waveguides 

has been limited when compared to plasmonic nanowires
18

 or 

hybrid plasmonic-photonic waveguides
19

 due to inherent 

losses in metal-based SPPs
20

 and strong dispersions 

(corresponding to low group velocities) for SPhPs in polar 

dielectrics.
21

 

One way to mitigate these waveguide limitations may be to 

utilize anisotropy and polarizable materials along the 

nanoparticle chain. For doped Si plasmonic resonators 

embedded in an intrinsic Si nanowire, the near-field coupling 

strength between two resonators is enhanced by four to five 

times compared to the same resonators in isotropic vacuum or 

in isotropic intrinsic Si.
22

 This behaviour is caused by the 

combination of the anisotropic structure of the nanowire and 

intrinsic Si’s large infrared permittivity, which focuses the 

electric field along the nanowire and suppresses transverse 

modes. If the resonators are repeated along the wire to create 

a sub-diffractional waveguide, they could exhibit good 

waveguide performance due to the improved coupling 

strength. A conceptual schematic of this type of waveguide is 

shown in Fig. 1, where the coloured shading represents the 

local electric field intensity and the sine wave represents one 

frequency’s contribution to the propagating SPP or SPhP wave 

at a certain point in time. Additional benefits of these types of 

waveguides are their ability to be fabricated through bottom-

up synthesis methods,
22-25

 which lend themselves to high 

throughput production, and the ability to tune waveguide 

properties through chemical doping, electrostatic gating, 

and/or optical excitation of carriers. 
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Understanding and analysing the behaviour of nanowire 

waveguides is made challenging by the nonhomogeneous 

environment around the resonators. Since the prediction of 

sub-diffractional waveguiding along nanoparticle chains by 

Quinten et al. in 1998,
5
 the concept has been theoretically 

investigated by applying Maxwell’s equations through the use 

of Mie theory,
5
 equations of motion for coupled dipole 

oscillation,
6
 and wave solutions to coupled electric field 

interactions,
8
 to name a few methods. Good reviews on the 

topic are available by Gramotnev and Bozhevolnyi
9
 and by 

Halas et al.
10

 The approach of finding wave solutions to the 

coupled electric field interactions is also used to predict near-

field radiation heat transfer along nanoparticle chains.
11-13

 In 

general, these methods calculate the dispersion relation for 

the propagating SPhP or SPP modes and then use the 

dispersion to predict mode propagation lengths, group 

velocities, and thermal transport. For example, Brongersma et 

al. showed that the dispersion relation depends on a 

parameter called the “coupling strength” between any two 

resonators,
6
 which can be directly calculated from 

electromagnetic source-field relations. Most analytical 

approaches rely on such equations, but these are not generally 

known for particles in anisotropic environments and must 

instead be obtained through numerical methods. An 

alternative approach is therefore needed that does not rely on 

source-field relations. 

In this paper, we develop a new method to calculate the 

dispersion relation for SPPs or SPhPs propagating along a chain 

of resonators from common far-field spectral response 

measurements or numerical simulations of two coupled 

resonators.  The shift in absorption peak position as two 

resonators are brought closer together is used to find the 

coupling strength between resonators in the waveguide chain. 

The coupling strength is used in an equation of motion 

approach to calculate the dispersion relation, which provides 

mode group velocities and propagation lengths. We term this 

approach the “absorption spectra method” and use it to 

predict the waveguide performance of doped Si plasmonic 

resonators embedded in intrinsic Si nanowires. Dispersion 

characteristics are compared to the case of the same 

resonators embedded in an isotropic vacuum environment to 

quantify the improvements associated with the nanowire 

geometry. Finally, we investigate the impacts of resonator 

aspect ratio, spacing, and doping to guide the design of future 

waveguides. 

Theory 

Dispersion Relation 

Consider a chain of identical plasmonic resonators modelled as 

dipoles with center-to-center spacing �. If the resonators are 

SPP- or SPhP-supporting spherical nanoparticles, then the 

dipolar assumption is valid when � is approximately greater 

than or equal to three times the particle radius.
26, 27

 For doped 

Si plasmonic resonators embedded in semiconductor 

nanowires, the transverse modes are strongly suppressed and 

longitudinal oscillatory behaviour remains dipolar even at very 

close resonator spacings.
22, 25, 28

 Following the example of 

Brongersma et al.,
6
 we model the dipolar resonators as 

harmonic oscillators
29

 with displacement �, restoring force 

spring constant �, effective mass �, and damping coefficient 

Γ. A polarized dipole in the chain will create an electric field at 

the neighboring dipoles that exerts a force proportional to the 

dipole displacement � � �	, where we drop the vector 

notation for � because only 1D longitudinal polarization is 

considered. This leads to an equation of motion for the 
th 

resonator in the chain: 

