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Biological matter is often compartmentalized by soft membranes that dynamically change their
shape in response to chemical and mechanical cues. Deformable soft-matter-based nanoscale
membranes or nanocontainers that mimic this behavior can be used as drug-delivery carriers that
can adapt to evolving physiological conditions, or as dynamic building blocks for the design of
novel hierarchical materials via assembly engineering. Here, we connect the intrinsic features of
charged deformable nanocontainers such as their size, charge, surface tension, and elasticity with
their equilibrium shapes for a wide range of solution conditions using molecular dynamics simula-
tions. These links identify the fundamental mechanisms that establish the chemical and materials
design control strategies for modulating the equilibrium shape of these nanocontainers. We show
that flexible nanocontainers of radii ranging from 10 - 20 nm exhibit sphere-to-rod-to-disc shape
transitions yielding rods and discs over a wide range of aspect ratio λ (0.3 < λ < 5). The shape
transitions can be controlled by tuning salt and/or surfactant concentration as well as material
elastic parameters. The shape changes are driven by reduction in the global electrostatic energy
and are associated with dramatic changes in local surface elastic energy distributions. To illustrate
the shape transition mechanisms, exact analytical calculations for idealized spheroidal nanocon-
tainers in salt-free conditions are performed. Explicit counterion simulations near nanocontainers
and associated Manning model calculations provide an assessment of the stability of observed
shape deformations in the event of ion condensation.

1 Introduction
Deformable soft-matter-based nanocontainers offer unprece-
dented opportunities for applications in nanomedicine and de-
veloping bio-inspired reconfigurable materials. Soft-matter-based
nanosystems such as polymeric nanomembranes, micellar vesi-
cles, and protein nanocages can serve as drug-carrying contain-
ers that dynamically change shape, adapting to evolving physi-
ological conditions1,2. Experiments have shown that the shape
of these nanoparticles modulates their biodistribution and cellu-
lar uptake, ultimately affecting the therapeutic response1,3–10.
For example, recent research has shown that rod-shaped mi-
celles have longer circulation times than their spherical coun-
terparts11, and disc-shaped nanoparticles demonstrate higher in
vivo targeting specificity for cells expressing adhesive receptors
than similarly-sized spherical nanoparticles12. Generally, endo-
cytosis studies have shown uptake sensitivity to rod and disc-like
morphologies13–15.
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Shape-changing nanoparticles and microparticles also offer the
prospects of being utilized as dynamic building blocks for the
design of new materials via assembly engineering16–18. These
deformable nanoparticles offer access to unique assembly path-
ways inaccessible to static building blocks, and are expected to
yield novel hierarchical structures. Such structures can be self-
assembled using a variety of strategies and control mechanisms
extensively developed to assemble rigid building blocks for many
applications including photonics and catalysis19–24.

Experimental advances in nanotechnology and materials chem-
istry have revolutionized our ability to fabricate nanoparticles
with exquisite control of surface properties25–27. More recently,
nanoparticles, including hollow nanocontainers, with the ability
to change shape in response to environmental cues have been
synthesized28–31. To connect experimental advances in surface
property regulation to the design of deformable nanocontainers,
we need to establish the link between the nanocontainer sur-
face physicochemical properties and their energetically-favored
shapes. Associated fundamental mechanisms are especially lack-
ing for the design of nanocontainers that change shape by altering
the nanocontainer electrostatic properties or surface tension.

Changing the shape of nanoscale containers entails bending
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and stretching it, and the associated energy costs form the elastic
components of the free energy of the container. Theoretically,
shape manipulation in uncharged, deformable membranes has
been explored by topological defects32–34, compression, and the
use of surface inhomogeneities35,36. A key goal has been to find
the low-energy conformations of these soft elastic membranes un-
der different geometric and material constraints. When the mem-
brane is charged, it is possible to compensate for the increase in
elastic energy associated with the shape deformation by signifi-
cantly lowering the electrostatic free energy37–39. However, due
to the complexity of the ensuing problem, the interplay between
electrostatic interactions and the structure of charged deformable
membranes is far less understood.

Early work on charged elastic membranes (shells) mainly fo-
cused on mapping a charged, deformable membrane to an un-
charged, deformable membrane with charge-renormalized elastic
parameters40–42. Recent studies have modeled Coulomb interac-
tions explicitly to accurately describe the nonlinear coupling be-
tween elastic and electrostatic forces in charged nanoscale con-
tainers where the surface charge density can assume high values
(& 0.1e/ nm2)38,43,44. Using such models, it has been shown that
an ionic shell, where positive and negative charges populate the
surface, lowers its energy by taking a faceted (icosahedral) shape
with the same surface area43.

Using a similar coarse-grained model that included explicit
Coulomb and elastic forces, we previously demonstrated that
shape deformation occurs under a volume constraint with
symmetry breaking along one or more axes to form disc or
concave bowl conformations, respectively39. By virtue of
the electrostatics-driven deformation, environmental (solution-
based) control strategies (e.g., tuning salt concentration) as well
as materials design approaches (e.g., tuning surface charge) were
demonstrated as a feasible means of controlling container shape
and changing preferences for bowl-like or disc-like morphologies.
Effects of ion condensation were analyzed using a two-state Man-
ning mean-field model, which supported the feasibility of the ob-
served shape transitions39,44.

Building on our previous studies, here we design a mini-
mal coarse-grained model of a flexible nanomembrane repre-
sentative of monolayer vesicles and protein nanocages in elec-
trolyte solution to establish the links between surface properties
of uniformly-charged, volume-conserving deformable nanocon-
tainers and their equilibrium shapes by using molecular dynam-
ics (MD) simulations39,44. We systematically explore the design
space generated by the nanocontainer size, surface charge, bend-
ing rigidity κb, stretching constant κs, and the bulk solution salt
concentration and interfacial surface tension to show that flex-
ible nanocontainers of radii ranging from 10 - 20 nm exhibit
sphere-to-rod-to-disc shape transitions. Rods and discs of vary-
ing aspect ratio λ spanning a wide range of 0.3 < λ < 5 are ob-
served. The shape changes can be controlled by tuning surface
tension (≈ 0− 10 dynes/cm) and/or salt concentration (0.5− 50
mM) as well as material elastic parameters (κb,κs ∈ (1,100)kBT ).
The shape changes are driven by reduction in the global elec-
trostatic energy and are associated with dramatic changes in lo-
cal surface elastic energy distributions. To illustrate the shape

transition mechanisms, exact analytical calculations for idealized
spheroidal nanocontainers in salt-free conditions are performed.
Explicit counterion simulations near nanocontainers and associ-
ated Manning model calculations provide an assessment of the
stability of observed shape deformations in the event of ion con-
densation.

