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Design, System, Application

The ability of a nanocar to move on a surface is determined by its molecular design. Therefore, 
understanding the underlying design parameters is crucial to building nanocars with controlled motion. 
Currently, the key features in nanocar design are determined empirically with tedious experiments 
including lengthy organic syntheses and scanning tunneling microscopy (STM) measurements. In this 
study, we investigate different computational strategies for quickly predicting the diffusion of nanocars 
on surfaces. We highlight two different methods to estimate diffusion behaviors and timescales. We hope 
these methods will be helpful to test different molecular designs, highlight promising candidates, and 
understand the key features for nanocar design.
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Abstract

Nanoscale devices and machines that can be externally controlled or programmed promise revolutionary 
technological improvements. One example of such machines are nanocars, which are organic 
supramolecular structures (typically between 200–2,000 Da) designed to achieve controlled molecular 
motion on atomically smooth surfaces. Spurred by a recent global competition where such nanocars had 
to race each other, interest in this nascent area has recently increased. However, the design space of 
nanocars is large, and a thorough understanding of how their structure affects their motion on surfaces is 
lacking. In this work, we investigated the diffusion of nine large organic molecules on a Cu (110) surface 
using classical simulation methods and transition state theory (TST). We find that, as expected, these 
molecules tended to diffuse more slowly as their molecular weight and attraction to the surface increases. 
However, these two parameters do not give a complete picture of surface diffusion. Thus we defined a 
structural parameter, elevation weighted density, based on the geometry of the molecule that interacts 
with the surface. We show that this parameter is a good predictor of surface diffusion, as demonstrated 
by its high rank correlation with TST free energy barriers and with diffusion coefficients calculated using 
classical simulations. We further discuss design strategies to tune the diffusion performance of nanocars. 

Design, System, Application

The ability of a nanocar to move on a surface is determined by its molecular design. Therefore, 
understanding the underlying design parameters is crucial to building nanocars with controlled motion. 
Currently, the key features in nanocar design are determined empirically with tedious experiments 
including lengthy organic syntheses and scanning tunneling microscopy (STM) measurements. In this 
study, we investigate different computational strategies for quickly predicting the diffusion of nanocars 
on surfaces. We highlight two different methods to estimate diffusion behaviors and timescales. We hope 
these methods will be helpful to test different molecular designs, highlight promising candidates, and 
understand the key features for nanocar design.

TOC Graphic

Page 2 of 13Molecular Systems Design & Engineering

mailto:wilmer@pitt.edu


Introduction

Understanding and controlling molecular motion on surfaces is essential for the bottom-up 
construction of nanoscale machines.1–4 Such machines are commonly utilized in cells to transport 
molecular cargo: enzyme molecules are moved along protein filament tracks converting chemical energy 
into mechanical work.5 A class of artificial molecular machines, nanocars, have been studied to understand 
and control molecular motion on metal surfaces. From the initial design with fullerene wheels in 20056 to 
more advanced designs with rotatable molecular wheels,7 various strategies have been employed to 
achieve better control over the diffusion process.8–10 More recently in 2017, the world’s first ever nanocar 
race was organized where six teams raced their molecular machines on a 100 nm track.11 As highlighted 
by the contestants, molecular design played a crucial role in controlling the motion of the nanocar.12–14 
Although, substantial effort has been put into understanding key features that affect nanocar diffusion, 
only a limited number of molecular designs have been tried so far and a thorough understanding of the 
relevant design parameters is still lacking. As discussed by the competitors as well as the organizers of the 
nanocar race, a better understanding of the key features that affect nanocar motion is required and 
computational methods can be helpful for this purpose.12,13 A key question, also asked when designing 
“macrocars,” is how to add weight while maintaining or increasing speed (i.e., the diffusion coefficient)?