 ��
,�� ����� � ����� � �
���
��� � �

���
�� � �����

�

���
 (1) 

where � is the number of neighboring resonators considered 

and � is time. We have also introduced the coupling strength 

of the �th neighbors with the 
th resonator �
,� �  ��/�, the 

Fig. 1 Schematic of a sub-diffractional waveguide consisting of repeated plasmonic doped semiconductor resonators (dark grey) embedded in an intrinsic semiconductor 

nanowire (light grey). The resonators have length ", diameter #, aspect ratio $% � "/#, separation distance &, and center-to-center spacing ' � " � &. External excitations 

cause surface modes to couple across multiple resonators, resulting in alternating regions of high (red) and low (blue) electric field intensity (. The waveguide modes move 

along the chain as propagating waves with a wavevector ), represented by the sine wave above the nanowire.
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dipole moment � � *	 where * is the charge, the damping 

ratio � � Γ/�, and the natural frequency �� �  �/�. The 

left side of eqn (1) represents the force on the 
th resonator 

due to the polarization of all other resonators, and the right 

side encompasses the motion and forces associated with the 

oscillation of the 
th resonator. We assume the form of a 

complex frequency �+ � � � ,ζ such that � is the angular 

frequency and . is the damping rate,
8
 and we look for 

propagating wave solutions to eqn (1) of the form ��±� �
0e�23�4[6��±��7�83] where 0 is the amplitude and : is the 

wavevector. After inserting this into eqn (1), simplifying, and 

separating the real and imaginary parts, we obtain the 

dispersion relation 

 

0 � �� − .�. − �� − ���
� 2��
,�� cos�:���

�

���
		�Real� 

0 � 2. − �		�Imaginary� 

 
(2a) 

 

 

 
(2b) 

A more detailed derivation of the dispersion relation is 

provided in Section S1 of the ESI†. Equation (2) provides a 

relation between :, �, and . that depends only on the spacing 

�, the coupling strength �
,� for each term in the summation, 

the natural frequency ��, and the damping ratio	�. The 

imaginary part of the solution verifies the typical relationship 

between the damping rate and the damping ratio, . � �/2.  

The dispersion relation is the key to defining waveguide 

performance with the following steps. The parameters in eqn 

(2) are first determined, as described in the following section, 

through spectral response measurements or numerical 

simulations. Once the inputs have been specified, : is varied 

from zero to the first Brillouin zone L/� to find the 

corresponding values of �. With the dispersion then 

determined, the group velocity MN � 78
76  and the amplitude 

propagation length (1/O length) Λ � MN/. are calculated to 

evaluate spectral waveguide performance.
8
 

 

Damping Ratio, Natural Frequency, and Coupling Strength 

The first two inputs, � and ��, are associated with the 

oscillation of single resonator. These inputs are therefore 

determined from the absorption spectrum of an isolated 

particle in the background material being considered for the 

waveguide (e.g., a nanowire). Because a localized SPP or SPhP 

can be modelled as a damped harmonic oscillator driven by 

the incident light, � is simply the full-width at half maximum
30

 

and �� is the absorption peak frequency for the isolated 

resonator.
29

 To determine the coupling strength between two 

resonators, �
 , we consider the coupled equation of motion 

for two particles, designated a and b, driven longitudinally by 

the incident light: 

 
2��
� e483 � �
�Q � �

�Q
��� � �

�Q
�� � ���Q (3) 

Here Q � 	R � 	S  is the sum of the displacement of the 

oscillators, the sinusoidal driving force ���� is represented by 

��e483, and the real part of the solution Q��� � Te483  
represents the physical motion. The absorption peak 

frequency for the two-resonator system, ��, which can be 

experimentally measured or simulated, corresponds to the 

frequency at which the average power is delivered to the 

resonators is maximized. After solving for T in the solution 

Q���, this average power is given by 

 

〈VW ���〉 � 〈���� �Q��〉 

� ���
�� ∙

����
���� � ���� −�
� −���� 

(4) 

The absorption peak frequency is found by setting the 

derivative of eqn (4) with respect to � equal to zero and 

solving for �. This leads to the relation 

 �� � Z��� − �
� (5) 

The coupling strength between two resonators may, therefore, 

be determined knowing only the natural frequency (which is 

the same as the absorption peak frequency for an isolated 

resonator) and the absorption peak frequency of the two 

resonators in proximity to each other. A more detailed 

derivation of this relation is provided in Section S2 of the ESI†. 