Results of the investigations expand upon both the solution-
based control strategies and materials design strategies for devel-
opment of shape-adaptable nanocontainers, and show that shapes
of similar aspect ratios can be obtained for different nanocon-
tainer sizes. Surface tension of the nanocontainer serves as
both a solution-based control and materials design control strat-
egy, in that it can be tuned by changing the bulk surfactant
concentration or by modifying the hydrophobic surface chem-
istry of the nanocontainer. In addition to exploring the depen-
dence of shapes on chemical controls, the material design sub-
space spanned by stretching and bending elastic moduli is also
explored, showing that controlling the elastic properties of the
nanocontainer can modulate the preference for rod/disc mor-
phologies. These fundamental studies provide initial insights into
the design of deformable nanocontainers for nanomedicine appli-
cations and the synthesis of dynamic building blocks for applica-
tion in electrostatically-controlled assembly engineering19,20,45.

2 Model and Simulation Methods

2.1 Coarse-grained triangulated-network model

Fully atomistic particle-based models that explicitly account for
each atom are important in studying nanocontainer surface inter-
actions with small molecules and associated short-time dynamical
processes. However, for simulation of shape deformations of large
nanocontainers (of radius & 10 nm) considered here, this descrip-
tion is unfeasible. Coarse-grained particle-based models that em-
ploy effective potentials informed by atomistic simulations and
experimental data offer a feasible alternative.

Suppressing atomistic details, the nanocontainer surface is rep-
resented as a thin elastic membrane consisting of Nv hard, spheri-
cal beads (vertices) connected by Ne flexible springs (edges), con-
stituting faces of the discretized membrane mesh following the
standard physical representation in this class of models46–51. For
a spherical nanoparticle mesh of a given size, the discretized mesh
point density is held constant, yielding approximately Nv ≈ 1000
points on a mesh of radius R = 10 nm. Each vertex is associ-
ated with a charge q = Q/Nv where Q is the total effective surface
charge. Electrostatic effects between vertices are modeled using
the screened Coulomb (Yukawa) interactions.

The energy characterizing the discretized nanocontainer mem-
brane is given by Equation 1 and includes the total bending en-
ergy (first term), stretching energy (second term), electrostatic
energy (third term), and the surface energy associated with a fi-
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nite membrane surface tension (fourth term):

H =
κb

2 ∑
l∈E
|~nl1 −~nl2 |

2 +
κs

2R2 ∑
l∈E

(|~rl1 −~rl2 |−al)
2

+
lBq2

2
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∑
i=1

j=Nv

∑
j 6=i

e
−|~ri−~r j |

λD

|~ri−~r j|
+σA ∑

k∈F
Ak.

(1)

In Equation 1, κb is the bending rigidity, κs is the stretching con-
stant, R is the radius associated with the spherical conformation
for uncharged and rigid membrane, al is equilibrium length of
edge l, lB is Bjerrum length, q is vertex charge, λD is Debye screen-
ing length, and σA is surface tension. ~n denotes the normal vector
associated with a face, ~r denotes the position vector of the ver-
tex, and Ak denotes the area of face k. Following other theoretical
studies52–54, the inclusion of the surface tension energy term in
the total Hamiltonian inhibits large increase in area upon shape
deformation. All the four energy components are expressed in
units of kBT , where kB is Boltzmann’s constant and T = 298 K is
room temperature.

Bending energy depends on the normals, ~nl1 and ~nl2 , to the
faces opposite each edge l and is measured relative to the pla-
nar conformation, which is assigned zero (lowest) bending en-
ergy. In the current model, there is thus no inherent curvature
to the membrane components. Stretching energy between neigh-
boring pairs of vertices is measured relative to the equilibrium
initial spherical conformation, and is characterized by the Young’s
modulus Y = κs/R2; as the sphere is of the lowest area for a
given volume, it is of zero (lowest) stretching energy. Electro-
static energies are computed between all pairs of vertices (~ri,~r j for
i 6= j) as screened Yukawa potentials, where the screening length
λD = 1/

√
8πlBI depends upon the solution ionic strength I (in

Molar) that is related to the salt concentration cs via the equation
I = 1/2cs(z2

++ z2
−). Here it is assumed that we have only one type

of salt with ions of valencies z+ and z−; the equation simplifies
to I = cs for monovalent salt considered in this work. All models
employ water as the implicit solvent making lB ≈ 0.7 nm. Finally,
the surface tension energy contribution from each face is consid-
ered to be proportional to the area Ak associated with the face k,
with the proportionality constant taken as the surface tension σA.

We constrain the system using a SHAKE-RATTLE algorithm to
conserve the volume during shape deformations55. The volume
constraint can be representative of an invariant amount of cargo
in the nanocontainer and/or (closed) membranes that do not ex-
change significant matter with the environment. The volume is
constrained to that of the initial spherical conformation. The un-
deformed spherical conformation has the smallest area and thus
highest electrostatic energy, allowing electrostatic energy mini-
mization to drive deformation under the volume constraint.

2.2 Shape design space

Parameters R,Q,cs,σA,κb,κs describing the above model Hamil-
tonian span the shape design space and serve to represent a min-
imal model of a nanocontainer investigated for low-energy equi-
librium shapes. A summary of the parameter ranges investigated
in this work is provided in Table 1.

Parameter Minimum Maximum
Radius (R) 10 nm 20 nm
Effective Charge (Q) 150e 1050e
Salt concentration (cs) 0.5 mM 50 mM
Surface Tension (σA) 0 dyn/cm 10 dyn/cm
Bending Modulus (κb) 1 kBT 40 kBT
Stretching Modulus (κs) 20 kBT 100 kBT

Table 1 Shape control parameters investigated in this work along with
the range of values explored. Parameters include the nanocontainer
radius and effective charge (R,Q), the solution salt concentration (cs),
the surface tension of the nanocontainer-solution interface (σA), and the
bending and stretching moduli of the nanocontainer (κb,κs).