In the broadest definition, nanocars are simply large molecules designed to have fast surface 
diffusion (with or without external stimuli). Previously, several experimental studies were employed to 
study the diffusion of large molecules on metal surfaces. From those studies a few strategies have been 
shown to greatly influence diffusion, such as molecular functionalization3,15 and manually adjusting the 
orientation of the molecule with respect to the substrate lattice with a scanning tunneling microscope 
(STM) tip.2 Schunack et al. studied the diffusion of decacylene (DC) and hexa-tert-butyldecacyclene 
(HtBDC) using time-resolved STM images and found out that long jumps spanning multiple lattice spacings 
were the dominant type of diffusion as opposed to conventional surface diffusion described by random 
jumps between nearest neighbor sites. Moreover, they demonstrated that the molecular diffusion rate 
can be tailored by raising the molecule from the surface by tert-butyl spacer groups resulting in a diffusion 
constant higher by 4 orders of magnitude. Similarly Sun et al. studied the influence of tert-butyl spacer 
groups on the mobility of organic molecules on a Cu(110) surface.15 Conversely, they found that adding 
tert-butyl groups lowered the mobility of the molecule even compared to a higher molecular weight 
molecule. In their case tert-butyl group changed the adsorption geometry and locked the molecule to the 
surface highlighting the importance of the relation between the molecular 3D shape and surface 
geometry. Otero et al. investigated the diffusion of Violet Lander (VL, C108H104) on Cu(110) and showed 
that they can change the diffusion coefficient by two orders of magnitude by switching between different 
surface orientations.2 They achieved this by manipulating the molecular orientation with respect to the 
substrate lattice using STM. In the immobile configuration the VL molecule locks to the surface and it is 
kinetically stabilized at low temperature, which emphasizes the importance of considering the 
complementarity between the molecular and surface geometry.

Although these strategies discovered by trial-and-error, such as inserting tert-butyl spacers, are 
useful, a more systematic investigation of surface diffusion as a function of structure is needed to improve 
future nanocar designs. Akimov and co-workers have performed several studies to understand the motion 
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of nanocars on metal surfaces using rigid body molecular dynamics.16–19 They employed a simplified 
nanocar design and divided the molecule into rigid fragments as four wheels and a chassis. They showed 
that, in agreement with experimental results, nanocar mobility was initiated at temperatures higher than 
400 K and they observed rotational motion of the wheels at 500 K. In a later study they investigated the 
effect of an electric field (e.g. created by the STM tip) on the diffusion of the same structure.19 In order to 
mimic the electric field, they employed a custom charge transfer method (developed in a previous study18) 
and performed a series of rigid-body molecular dynamics simulations. They found that external electric 
fields can be used to drive nonpolar nanocars unidirectionally and that the rolling mechanism of the 
wheels is the dominant factor in the nanocar surface diffusion as opposed to a simple hopping and sliding 
mechanism. Ganji et al. studied the motion of a carborane-wheeled nanocar on graphene/graphyne 
surfaces using density functional theory.20 They calculated the activation energy for the motion of the four 
wheeled nanocar as 17.06 and 4.38 kcal/mol for graphene and graphyne surfaces, respectively. While 
these studies provide important qualitative insights about the motion of nanocars, they fall short of 
quantifying it by estimating a diffusion coefficient. We focused on identifying a simple model that could 
accurately predict the experimentally observed timescale of diffusion. Furthermore, we studied a diverse 
range of molecules to understand the key structural factors that affect diffusion, whereas previous studies 
focused on only a few molecules at a time. This broader investigation allowed us to discover a structural 
parameter, elevation-weighted-density, which shows good correlation with diffusion and can be used to 
quickly rank molecular designs.

Fig. 1 Molecular structures used in this study with chemical names where abbreviations and chemical formulae are 
given in brackets: (a) p-carborane [pC, C2H12B10]; (b) fullerene [C60, C60] (c) 4-trans-2-(pyrid-4-yl-vinyl) benzoic acid 
[PVBA, C14H11O2N]; (d) (Z)-1,6-di(napthalen-2-yl)hexa-3-en-1,5-diyne [DNHD, C26H16]; (e) (Z)-1,6-bis-(4-(tert-
butyl)phenyl)hexa-3-en-1,5-diyne [BtPHD, C26H28]; (f) tetrakis(phenylethynyl)ethane [TPEE, C34H20]; (g) decacylene 
[DC, C36H18]; (h) hexa tert-butyl decacylene [HtBDC, C60H66]; and (i) violet lander [VL, C108H104]. Color scheme is as 
follows: C (black), N (blue), O (red), B (pink), H (light gray).