Instead of performing measurements or simulations to 

obtain the absorption peak shift for all � resonator spacings in 

eqn (2), it is more efficient to only do so for a few spacings and 

then interpolate the others. The shift in absorption peak 

position with spacing for two plasmonic resonators is 

correlated by the empirical plasmon ruler equation,
31

 which is 

known to be valid for coupled resonators in both isotropic
32-36

 

and anisotropic
22, 31, 37-39

 environments: 

 
�� − ��
�� � [� exp ^−_/`a b (6) 

where [� is a dimensionless constant, _ is the separation 

distance between the resonators, ` is the length of the 

resonators, and a is the decay length scaling factor. a indicates 

the rate at which the electric field decays away from the 

resonator, so larger values of a are linked to stronger near-

field coupling. Once absorption peak locations have been 

obtained for several different resonator spacings, the data 

may be fit to eqn (6) to obtain values for [� and a. Despite its 

empirical nature, the exponential behavior of the shift in 

absorption peak may also be explained by a dipolar coupling 

model: as the resonators move closer or exert stronger fields 

on each other due to changes in geometry or material 

properties, the coupling strength between them also 

increases.
31

 

 

Summary of Method 

For clarity, we summarize here the steps in the absorption 

spectra method to calculate the dispersion relation. First, 

measurements or simulations of the far-field absorption peak 

position and width of an isolated resonator in the background 
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medium of interest provide �� and	�. Additional far-field 

measurements or simulations for two coupled resonators at 

several different spacings then provide several values for ��. 

These data are fit to eqn (6) to obtain [� and a, which allows 

the calculation of �� for any resonator spacing. Second, eqn 

(6) and eqn (5) are used repeatedly to calculate � values of �
  

for � neighboring resonators. The coupling strength decays 

rapidly with increased spacing, so typically � < 10 is sufficient. 

The requirement for � will vary with material, geometry, and 

environment, so this should be checked for any specific 

application. Finally, : is varied from 0 to L/� and eqn (2) is 

solved for each value of :, which provides the dispersion 

relation. With the dispersion, the mode MN and Λ may be 

calculated to evaluate waveguide performance. 

 

Validation 

To verify that our method provides a good prediction of 

waveguide properties, we compare its results for spherical 

nanoparticle chains in homogeneous dielectric environments 

to analytical solutions for the same materials and geometries. 

Absorption spectra for 12 nm diameter nanoparticles were 

calculated using the discrete dipole approximation (DDA) with 

the well-established DDSCAT code.
40

 The spectra for SiC 

particles and SiO2 particles in background permittivities of cd  = 

1 and cd  = 4, respectively, are shown in Fig. S1 of the ESI†. For 

both materials, a Lorentz oscillator model for relative 

permittivity was fit to the optical constants
41

 in the SPhP 

resonance spectral region, and this model was used to 

describe the particle permittivity for all scattering and 

dispersion calculations. The absorption spectra for a single 

nanoparticle provided the full-width at half maximum or 

damping ratio (� = 1.06e10
12

 rad/s for SiC; � = 1.62e10
12

 rad/s 

for SiO2) as well as the absorption peak frequency or natural 

frequency (�� = 1.75e10
14

 rad/s for SiC, �� = 2.09e10
14

 rad/s 

for SiO2). The DDA results for a single nanoparticle were also 

shown to be consistent with Mie theory (Supplementary 

Information Fig. S1 and S2).
26, 42

 The absorption peak 

frequencies for two particles separated by distances of 4, 6, 8, 

and 10 nm were then used to fit the values of a and [� in the 

plasmon ruler eqn (6) (a = 0.422, [� = 0.0143, f� = 99.2% for 

SiC; a = 0.471, [� = 0.00881, f� = 99.5% for SiO2). With the 

plasmon ruler equation we can specify the peak absorption 

frequency for two resonators at an arbitrary separation 

distance, which allowed us to calculate the coupling strength 

for � neighboring resonators with the repeated use of eqn (6) 

and eqn (5). Once all inputs were determined, eqn (2) was 

solved using a custom MATLAB code using � = 18 nm and � = 

15 to find the dispersion relations and propagation lengths for 

SiC and SiO2 nanoparticle chains, shown by the solid lines in 

Fig. 2a and Fig. 2b. The corresponding analytical solutions were 

obtained from the longitudinal dispersion relation for an 

infinite chain of point dipoles:
8
 

 