Nanocontainers of size in the range of 10 ≤ R ≤ 20 nm are
investigated. This size range is typical of micelles and spheri-
cal viruses (e.g., Hepatitis B Virus). Larger nanocontainers re-
quire greater computational resources because of larger mesh size
needed to represent the continuum membrane model. Transitions
occur using effective surface charges typical (or less than) those
of micelles, viruses, and polymeric nanoparticles are adopted,
150e ≤ Q ≤ 1050e20,45,56,57. Surface tension values are chosen
in the range of 0 < σ < 6 dynes/cm, and represent typical weak
hydrophobic interactions58 between the coarse-grained surface
patches associated with the nanocontainer membrane. The broad
range of size, charge, and tension parameters provide a suffi-
ciently wide spectrum of shapes and transition control strategies
for exploring the underlying mechanisms of shape deformation
in charged, deformable nanocontainers. The material design pa-
rameters, bending and stretching elastic moduli, are swept over a
similar wide range of values. These elastic features can be tuned
by varying ligands functionalized on the nanocontainer surface
(such as mechanically reinforcing proteins) and solution condi-
tions such as reducing agents inhibiting the formation of covalent
disulfide bonds between components of the nanocontainer sur-
face59–61. We will invoke wherever necessary a single parameter:
the Foppl-von-Karman (FvK) number defined as the ratio of the
stretching to bending moduli, γ = Y R2/κb = κs/κb, to ease the
discussion of the elastic energy contributions associated with the
shape deformations. Over 6000 simulations spanning the param-
eter regimes highlighted in Table 1 were launched to obtain the
data necessary to reveal shape control mechanisms.

2.3 Molecular dynamics based simulated annealing
The energy H characterizing the nanocontainer surface is a func-
tion of the set of vertex position vectors ~ri which parametrize
the shape of the shell. The equilibrium shape corresponds to
the minimum of H subject to geometric constraints. The non-
linear coupling between the nanocontainer shape and its elec-
trostatic, elastic, and surface tension energies needs to be eval-
uated self-consistently in order to accurately predict equilibrium
shapes as a function of material and environmental control pa-
rameters. This constrained energy minimization is carried out us-
ing a molecular dynamics (MD)-based simulated annealing proce-
dure described in our earlier work39. The method is accelerated
using an OpenMP/MPI hybrid parallelization technique reducing
the computing time for a typical simulation of a nanocontainer
discretized with Nv ≈ 1000 vertices from 40 to 4 hours by using a
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32-fold greater number of cores. This acceleration enables thou-
sands of simulations and an extensive exploration of the shape
design space.

MD-based simulated annealing begins at a fictitious tempera-
ture high enough to allow the nanocontainer surface to deform
and explore the energy landscape, after which kinetic energy is
gradually removed from the system. This allows gradual conver-
gence towards the fluctuating shapes of low energy (most prob-
able shapes), and eventually the equilibrium shape. In an exper-
imental setting at room temperature (without annealing), ther-
mal fluctuations are expected to occur around the simulation-
predicted low-energy (equilibrium) shape. In addition to pre-
dicting the equilibrium shapes of deformable nanocontainers and
yielding geometric information such as nanocontainer visualiza-
tions and area A that help identify shape change quantitatively,
the method yields thermodynamic information such as local en-
ergy distributions (e.g., elastic) on the nanocontainer surface that
correlate with shape transitions.

In quantifying shape change, coordinates of the triangulated
mesh are used to extract an approximate aspect ratio of the de-
formed nanocontainer. An ideal prolate spheroidal (rod-like) con-
formation is shown in Figure 1 to illustrate the definition of the
aspect ratio that is described in terms of its semi-principal axes
a,b,c. For rods and discs produced via the energy minimiza-
tion procedure in our simulations (which are not ideal prolate
or oblate spheroidal shells), the aspect ratio is computed via the
following process using Mathematica 12.062. The mesh coordi-
nates are imported and the geometric center (average of all coor-
dinates) is set to zero. The longest axis associated with the shape
characterized by the mesh (identified by the two vertices with the
greatest separation ri j) is aligned with the x-axis. Next, a subset
of the mesh points approximately in the x = 0 plane are selected.
The vertex within this subset that is farthest from the origin iden-
tifies the second longest shape axis, which is then aligned with
the y-axis. This process results in making the shortest axis of the
nanocontainer align approximately with the z-axis for the shapes
investigated. After these alignments, the semi-principal axes a,b,c
(Figure 1) are extracted as half of the maximal distance between
vertices along the associated shape axes x,y,z (note a≥ b≥ c). If
a > b ≈ c, the shape is classified as a rod and the aspect ratio is
computed as λ = a/c, and when a≈ b > c, the shape is classified
as a disc and the aspect ratio is computed as λ = c/a. In practice,
the classification follows the rule: if a− b > b− c, the shape is a
rod of aspect ratio λ = a/c > 1, otherwise the shape is classified
as a disc or sphere of aspect ratio λ = c/a≤ 1.

2.4 MD simulations of ions near nanocontainer surface

MD-based simulated annealing to optimize the nanocontainer
energy is performed using electrostatic interactions represented
as Yukawa potentials (the third term in Equation 1). These
interaction potentials treat the effects of ions surrounding the
nanocontainer implicitly. The condensation of counterions on
the nanocontainer surface may affect the electrostatics-driven
shape changes in deformable nanocontainers63. To verify persis-
tence of the predicted shapes and assess their stability, separate

Fig. 1 An ideal rod conformation (prolate spheroidal shell) whose sur-
face is defined by the equation x2

a2 + y2

b2 + z2

c2 = 1, with semi-principal axes
a,b,c aligned with the x,y,z axes respectively. Ideal rods and discs (oblate
spheroidal shells) have two semi-principal axes equal. For example, b= c
highlighted by the black lines, and the longer semi-principal axis a high-
lighted by the red. The aspect ratio of the rod is defined as λ = a/c > 1;
for the rod shown, λ = 2. Values of λ < 1 correspond to discs (λ = 1
for spheres). Extraction of approximate aspect ratios for rods and discs
observed in the simulations is discussed in the text.

post-optimization MD simulations are conducted wherein explicit
counterions are placed in a periodic cubic box enclosing an im-
mobile nanocontainer with a shape produced via the energy opti-
mization process.