In this work, we investigated the diffusion of 9 large organic molecules on a Cu (110) surface (see 
Figure 1). We chose these molecules to represent a wide variety of molecular geometries and to be able 
to compare our findings with available experimental studies of their motion (references for the studies 
are provided in the Methods section). We used classical molecular dynamics (MD) simulations and 
estimated self-diffusion coefficients by calculating mean squared displacements. We found that even 
though the correct timescales of diffusion cannot be achieved with typical MD simulations (i.e., without 
rare-event sampling techniques), we can still obtain certain useful information, such as the preferential 
crystallographic directions for diffusion on the surface. To obtain diffusion coefficients within the same 
orders of magnitude as experimental measurements, we then employed umbrella sampling and the 
weighted histogram analysis method (WHAM)21 to estimate free energy barriers for diffusion. Using the 
free energy profiles, we estimated hopping rates and self-diffusion coefficients using a transition state 
theory (TST) approach. We found that by tuning the surface-molecule interaction energetics and 
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employing the TST method we can obtain activation energies and self-diffusion coefficients that are in 
good agreement with experimentally observed values. Both methods predict the fastest and slowest 
molecules to be the same and even though the individual rankings varied slightly between different 
methods, the diffusion coefficients were found be highly correlated. We calculated a Spearman’s rank 
correlation coefficient of 0.93 and 0.90 between MD and TST diffusion coefficients for  and  [001] [110]
directions, respectively. Overall, we find that to optimize speed, for a given molecular weight, minimizing 
the molecule-surface interaction by elevating the body of the molecule with spacer functional groups is a 
good strategy, which is supported by empirical observations from past nanocar racers. To quantify this 
we proposed a metric, named elevation-weighted-density, to quickly rank molecular designs. We found 
that elevation weighted density is linearly correlated with the free energy barrier of diffusion calculated 
with the TST method. Furthermore, we reiterate that the complementarity between the molecular design 
and surface geometry is crucial.

Computational Methods

Structure generation. We selected a total of 9 molecules, namely: p-carborane;22 C60;23 PVBA;24 DNHD;15 
BtPHD;15  TPEE;15 decacylene;3 hexa tert-butyl decacylene;3 and violet lander2 (see Fig. 1) to represent a 
wide variety of molecular geometries and to compare our findings with available experimental studies of 
their motion. Molecular geometries were optimized using Kohn-Sham density functional theory at BP86-
D3/ Def2-SVP25–27 level of theory as implemented in ORCA.28 The Cu (110) surface was generated using 
ASE29 slab builder tool to a size of 39.1 x 41.5 x 5.5 Å consisting of 1400 atoms (see Fig. 2a). Molecular 
geometries and simulation configuration files are provided in the Supplementary Information.

Fig. 2 Representative simulation setup for HtBDC. (a) Top view - molecules are placed in the center of a 39.1 x 41.5 
Å Cu (110) surface. (b) Side view - each molecule is placed 5 Å above the surface. (c) For TST calculations the unit cell 
of a Cu (110) surface is divided into 936 grid points (26 points in  and 36 points in  directions) with a step [110] [001]
size of 0.1 Å. The unit cell has a size of 3.597 x 2.543 Å and it is shown with white lines. (d) Representative free energy 
barrier for the diffusion of HtBDC molecule in  direction obtained from WHAM analysis (more simulation details [110]
in SI).

Molecular Dynamics. Molecular dynamics (MD) simulations in the NVT ensemble at 300 K were 
performed with a timestep of 1 fs for a total of 10 ns using LAMMPS.30 20 sets of simulations were 
performed with different initial velocity distributions to improve statistical sampling. For each molecule, 
the center of mass was calculated at every 1 ps which was used to calculate the mean squared 
displacement (MSD) in both [110] and [001] directions to estimate 1D self-diffusion coefficients. A periodic 
simulation box of 39.1 x 41.5 X 40 Å was used for all simulations. The Cu (110) surface was placed at the 
bottom of the simulation box and the molecule was placed in the middle and 5 Å above the surface making 
sure the largest surface of the molecule is parallel to the metal surface (see Fig. 2). The surface atom 
positions were fixed during the simulations and nonbonded interactions between Cu atoms were 
neglected. All molecules were modelled as rigid bodies and a Lennard-Jones potential was used to model 
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vdW interactions with a cut-off radius of 12.5 Å. The force field parameters were adopted from universal 
force field (UFF) 31 and the Cu atom epsilon value was changed to 0.125 kcal/mol (instead of the original 
0.05 kcal/mol) to increase surface adsorption energy. More information about the calculation of the self-
diffusion coefficients and force field parameters are given in the Supplementary Information.