0 � 1 − h
2Lcd�i jkLiime

4�8+/n�6�7o
� Liime4�8+/n�6�7op

− ,��M kLi�me4�8+/n�6�7o � Li�me4�8+/n�6�7opq 
(7) 

where h is the nanoparticle polarizability corrected for 

radiation damping,
26

 Lid�⋯ � is the polylogarithm function of 

order �, and M � s/ cd  where s is the speed of light in 

vacuum. Equation (7) was solved numerically in MATLAB and 

the results are shown by the dashed lines in Fig. 2a and Fig. 2b. 

The dispersion relations provide the relationship between the 

wavevector and frequency for the allowed propagating modes. 

The propagation lengths reach a maximum where the group 

velocity (slope of the dispersion) is largest. 

Fig. 2 (a) Dispersion relations and (b) propagation lengths for chains of 12 nm 

diameter particles with separation distances of 6 nm for SiC in background tu = 1 

(red lines) and SiO2 in background tu = 4 (blue lines). Our method described in the 

present work (solid lines) has good agreement with the analytical solution (dashed 

lines), indicating that the new method can predict the waveguide properties of 

repeated plasmonic resonators for different materials and environments.
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Both the dispersion relations and the propagation lengths 

calculated with the absorption spectra method agree well with 

the analytical solutions. The dispersion relations differ from 

the analytical solutions within 0.23%, and the maximum 

propagation lengths differ from the analytical solutions by 

6.8% for SiC and 0.8% for SiO2. The consistent shapes of the 

dispersions and close accuracy to the analytical solutions 

regardless of material or background permittivity show that 

our method can account for these variations. 

Results and Discussion 

The proposed absorption spectra method was used to 

predict the waveguide performance of chains of doped Si 

plasmonic resonators embedded in intrinsic Si nanowires. First, 

DDA simulations from our previous work
22

 were used as inputs 

to evaluate how the nanowire medium affects the group 

velocities and propagation lengths when compared to a 

homogeneous vacuum environment. Waveguide performance 

modelled from experimental spectral response measurements 

were compared to performance modelled from the DDA 

simulations to determine how a real system differs from 

idealized simulations. Finally, new DDA simulation results were 

used to investigate the impact of resonator size, spacing, and 

dopant concentration. 

 

Impact of the Nanowire Environment 

DDA simulations for doped Si plasmonic resonators with a 

doping concentration �v  of 2.7e10
20

 cm
-3

,
43

 diameter of 130 

nm, and aspect ratio of 0.77 provided values for ��, �, and �� 

for both isotropic vacuum and intrinsic Si nanowire 

environments.
22

 The resulting dispersion relations, group 

velocities, and propagation lengths for this nanowire structure 

are shown in Fig. 3a, 3b, and 3c, respectively, for � = 15 

nearest neighbours and a separation distance of 10 nm 

between adjacent resonators. 

 The anisotropic nanowire environment, as expected,
22

 

alters the coupling between resonators and the waveguide 

characteristics significantly compared to the isotropic vacuum 

environment. Fig. 3a shows that the nanowire dispersion 

exhibits steeper slopes and covers a broader frequency range, 

which translates to much higher group velocities in Fig. 3b. 

Because the damping does not change significantly between 

the two environments (� = 1.16e10
14

 rad/s for the nanowire 

case and � = 1.24e10
14

 rad/s for the vacuum case), higher 

group velocities directly lead to greater propagation lengths as 

shown in Fig. 3d. The maximum propagation length for the 

nanowire geometry is about eight times higher than that for 

the vacuum environment, but different resonator geometries 

or dopant concentrations can exhibit even larger waveguide 

performance enhancements. For example, based on additional 

DDA calculations, we found a maximum propagation length of 

1.01 μm for resonators with �v  = 1e10
21

 cm
-3

, diameter of 150 

nm, aspect ratio of 0.8, and separation distance of 10 nm. This 

represents an order of magnitude increase over the case of the 

same resonators in a vacuum environment. 