The nanocontainer surface is more finely meshed with 4692
to 5592 mesh points, depending on the surface area, with each
point representing a counterion-sized spherical bead. Steric inter-
actions between ions, modeled as spherical particles of σc = 0.6
nm diameter, and the nanocontainer surface beads were mod-
eled using the standard purely-repulsive Lennard-Jones poten-
tial, ULJ(r) = 4((σc/r)12− (σc/r)6). A cutoff of 21/6σc is chosen
to speed up calculations. Electrostatic ion-ion and ion-bead in-
teractions are modeled using the Coulomb potential. Long-range
effects are treated using the PPPM solver to compute forces be-
tween periodic images of particles in k-space64. Coulomb inter-
actions between beads (mesh points) of the nanocontainer do not
affect the ion dynamics, and are excluded from evaluation to im-
prove efficiency. Simulations are performed using LAMMPS65

in an NVT ensemble at room temperature with volume set by
the packing fraction and nanocontainer size. Multiple values of
packing fractions are considered to probe the effect of changing
nanocontainer concentration on counterion condensation and ac-
curately evaluate the associated changes in shape stability.

On reaching equilibrium, Diehl’s method for assessing the frac-
tion of ions condensed on the nanocontainer surface (αc) is em-
ployed66. The number of condensed ions is computed by compar-
ing the electrostatic energy of ions binding to the nanocontainer
surface (Uei ) and the kinetic energy with which they might escape
(KEi ): if Uei ≥ χKEi , the ith ion is considered condensed, where
typically χ = 4/366. The ensemble average of the number of con-
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densed ions (Nc) is computed by employing sufficiently uncorre-
lated samples post-equilibration. Using Nc, the fraction of con-
densed ions is evaluated as αc = Nc/Ntot . αc is used to extract the
effective charge on the nanocontainer surface as well as to ver-
ify predictions of the Manning two-state model67. Based on the
simulation-tested results, for low packing fractions, the Manning
model is used to predict the free energy F of the nanocontainer
in the presence of condensed ions and assess the feasibility and
stability of shapes predicted by the simulated annealing proce-
dure. All post-processing calculations are done using parallelized
code in Mathematica 12.062.

3 Results and Discussion

3.1 Shape Transitions

Figure 2 shows the shape transitions in the nanocontainer with
effective charge of Q = 600e and elastic moduli κb = κs = 40kBT
when the salt concentration cs is tuned from left-to-right as cs =

(1,5,10,15) mM. Transitions are shown for two values of surface
tension σA = 1.5 dyn/cm (top row) and σA = 2.5 dyn/cm (bottom
row). For the low surface tension case, at high cs (≈ 15 mM),
the electrostatic interactions are unable to overcome the elastic
and surface tension forces making the nanocontainer retain its
initial spherical conformation. As cs is lowered, the nanocon-
tainer first deforms to a slightly ellipsoidal shape, and then to
a prolate structure (rod) at ≈ 5 mM. Such prolate nanocontain-
ers were predicted to have lower energy compared to spherical
nanocontainers of the same volume based on exact calculations
considering only electrostatic interactions in the no-salt limit with
purely Coulombic forces39,44 (see Fig. 5C). Extensive param-
eter space exploration enables the identification of these rod-
shaped nanocontainers as low-energy equilibrium shapes for the
full model that incorporates screened electrostatic, elastic, and
surface tension based interactions.

On further lowering of cs to 1 mM, a disc shape is obtained
as the equilibrium nanocontainer conformation. This transition
from prolate (aspect ratio λ > 1) to oblate (λ < 1) shapes in
charged nanocontainers is, to the best of our knowledge, first re-
ported here. As demonstrated above, the salt concentration of
the solution (i.e., the ionic strength) serves as a viable control
parameter for modulating this shape transition.

Figure 2 (bottom row) demonstrates that similar shape transi-
tions are observed for the higher surface tension σA = 2.5 dyn/cm.
Increasing the surface tension inhibits large deformation in all
cases (cs values), thus yielding more modestly deformed rods and
discs. Both salt concentration and surfactant concentration pro-
vide chemical means of controlling deformation by manipulating
additives in the bulk solution, producing highly deformed discs
at the extreme values of the parameters, or more modestly de-
formed rod and disc morphologies at intermediate cs and σA. We
note that further enhancement of electrostatic interactions (e.g.,
by decreasing cs) leads to the formation of bowls, as noted in our
previous study39.

Figure 3 demonstrates that the same shape can be realized
in nanocontainers of different sizes. Here rod-shaped nanocon-
tainers are generated from an initial spherical conformation with

radii of R = 10,15,20 nm. The same shape at different sizes is
engineered by changing both the chemical control (in this case,
salt concentration) and the material design parameters (surface
charge and elasticity). Similar variation in sizes is observed for
disc-shaped (oblate) nanocontainers. Given the wide range of
tunable chemical and material design parameters, such shape
transitions are expected to occur at even larger sizes, thus en-
abling the synthesis of nanocontainers with diverse shape-size
combinations.

3.2 Shape Maps

Simulations help rapidly investigate a multidimensional parame-
ter (design) space to determine equilibrium shapes over a wide
range of chemical control conditions for a given material compo-
sition. The shape map in Figure 4A shows the rods and discs of
various aspect ratios predicted as equilibrium shapes depending
on the salt concentration cs and surface tension σA. The specific
values and domain of these control parameters over which shape
transitions are observed is a function of the particle size R (vol-
ume), net effective charge Q, and nanocontainer elastic moduli κb

and κs. For example, the shape map in Figure 4A is for nanocon-
tainers of R = 10 nm, Q = 600e, and κs = κb = 40kBT . Sphere-
rod-disc shape transitions for these nanocontainers are generally
observed between σA ∈ [0,3.5] dyn/cm and cs ∈ [0,35] mM. As is
evident from the shape map, for higher σA values, only sphere-
rod transitions are observed as cs is lowered down to . 1 mM.
At intermediate σA values, the full spectrum of sphere-rod-disc
transitions are seen with varying cs. However, at very low σA ≈ 0,
sphere-disc transitions dominate as cs is decreased, making the
prolate (rod) conformations elusive. Similar analysis yields an
easier visualization of shape transitions at fixed cs with surface
tension as the control. Shape maps thus enable rapid inferences
(look-ups) of parameters associated with desired equilibrium con-
formations (e.g., rods, discs of varying aspect ratios).