Transition State Theory. As the diffusion of large molecules are quite slow and time scales cannot be 
achieved with traditional MD simulations, we employed umbrella sampling and weighted histogram 
analysis method (WHAM)21 to calculate periodic free energy barriers for diffusion. We divided the 
orthogonal unit cell of a Cu (110) surface using 0.1 Å grid spacing for both  and  directions (see [110] [001]
Fig 2c). For each point on the surface (936 total), we placed the molecule at that point and constrained its 
motion in  and  directions in separate simulations using a spring with a constant of 200 [110] [001]
kcal/mol. The motion in the direction perpendicular to the surface was not constrained. We then let the 
molecule sample different configurations using the same simulation setup described above for the MD 
simulations with rigid molecules and a fixed surface. However, this time we scaled the mixed LJ epsilon 
parameter between the surface and the molecule atoms by 10 to further increase the adsorption energy 
in order to better approximate the experimentally observed activation energy of diffusion. Using WHAM 
analysis and Boltzmann averaging we finally obtained a free energy barrier for diffusion in both  and [110]

 directions. A representative energy barrier is provided in Figure 2d. After obtaining periodic free [001]
energy barriers we used dynamically corrected transition state theory method by Dubbeldam et al.32 to 
calculate the hopping rate ( ) and estimate 1D self-diffusion coefficient ( ). More details are given 𝑘𝐴→𝐵 𝐷𝑆

in SI.

We aimed to keep our modelling approach as simple as possible while capturing essential features 
of diffusion observed in the experiments. As the amount of detail that needed to be included in our model 
was not clear a priori, we started by employing a rigid body approximation. As shown later in this work, 
this simple model was able to capture several important experimentally observed trends in the diffusion 
of nanocars. Additionally, we increased the vdW interaction energy between the molecule and the surface 
to better approximate the experimentally observed activation energies and diffusion coefficients. We 
achieved this by changing the Lennard-Jones epsilon parameter with the rigid body approximation. For 
flexible force fields more parameters would need to be modified, hence increasing the complexity of the 
model (potentially hindering reproducibility). Finally, the computational cost is significantly reduced with 
this approach making it possible to quickly screen candidate molecular geometries. Consequently, 
configurational changes within the molecule due to surface adhesion were neglected. The effects of this 
simplifying assumption are further discussed in the results and discussion section.