 

Inputs from Measurement vs. Simulation 

A significant advantage of the absorption spectra method of 

calculating dispersion relations is that it can use experimental 

measurements to predict dispersion relations. Such spectral 

response measurements capture the effects of nonidealities 

such as defects and dopant concentration gradients, and they 

give a better indication of real-world coupling strength than 

Fig. 3 (a) Dispersion relations, (b) group velocities, and (c) propagation lengths for 

doped Si plasmonic resonators in isotropic vacuum (red dashed lines) and embedded 

in an intrinsic Si nanowire (solid blue lines). Stronger coupling between the 

resonators embedded in the nanowire leads to higher group velocities and 

propagation lengths, therefore the nanowire environment exhibits superior 

waveguide properties. 
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numerical simulations may provide. To illustrate how 

measurements may lead to different results than DDA 

simulations, we compared waveguide predictions using 

experimental Fourier-transform infrared (FTIR) spectroscopy 

measurements to predictions using DDA simulations for the 

same resonator properties and geometries as discussed in the 

previous section.
22

 The resulting dispersion relations and 

propagation lengths are shown in Fig. 4a and 4b, respectively. 

 Although measurements and simulations yielded similar 

inputs for the dispersion model (a = 1.34, [� = 0.0886, �� = 

3.93e10
14

 rad/s, � = 1.16e10
14

 rad/s from FTIR measurements 

and a = 1.70, [� = 0.106, �� = 4.01e10
14

 rad/s, � = 1.16e10
14

 

rad/s from DDA simulations), we see from Fig. 4 that the 

differences are enough to cause substantial variation in 

waveguide properties. Stronger coupling in the DDA case 

causes a steeper dispersion and a maximum propagation 

length about double that predicted from the FTIR case. 

Because the input parameters for the DDA calculations were 

selected to match the experiments, the differences in Fig. 4 

suggest that nonidealities in the growth or measurement 

processes (e.g., inhomogeneous broadening due to a 

distribution of nanowire diameters and thus resonator aspect 

ratios) are responsible for about a 50% reduction in peak 

propagation length. These differences highlight the 

importance and usefulness of utilizing experimental spectral 

response measurements, when possible, to predict the 

waveguide properties. 

 

Dependence on Resonator Properties and Spacing 

DDA simulations are useful to quickly evaluate different 

materials, geometries, and properties of resonator 

waveguides, even though they may not capture the 

nonidealities that exist in real devices. We performed DDA 

simulations on resonators with different dopant 

concentrations, aspect ratios, and spacings to elucidate the 

impacts of these parameters on waveguide performance. 

Fig. 4 (a) Dispersion relations and (b) propagation lengths modelled using inputs 

from FTIR spectroscopy measurements (red dashed lines) and from DDA simulations 

(blue solid lines). Although the same dopant concentrations and geometries are used 

in both cases, nonidealities of the physical resonators cause them to exhibit different 

dispersive behaviour and shorter propagation lengths than the simulated resonators.

Fig. 5 Impact of resonator separation distance on propagation length for different 

(a) aspect ratios and (b) dopant concentrations. The largest maximum propagation 

lengths are obtained for large aspect ratios and high dopant concentrations at small 

resonator spacings. 
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Starting with the baseline properties of �v  = 3e10
20

 cm
-3

, [f = 

0.8, and a diameter of 150 nm, we varied the spacing for 

different values of �v and [f while holding other properties 

constant. The resulting maximum propagation lengths are 

shown in Fig. 5a for different aspect ratios and Fig. 5b for 

different dopant concentrations. 

 Several interesting trends can be seen by examining Fig. 5. 

First, we observe the known effect that a larger spacing 

between resonators results in lower propagation lengths 

regardless of the other resonator properties. This is because 

the benefits of lower loss with larger spacing are always 

outweighed by a the exponentially decreasing coupling 

strength with larger spacing.
31

 However, the anisotropic 

nanowire environment shifts all curves to longer propagation 

lengths than would be obtained in an isotropic environment. 

Second, we see in Fig. 5a that higher aspect ratios lead to 

longer propagation lengths for the same resonator spacing. 