In addition to exploring the chemical control of shape tran-
sitions, simulations enable the study of equilibrium shapes as
a function of tuning the elastic material properties. Associated
material design principles complement the environmental con-
trol strategies for engineering shape adaptation in nanocontain-
ers. Figure 4B shows a shape map exhibiting the dependence of
the aspect ratio of the equilibrium nanocontainer shape on the
stretching and bending moduli for a given set of chemical control
parameters. Nanocontainer surface charge and volume are held
fixed to Q = −1050e and V = 4/3π203 nm3 respectively. At fixed
κs, examining the aspect ratios as a function of κb reveals interest-
ing features reminiscent of using chemical controls to manipulate
for shape transitions. For high κs & 30kBT , the sweep over the ex-
plored regime of κb ∈ (5,40)kBT produces predominantly sphere-
disc transitions; rod-shaped conformations are not observed. On
the other hand, for lower 20 < κs < 30kBT , clear sphere-rod-disc
shape transitions are seen, with prolate nanocontainers dominant
in the κb ≈ κs region, indicating the importance of low γ = κs/κb

(FvK number) for producing rod-shaped nanocontainers. Thus,
the shape map in Figure 4B demonstrates the elastic moduli to be
viable material design controls for modulating the preference for
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Fig. 2 Simulation snapshots showing the change in equilibrium conformation of nanocontainers as the salt concentration cs is changed, with disc-rod-
sphere transitions observed as cs increases left-to-right. The top row corresponds to a surface tension of σA = 1.5 dyn/cm, while bottom row is at a
higher tension of σA = 2.5 dyn/cm. Increasing tension limits the extent of deformation of the nanocontainer. All nanocontainers have the same volume
V = 4/3π103 nm3, effective charge Q = 600e, and elastic moduli κb = κs = 40kBT . The salt concentration from left-to-right is cs = (1,5,10,15) mM.

Fig. 3 Rod formation persists for nanocontainers of different size, with nanocontainers from left-to-right having volumes of V = 4/3π103 nm3, 4/3π153

nm3, and 4/3π203 nm3, respectively (relative size shown to scale). The left-most rod shown has an effective charge Q = 600e, elastic moduli κb = κs =

40kBT , and is in a solution with a salt concentration of cs = 5 mM. The central rod shown has an effective charge Q= 800e, elastic moduli κb = κs = 20kBT ,
and is in a solution with a salt concentration of cs = 1 mM. The right-most rod shown has an effective charge Q = 1050e, elastic moduli κb = κs = 20kBT ,
and is in a solution with a salt concentration of cs = 1 mM. All nanocontainers have a surface tension of σA = 2 dyn/cm. Despite the decreasing charge
density as the size increases, the deformation into rod-shaped structures persists.
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with constant volume V = 4/3π103 nm3, effective charge Q = 600e, and elastic parameters κs = κb = 40kBT . Aspect ratios λ < 1 indicate oblate discs,
whereas λ > 1 indicate prolate rods. B) A material design control map demonstrating elasticity dependence, with higher bending rigidities preferring
rod-like morphologies. The map corresponds to nanocontainers of volume 4/3π203 nm3 and effective charge Q= 1050e placed under solution conditions
of salt concentration cS = 25 mM and surface tension σA = 0 dyn/cm (resulting from high surfactant concentration).

disc or rod morphologies.
We note that our earlier work39 showed sphere-disc-bowl tran-

sitions for κs = 100kBT and κb ∈ (1,10)kBT (outside the exhibited
range in the Figure 4B shape map). In the light of the more exten-
sive exploration of the κs,κb design space, we find that the bowl-
shaped nanocontainers form for low κb and high κs, that is, for
high γ ∼ 10−100 values. As we mentioned above, more moderate
γ ∼ 5− 10 values yield relatively planar disc-like conformations.
For low γ ∼ 1, prolate-shaped nanocontainers are observed.

3.3 Shape control mechanisms: surface area and electro-
static energy

Under a constraint of fixed volume, shape transitions can only
occur with an increase in nanocontainer area during deforma-
tion away from sphere (the latter has the least surface area for
a given volume). All the shape transitions recorded in simula-
tions exhibit an increase in the nanocontainer area. Figure 5A
shows the ratio of the nanocontainer area relative to that of the
sphere as a function of the salt concentration cs for a representa-
tive set of nanocontainers. Nanocontainers of two different sizes
(volumes of V = 4/3π103 nm3 and V = 4/3π203 nm3), effective
charges (600e and 1050e) and different material design parame-
ters are selected. At high cs, the equilibrium shape is closer to
a sphere and the increase in area is small. As cs decreases, the
area increases and approaches the highest values at the lowest
cs. In general, for the full sphere-rod-disc transition, rods have
intermediate areas between spheres and discs.

Figure 5B shows the corresponding changes in the nanocon-
tainer electrostatic energy as its area increases (Figure 5A). The
total electrostatic energy of the final (equilibrium) nanocontainer
relative to that of the sphere with identical parameters is plot-
ted. The data is shown for the same representative set of material
and chemical control parameters as in Fig. 5A. In all cases, this
difference in electrostatic energy is negative, indicating that the

decrease in electrostatic energy drives the shape deformation. As-
sociated increase in area, as noted above, is penalized by a rise in
stretching and bending energies. The resulting competition sets
an effective area for the nanocontainer, and together with the vol-
ume constraint, sets the shape of the nanocontainer.

We previously performed exact analytical calculations on
uniformly-charged as well as conducting (equipotential)
spheroidal nanocontainers with unscreened Coulomb interac-
tions (1/r electrostatic forces). These calculations showed that
the deformation of a sphere to both oblate (disc-like) or prolate
(rod-like) structures under constraint of fixed volume are equally
favorable44. Thus, the equilibrium solution in the case of these
idealized systems is degenerate. This degeneracy is broken,
and the system prefers disc-like (or rod-like) shapes when other
interactions such as the elastic forces (bending, stretching) and
surface tension compete with electrostatic forces to modulate
the deformation. We discuss next the role of surface tension in
the emergence of rod-shaped nanocontainers found in the above
transitions under appropriate material and chemical control
conditions.