Results and Discussion

We first investigated the diffusion of the molecules using classical MD simulations for the two 
primary directions of the Cu (110) surface namely,  and  (see Figure 2c). Per the surface [001] [110]
geometry it is energetically more favorable to diffuse along the  direction compared to  as [110] [001]
highlighted by experimental studies.2,3,15,23,24 In Figure 3, self-diffusion coefficients calculated from MD 
simulations are given for both directions. For all molecules the diffusion coefficient in  direction was [110]
higher than  direction in good agreement with experimental observations.2,3,15,23,24 Overall, the [001]
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diffusion coefficient gets smaller with larger molecular weight and higher surface adhesion for both 
primary directions investigated (Fig. 3a – d).  However, it is also evident that not all molecules follow this 
relation directly, such as the PVBA molecule suggesting that the molecular geometry plays an important 
role in the diffusion. For the BtPHD molecule the addition of tert-butyl groups resulted in a slower 
diffusion compared to TPEE, and DNHD molecules and TPEE molecule was found to be slower than DNHD 
in agreement with Sun et al.15 However, addition of tert-butyl groups in HtBDC molecule didn’t results in 
a faster diffusion compared to the DC molecule as reported by Schunack et al.3 Even though, in agreement 
with the experiments, we observed strong anisotropic diffusion for both of these molecules, our 
calculations did not rank these molecules the same way: DC molecule was found to be faster in our 
calculations than HtBDC molecule as opposed to Schunack et al. This difference in ranking might be caused 
by the assumed rigid geometry in our simulations, because the tert-butyl spacers in HtBDC are likely to 
undergo configurational change as they interact with the surface which might increase or decrease the 
diffusion according to the complementarity of the final geometry with the surface. In the case of BtPHD 
vs TPEE adding tert-butyl groups decreased the diffusion whereas in DC vs HtBDC tert-butyl addition 
resulted in a faster diffusion according to experimental observations. This suggests that to get a better 
representation of the adsorption, geometry configurational changes might need to be accounted for. 
Furthermore, the calculated diffusion coefficients for DC and HtBDC are in the range of 10-5 cm2/s which 
is approximately eight orders of magnitude higher than the experimentally observed values. This implies 
that the vdW interaction energy between the molecules and the surface is likely to be severely 
underestimated in our model. Even though we increased the UFF epsilon parameters five-fold to amplify 
surface adsorption energy, a further increase is required to approximate experimental energetics. 
However, estimating diffusion via classical MD simulations with such high interaction energies, without 
using a rare-event sampling technique, would be computationally infeasible. As the experimentally 
observed hopping events are very rare, it would require excessive computational time to have statistically 
significant hopping events during the simulations. However, even though the absolute timescale of the 
diffusion coefficients does not represent the experimental conditions, the relative ranking of diffusion 
across the 9 molecules, as well as their diffusion along different crystallographic directions can be usefully 
investigated. 
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Fig. 3 Diffusion coefficient calculated using MD simulations in  and  directions: (a) molecular weight vs  [001] [110]
 (b) vdW energy vs  (c) elevation weighted density vs  (d) molecular weight vs  (e) vdW energy 𝐷[001] 𝐷[001] 𝐷[001] 𝐷[110]

vs  (f) elevation weighted density vs .𝐷[110] 𝐷[110]

As molecular weight and vdW energy do not give a complete picture of diffusion we also propose 
a structural parameter, named elevation weighted density, based on molecular adsorption geometry (see 
Figure 4). The calculation of this parameter is discussed in Supplementary Information. As seen in Figure 
3e and 3f the self-diffusion coefficients get smaller as the elevation weighted density increases. Moreover, 
the elevation weighted density shows good correlation with the diffusion coefficients as evident from the 
Spearman’s rank correlation coefficient of -0.917 (p: 0.001) for both  and . One possible reason 𝐷[001] 𝐷[110]

for this is that this parameter includes effect of both molecular weight and surface geometry. 

Fig. 4 Elevation weighted density calculation for HtBDC. Starting from the bottom most part of the molecule, number 
of atoms are counted with 0.05 Å discrete steps and using a cut-off radius of 1 Å.

With the purpose of capturing the realistic time scale of diffusion, we calculated free energy 
barriers for the diffusion along the  and  directions and estimated self-diffusion coefficients [001] [110]
(see Figure 5). The activation energies for the average free energy profiles are given in Figure 5b and 5e 
for  and  directions, respectively. As seen in the figure, the free energy barrier for diffusion is [001] [110]
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almost four times higher for the  direction compared to the  direction supporting experimental [001] [110]
observed anisotropic diffusion.2,3,15,23,24 Consequently, this higher energy barrier results in a smaller 
diffusion coefficient for the  direction as seen in Figure 5a and 5d. By the definition of TST, the self-[001]
diffusion coefficient is exponentially related to the energy barrier, therefore the diffusion coefficients 
calculated here span across a much higher range (8 orders or magnitude for  and 40 orders of [110]
magnitude for  directions). As a result, the anisotropy of diffusion is much higher compared to [001]
results obtained from MD simulations. Overall, similar to MD simulations the diffusion coefficients get 
smaller and the activation energies get higher with increasing molecular weight. We find that even though 
the individual rankings of diffusion coefficients were not identical between the two methods, both 
methods predicted the fastest and slowest molecules to be PVBA, and VL, respectively. Overall, the 
diffusion coefficients calculated with the two methods were found be highly correlated as evident by 
Spearman’s rank correlation coefficients of 0.93 (p: 0.0002) and 0.90 (p: 0.0009) for  and  [001] [110]
directions, respectively. Furthermore, ranking between DNHD, TPEE, and BtPHD molecules were found to 
be the same as MD simulations in agreement with the experimental findings meaning addition of tert-
butyl groups slowed surface diffusion. This also applied to DC and HtBDC molecules where addition of 
tert-butyl groups again resulted in slower diffusion for the HtBDC molecule in line with the MD simulations 
but opposing experimental observations. As rigid body approximation was also employed in TST 
simulations it is somewhat expected to see the same ranking with this method. We believe more 
sophisticated methods that account for the intramolecular reconfiguration during surface adhesion 
should be employed for more sensitive ranking. Alternatively, multi rigid body simulations or coarse 
graining methods could also be useful for this purpose.