This is somewhat surprising, considering low aspect ratios 

result in high decay length scaling factors, which is typically 

associated with high coupling strength.
22

 Larger aspect ratios 

are also associated with a substantial increase in [� and a 

decrease in _/` in the plasmon ruler equation, which together 

drive a large absorption peak shift corresponding to a high 

coupling strength. Third, Fig. 5b shows that a higher dopant 

concentration causes larger propagation lengths for the same 

resonator spacing. In this case, the higher charge density 

results in stronger electric fields associated with the plasmon 

oscillation. This increases both a and [� in the plasmon ruler 

equation, and the enhanced coupling strength is enough to 

outweigh the negative effects of stronger damping with 

increased dopant concentration. A final important feature of 

Fig. 5b to note is that the curve for the highest dopant 

concentration, �v  = 1e10
21

 cm
-3

, has a lower limit for spacing 

of about 50 nm, while the other cases all contain data down to 

about 10 nm spacing. This is because, for this dopant 

concentration, below 50 nm the dispersion curve becomes so 

steep that group velocities exceed the speed of light in 

intrinsic Si, as shown in Fig. S3 of the ESI†. These steep 

portions of the dispersion were removed from the data to 

avoid inflated propagation lengths, but they should be 

examined carefully in future work to determine their origin 

and significance. 

 

Outlook and Future Work 

The proposed absorption spectra method to predict dispersion 

characteristics offers two opportunities to advance sub-

diffractional waveguide performance. First, the ability to 

quickly simulate absorption and scattering spectra with readily 

available code such as DDSCAT, in conjunction with our model, 

means that different resonators and environments may be 

efficiently tested and optimized for desired waveguide 

properties. This process may be performed for arbitrarily 

complex resonator geometries and environments, with the 

only limitation being computation of the absorption and 

scattering from pairs of resonators. Second, the ability to use 

experimental spectral response data for two coupled 

resonators to calculate the dispersion allows any nonidealities 

or other physical system effects to be captured in the model. 

Using both experimental and simulation data may allow 

researchers to quantify the impact of experimental defects or 

other features not included in simulations. 

 A future area of improvement for the model is to develop a 

better understanding of dispersion behaviour for resonators 

with very strong coupling. As discussed in the previous section, 

this results in excessively steep dispersion relations at small 

frequencies and wavevectors. It is difficult to analyse our 

model in these regions because analytical comparisons are not 

available. The system we used for validation of our model, 

nanoparticle chains in the dipolar limit, does not have strong 

enough coupling to create these very steep dispersions. More 

complex electromagnetic numerical simulations may be able 

to address this open question. 

 The resonators investigated in this work, plasmonic doped 

semiconductors, may present interesting opportunities to tune 

and control waveguide behaviour due to their many adjustable 

characteristics. In addition to the role of aspect ratio and 

spacing examined here, more complex geometrical features 

can be investigated.
22, 44

 In the case of semiconductors, it is 

also possible to actively tune plasmon resonances via electric 

field
45, 46

 or light illumination,
47

 which could allow active 

modulation of waveguide performance. While doped Si was 

examined here, resonators made from other III-V 

semiconductors with lower damping rates
48

 could significantly 

increase waveguide propagation lengths,
49

 and polar III-V 

semiconductors could offer waveguiding by SPhPs instead of 

SPPs.
21

 Additionally, the potential for high fabrication 

throughput via bottom-up synthesis holds promise for much 

simpler and lower-cost waveguides than top-down synthesized 

waveguides may allow. Bottom-up synthesis also provides 

access to structures that may not be fabricated through top-

down methods, such as hybrid III-V/IV nanowires.
50

 

 Although we have focused on the waveguide 

characteristics of group velocity and propagation length in this 

work, future investigations will examine thermal energy 

transport in analogous waveguides. Low-energy resonances 

and low damping rates could enable thermal excitation of 

propagating polariton modes, allowing arrays of nanowire 

waveguides to serve as high thermal conductivity thermal 

interface materials or guides for near-field thermal radiation. 

These applications would also benefit from the scalability 

available with bottom-up synthesis, as large-area devices are 

required for most thermal applications. 

Conclusions 

We develop a methodology to predict the sub-diffractional 

waveguide performance for chains of SPP- or SPhP-supporting 

nanoscale resonators in arbitrary nonhomogeneous 

environments using experimental or simulated spectral 

response data. Our method presents opportunities to 

analytically examine the dispersion relations, group velocities, 

and propagation lengths for waveguides that were not 

accessible through previous methods. Application of our 
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method to doped Si plasmonic resonators embedded in 

intrinsic Si nanowires shows that propagation lengths can be 

increased by up to an order of magnitude compared to the 

same resonators in an isotropic vacuum. We also show that 

results differ when using simulated and experimental spectra, 

which allows the effect of non-idealities present in physical 

systems to be quantified. The highest propagation lengths are 

found for large aspect ratios and high dopant concentrations 

at small resonator spacings. Future work should examine other 

materials, geometries, and methods to actively tune 

waveguide performance as well as evaluate the ability to 

transport thermal energy. 
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