The sum of unscreened Coulomb energy and surface tension
energy, U , of idealized spheroidal nanocontainers under the con-
straint of fixed volume was evaluated exactly. For simplicity, con-
ducting nanocontainers were considered, but the following ar-
guments also hold for uniformly-charged systems. Further, in the
wake of condensation of mobile counterions, under certain condi-
tions, it is expected that the nanocontainers surface will be better
approximated as a conducting surface.

For the case of disc-like nanocontainers (oblate spheroidal
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shells with aspect ratio λ ≤ 1), U =Ud is given by

Ud(λ ) =
lBQ2λ 1/3 tan−1

(√
1−λ 2

λ

)
2R
√

1−λ 2

+σA2πR2
λ
−2/3

(
1+

λ 2 tanh−1(
√

1−λ 2)√
1−λ 2

)
.

(2)

For rod-like nanocontainers (prolate spheroidal shells with aspect
ratio λ ≥ 1), U =Ur is given by

Ur(λ ) =
lBQ2λ 1/3 log

(
λ +
√

λ 2−1
)

2R
√

λ 2−1

+σA2πR2
λ
−2/3

1+
λ 2 csc−1

(
λ√

λ 2−1

)
√

λ 2−1

 .

(3)

Figure 5C shows the plot of the above energies relative to
that of the sphere, i.e., it shows the energy difference ∆U =

U(λ )−U(1) for λ values spanning both disc-like and rod-like
shapes. Conducting nanocontainers with charge Q = 600e and
radius R = 10 nm are considered; the electrostatic energy for the
spherical conformation is Ue

s ≈ 18000kBT . To illustrate the mech-
anisms behind the observed transition into rod-shaped structures,
three representative cases characterized by surface tension σA are
considered: no surface tension (σA = 0), moderate surface tension
(σA = 6 dynes/cm), and high surface tension (σA = 12 dynes/cm).
It is assumed that there are no elastic energy penalties and the
container is completely flexible.

In the absence of surface tension, as λ → 0 (very flat disc) or
λ →∞ (very thin rod), ∆U (which is determined solely by electro-
static energy for σA = 0) approaches a finite value of −Ue

s . In the
presence of surface tension, e.g., for σA = 6 dynes/cm, as λ → 0 or
λ →∞, ∆U diverges to infinity. The divergence arises because the
surface tension energy term approaches infinity (area diverges)
in these extreme limits to conserve the nanocontainer volume.
However, as the figure shows, the approach to infinity is more
gradual for the rod-shaped nanocontainers compared to the disc-
like ones. Thus rods may be preferred as the shape is deformed
away from sphere, and indeed this is observed in Fig. 2.

The highest surface tension curve in Figure 5C exhibits this
breaking of disc/rod degeneracy more clearly. A more shallow lo-
cal energy minimum for disc-like conformations appears, indicat-
ing that electrostatics-driven shape change quickly becomes ex-
pensive if discs are the deformed structures. On the other hand,
the energy continues to drop if the container adopts a rod-like
shape. Overall, these results support the observation of shape
transitions with more complex interactions (e.g., elastic, screened
Coulomb potentials) by showing that inhibiting dramatic increase
in nanocontainer area by enhancing surface tension biases the
transitions in favor of rod-shaped nanocontainers.

3.4 Elastic energy distributions on the nanocontainer sur-
face

Electrostatic interactions drive the transformation in the nanocon-
tainer shape away from spherical conformation and towards
shapes of aspect ratio λ 6= 1. Elastic energy (bending and stretch-
ing) and surface tension energy compete with electrostatic energy
to generate oblate-shaped (disc-like; λ < 1) or prolate-shaped
(rod-like; λ > 1) nanocontainers of varying eccentricities. We
now examine changes in the distribution of the elastic energies
on the nanocontainer surface after the nanocontainer adopts disc-
like and rod-like conformations.

Figure 6 shows the local distribution of bending and stretch-
ing energies associated with typical disc-shaped and rod-shaped
nanocontainers. For the disc, the outer “rim” or edge exhibits
high bending energy while the central region shows almost zero
bending energy (obvious by inspection that this part is “flat”). For
the rod, the two terminating ends exhibit the highest bending en-
ergy. The central region of the rod shows greater bending energy
compared to the central region of the disc.

The rod exhibits higher stretching energy along most of the
surface away from the terminating ends; this is to be expected as
the uniaxial stretching imparts the characteristic rod-like shape.
On the disc-shaped nanocontainer, the stretching energy is effec-
tively uniform with striations arising from the pentameric defects
in the icosahedrally symmetric mesh. Thus the shape transition in
nanocontainers to prolate or oblate structures is accompanied by
non-uniform distributions of bending and stretching elastic ener-
gies on the nanocontainer surface.

3.5 Counterion Condensation

The shape transitions recorded via the MD-based simulated an-
nealing procedure were obtained using a Yukawa potential to
model the electrostatic interactions characterizing the nanocon-
tainer surface, with the effects of salt ions treated implicitly. The
condensation of counterions on the nanocontainer surface can al-
ter these shape transitions. We now examine the effects of coun-
terion condensation on the feasibility of the observed transitions.

Deviations from linearized Poisson-Boltzmann (Debye-Huckel)
theory are expected for highly-charged nanocontainers where the
Gouy-Chapman length b� λD. For the salt concentrations exam-
ined in the simulations, we get 1< λD < 10 nm; and for the charge
densities probed in this work 0.1e/nm2 < σb < 0.5e/nm2, we ob-
tain 0.5 < b < 2 nm. Thus, deviations from the linearized elec-
trostatic model are expected to be strong for the nanocontainer
with the highest charge density (of σb = 0.48e/nm2 with Q = 600e
and R = 10 nm). These deviations can be ascribed to charge
renormalization caused by the condensation of counterions and
associated effects have been investigated by Manning and oth-
ers for uniformly-charged (as well as equipotential) nanoparticle
surfaces modeled as spheres, cylinders and planes67,68. Recent
research based on nonlinear Poisson-Boltzmann effects and ex-
plicit ion Monte Carlo simulations suggest that in highly-charged
nanomembranes, under very weak screening limit (λD > R),
counterion release can provide a force to stabilize spherical con-
formations and alter the nature of these shape transitions63. In
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our studies, this limit is reached for the aforementioned nanocon-
tainer with σb = 0.48e/nm2 at low salt concentrations (cs ∼ 1
mM).