Fig. 5 Transition state theory results: (a) molecular weight vs  (b) molecular weight vs free energy barrier in 𝐷[001]

 direction (c) elevation weighted density vs. free energy barrier in  direction (d) molecular weight vs  [001] [001] 𝐷[110]

(e) molecular weight vs. free energy barrier in  direction (e) elevation weighted density vs. free energy barrier [110]
in  direction.[110]

Page 9 of 13 Molecular Systems Design & Engineering



As the team with the fastest molecule in the nanocar race, Simpson et al. highlighted several key 
features to improve velocity, maneuverability and functionality of nanocars: 1) using low molecular weight 
nanocars to decrease surface adhesion and make it easier to deposit under vacuum, 2) using large enough 
wheels to lift the chassis off the surface and using as few wheels as possible to minimize surface attraction, 
3) having rigid chassis and short axles to prevent the chassis from sagging towards the surface to again 
minimize surface-chassis attraction.13 Overall, the key factor for improving diffusion of a given molecular 
weight is to minimize surface attraction by rational molecular design. We believe elevation weighted 
density is a good quick estimate of nanocar performance as it takes into account the key features 
highlighted by these nanocar racers. By definition, it takes both molecular weight and molecular geometry 
into account. Moreover, as the calculation is performed on the surface adsorption geometry the 
configurational changes of the molecule is also introduced. This is supported by a Spearman’s rank 
correlation coefficient of 0.883 (p: 0.002) and 0.733 (p: 0.025) between elevation weighted density and 
the free energy barrier of diffusion for the   and  directions, respectively (see Figure 5c,e).[001] [110]

Conclusion

In summary, we employed classical MD simulations and TST calculations to predict surface 
diffusion of large organic molecules. We found that using a relatively simple and computationally 
inexpensive calculation i.e. rigid body MD simulations, it is possible to estimate the relative diffusion 
between different molecules. Moreover, we showed that the diffusion gets slower with higher molecular 
weight and stronger molecule-surface interaction energy. We suggested a geometric parameter, i.e. 
elevation weighted density, which can be easily calculated using the surface adsorption geometry of the 
molecules. We show that this parameter could be used to quickly rank diffusion of different molecular 
designs. Furthermore, we show that it is possible to employ a more computationally expensive transition 
state theory (TST) approach to estimate the timescale of diffusion. This includes increasing vdW 
interactions between the molecule and the surface and calculating free energy barrier for diffusion with 
umbrella sampling of rigid MD simulations. Overall, as highlighted by nanocar racers we suggest 
minimizing the surface adhesion energy is a good strategy to improve diffusion for a given molecular 
weight. One way to achieve this is to elevate the bulk of the molecule from the surface by using various 
molecular components (e.g. wheels).

Careful design of the molecular structure and selection of the appropriate surface can enable 
precise manipulation of the molecular diffusion. We believe these tools can be used to advance design of 
molecular structures to control their motion and play an important role in the design of nanocars. Large 
screening studies can be employed and molecular designs can be ranked quickly using elevation weighted 
density or quick rigid MD simulations. After identifying promising designs, more rigorous calculations can 
be performed to rank different molecular designs more accurately. 
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Brief (<20 word) summary: 

The diffusion of nine “nanocars” are studied on a Cu (110) surface using molecular simulations. 
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