The effects of counterion condensation are enhanced at higher
nanocontainer bare charge density σb, lower salt concentration
cs, and higher packing fraction η (nanocontainer concentration).
We first examine the effects of ion condensation on shapes of
nanocontainers with high charge density (Fig. 1, σb≈ 0.48 e/nm2,
Q = 600e, R = 10 nm) with no added salt (thus considering a
worse-case scenario). Following the procedures outlined in Model
and Methods section, equilibrium MD simulations of counterions
near these nanocontainers of different shapes were performed
using LAMMPS for a variety of packing fractions. The fraction
of condensed counterions was extracted following the equation:
αc = Nc/Ntot where Ntot is the total number of ions and Nc is the
number of condensed ions. Using αc, the effective charge for
the nanocontainer can be defined as Q = Qbare− ziNc, where zi is
the valence of the counterion and Qbare is the bare charge of the
nanocontainer. Note, electroneutrality dictates that Ntot =Qbare/zi

in the absence of salt.
Figure 7A shows the estimates of the fraction of condensed

counterions, αc, from these explicit ion simulations near a disc
(λ ≈ 0.3), rod (λ ≈ 2.24), and sphere (λ = 1) of equal volume
(associated with the sphere of radius R = 10 nm). The disc and
the rod considered in this study are significantly deformed. Es-
timates are shown for three η values (10−4,10−3,10−2); simula-
tions at lower η (more dilute) were prohibitively expensive due
to the slow dynamics of ions towards equilibration. At all packing
fractions studied, more counterions condensed on the sphere than
the rod and the disc, the latter exhibiting the lowest counterion
condensation in agreement with recent results63. However, the
deformed shapes with higher (or lower) aspect ratios exhibited
αc values O(1) percent less than those for the spherical structure.
The effective charge as well as the number of released counterions
across the different shapes (disc, rod, sphere) were very similar,
implying that the difference between shapes do not produce sig-
nificantly different condensation effects and hence are expected
to not alter the nature of observed shape transitions.

In addition to explicit ion simulations, following our earlier
work39,44, we performed mean-field calculations based on the
Manning two-state model67 to obtain analytical estimates for αc.
Idealized spheroidal-shaped nanocontainers (both rods and discs)
with conducting surfaces (similar to the systems employed in Sec.
3.3 for exact analytical solutions) were used in the calculations.
Following the Manning model approximation, we write the free
energy of the nanocontainer-ion system as

F (αc,λ ) =U(λ ,αc)+αcNtot log
(

αcNtotΛ
3

A(λ ,R)b

)
−αcNtot

+(1−αc)Ntot log
(
(1−αc)NtotΛ

3

VWS

)
− (1−αc)Ntot ,

(4)

where U(λ ,αc) is the potential energy of the spheroidal nanocon-
tainer given by Equations 2 or 3; electrostatic energy terms dom-
inate the total potential energy U . The next two terms represent
entropic contributions of the αcNtot condensed ions to the free

energy, and the last two terms correspond to the entropy of the
(1−αc)Ntot free (released) ions in the bulk solution. Ntot is the
number of counterions, Λ is the thermal de Broglie wavelength,
A(λ ,R) is the surface area of the spheroid, b = 1/(2πlBσb) is the
Guoy-Chapman length set by the bare surface charge density σb,
and VWS is the volume of the electroneutral Wigner-Seitz cell set
by the packing fraction of the nanoparticles. The fraction of ions
condensed is computed as the value that minimizes the above
free energy. The condensation behavior and resulting free energy
are a function of the shape (size R, aspect ratio λ) and the bare
charge Qbare.

Results for αc using the Manning two-state model were in good
agreement with explicit ion simulation results for η = 10−4,10−3

as shown in the Fig. 7A. Manning model is expected to pro-
vide more accurate estimates for αc and associated free energy
of the charge-renormalized nanocontainer at lower packing frac-
tions. Utilizing this scenario, αc and the free energy dF of
nanocontainer (relative to the spherical conformation) was com-
puted; the latter is plotted in Figure 7B. As the figure shows, for
η ∈ (10−12,10−4), the free energy of the spheroidal structure is
lower compared to the spherical shape (dF < 0), indicating that
the shape transitions are feasible in the wake of ion condensation
for a broad range of packing fractions up to η = 10−4.

The high value of αc shown in Figure 7A implies that the effec-
tive charge is significantly reduced compared to the bare charge.
The shape transitions shown in Fig. 2 assume an effective charge
of Q = 600e. We next examine nanocontainers with a lower sur-
face charge density σb = 0.12e/nm2 (same charge Q = 600e and a
larger volume V = 4/3π203 nm3), and use the Manning model to
predict the fraction of condensed ions. Sphere, disc, and rod of
similar aspect ratios as in the previous study are considered; these
are produced using the shape optimization procedure for a differ-
ent set of material and chemical control parameters. The inset
of Figure 7A shows the change in αc as a function of the pack-
ing fraction in the range (10−8,10−4). Dilute systems (η . 10−7)
show a very low fraction of condensed ions, demonstrating that
the effects of ion condensation are diminished for nanocontainers
with lower σb at lower packing fractions. The difference in αc

across different shapes for the systems considered in the inset of
Fig. 7A remains on the order of a few percent.

We note that the study of condensation effects based on the
above two-state Manning model employs a number of approxi-
mations. For example, the free energy associated with this model
does not take into account the counterion-nanocontainer and
counterion-counterion Coulomb interactions explicitly. Also, the
distribution of counterions around the spheroidal shell is con-
sidered to be isotropic, which is an oversimplification for shapes
that deviate significantly from the spherical conformation. In this
light, we view the above Manning model results as qualitative.
Quantitative results that address many of the aforementioned
simplifications can be obtained by adopting a unified approach
to combine the shape optimization dynamics and the ion dynam-
ics in a single MD procedure. Developing this unified approach is
part of our future work.
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4 Conclusion and Future Work
The above results reveal the fundamental mechanisms of engi-
neering adaptive shape control in charged deformable nanocon-
tainers by modulating their surface properties (e.g., charge, ten-
sion, elastic constants), and environmental conditions. The wide
coverage of the multidimensional parameter space yields a rich
gallery of shapes, including rods and discs of various aspect ra-
tios, that can be tailored by judiciously selecting material features
and environmental conditions. These shape maps guide the de-
sign of deformable nanocontainers that actively change shape in
response to evolving environmental conditions. They can also
be useful in experimental and computational materials chemistry
studies aimed at engineering functional nanoparticles by control-
ling their intrinsic design features.

Both environmental solution conditions and materials design
control strategies are demonstrated as viable means to generate
shape change in nanocontainers. Bulk solution control strategies
can include tuning salt concentration that affects screening length
associated with the electrostatic interactions, and tuning surfac-
tant concentration that changes interfacial surface tension (hy-
drophobicity). Material design strategies may consist of modulat-
ing the particle size, charge, and elasticity. Each of these control
strategies is capable of modulating the favorability of deformation
into oblate discs, prolate rods, or spherical morphologies.

Environmental conditions such as salt and surfactant concen-
tration determine the extent of deformation and, at times, the
qualitative distinction between disc and rod formation. For ex-
ample, increasing salt concentration can change significantly-
deformed discs into modestly-deformed rods of lower surface
area (Figs. 2 and 4A). Modulating material properties also af-
fects the bias towards disc/rod morphologies; discs and rods oc-
cur depending on the ratio of the bending and stretching moduli,
(Fig. 4B). The emergence of rod-like shapes under appropriate
surface tension was also shown using exact analytical results on
conducting nanocontainers under no-salt conditions (Fig. 5C).

To assess the stability of the observed shape transitions of
charged nanocontainers in the event of counterion condensation,
we extended our previous work39,44 that used mean-field Man-
ning model calculations to examine ion condensation effects. This
extension makes use of simulations of explicit counterions near
nanocontainers under no-salt conditions to evaluate the fraction
of condensed ions. This fraction and the resulting nanocontainer
effective charge Q changes by a small amount, ≈ 1%, between
spherical and disc/rod conformations up to the nanocontainer
packing fraction of 10−2 for the highest charge density studied
(Fig. 7A). Good agreement of the MD results with Manning model
results enabled the computation of approximate free energy dif-
ferences between the spherical and spheroidal shapes for moder-
ate values of packing fractions (10−12− 10−4). This showed the
disc and rod-shaped structures are also favored in the event of
condensation (Fig. 7B). Ion condensation effects are shown to
be weaker for lower nanocontainer packing fractions and lower
surface charge density, and these effects are expected to weaken
further with increasing salt concentration. Condensation effects
are expected to also be mitigated by judiciously adapting the ma-

terial features such as the elastic moduli.
More accurate predictions for feasible and stables shapes can

be made by adopting a unified approach of minimizing the energy
characterizing the nanocontainer in the presence of explicit coun-
terions. Designing this combined approach will be a subject of
future studies and we expect it to yield more accurate estimates
for the fraction of condensed ions while more precisely evalu-
ating the electrostatics-driven shape deformation. Future work
will also consist of expanding upon chemical and materials design
control strategies by investigating the potential of surface charge
patterning to alter the shape deformation69. This will consist
of investigating designed charge patterns (e.g., alternating posi-
tive and negative Janus-like nanocontainers) as well as pH-driven
stochastic charge patterns for generating shapes. Further, future
plans involve extending the studies to investigate real-time shape
evolution, enabling estimates of the time scale of nanocontainer
shape switching in response to environmental conditions or ther-
mal activation. Time scales for deformation are an experimentally
measurable and relevant quantity29,70.

We now highlight experimental studies that may involve the
electrostatics-driven shape transitions and control mechanisms
revealed in this work, and also point out the limitations in the
scope of our investigations. Recent experiments on the self-
assembly of viruses such as hepatitis B virus, which exhibits a
relatively small bending rigidity71, have shown that virus sub-
units in the presence of drug molecules assemble into nanocon-
tainers (hollow protein cages of radius ≈ 18−40 nm) that exhibit
a transition from normal (spheres) to aberrant shapes (ellipsoidal,
cylindrical) as the ionic strength is decreased72. The shape tran-
sitions as a function of ionic strength suggest electrostatic control
mechanisms changing the association energy driving the protein
self-assembly. However, we note that the volume of the observed
nanostructures is not conserved in these experiments.

Experiments with solid block copolymer nanoparticles assem-
bled using mixed functional surfactants into morphologies that
range from sphere to prolate ellipsoids show that the ellipsoidal
particles respond to changes in pH over a broad range from 3
to 10. Tuning the pH alters the charge on the polymer chains
that results in prolate ellipsoidal structures of different aspect ra-
tios; these pH-triggered shape changes are also shown to be re-
versible73. We anticipate our computational studies to inform fu-
ture experiments on exploring electrostatically-controlled shape
transitions in similar soft-matter systems such as virus nanoparti-
cles, micellar nanomembranes, and polymeric vesicles.

We also note that there are several experimental studies that
demonstrate nanoparticle shape change driven by different mech-
anisms (that often dominate over electrostatic forces) such as en-
tropic forces and surface tension29,31. For example, the shape
transformation of PEGylated polymer/DNA nanoparticles from
worm-like to short-rods to spheres upon PEG cleavage is primar-
ily driven by the competition between the maximization of PEG
entropy and DNA-solvent interfacial tension31. Despite strong
DNA-polymer electrostatic forces as well as high surface charges
observed for spherical morphologies, the electrostatic interactions
only weakly affect the shape-switching process74.

Self-assembly of nanoparticle building blocks into hierarchical
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clusters is of broad interest to the materials science community
and the close packing of rigid spherical and non-spherical build-
ing blocks has been extensively explored17,75. The links between
surface features and equilibrium shapes can be leveraged in ex-
periments and simulations on the self-assembly of deformable
(flexible) nanoscale building blocks. Shape-changing properties
of building blocks can enable the design of novel hierarchical
structures with potential applications in medicine and catalysis.
Further, the molecular dynamics simulation methods employed
in this work can be extended to understand shape deformations
and associated self-assembly mechanisms of microscale colloidal
particles26.
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