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Abstract 
We present a comprehensive investigation of a recently introduced method to determine transient 
structures of molecules in excited electronic states with sub-Ångstrom resolution from time-
resolved gas-phase scattering signals. The method, which is examined using time-resolved x-ray 
scattering data measured on the molecule N-methyl morpholine (NMM) at the Linac Coherent 
Light Source (LCLS), compares the experimentally measured scattering patterns against the 
simulated patterns corresponding to a large pool of molecular structures to determine the full set 
of structural parameters. In addition, we examine the influence of vibrational state distributions 
and find the effect negligible within the current experimental detection limits, despite that the 
molecules have a comparatively high internal vibrational energy. The excited state structures 
determined using three structure pools generated using three different computational methods are 
in good agreement, demonstrating that the procedure is largely independent of the computational 
chemistry method employed as long as the pool is sufficiently expansive in the vicinity of the 
sought structure and dense enough to yield good matches to the experimental patterns.  
 
1. Introduction  
The determination of ground-state molecular structures using static gas-phase x-ray and electron 
scattering is foundational for modern chemistry1,2,3,4,5. The recent emergence of ultrafast pulsed x-
ray free-electron lasers6,7 and Mega-electron-Volt radio frequency (RF) electron guns8 has opened 
the opportunity to determine transient molecular structures in excited states. As an important 
application of these ultrabright and ultrashort pulses, time-resolved gas-phase scattering 
experiments can track electronic9,10 and nuclear motions of molecules11,12,13,14,15 in excited states 
during photochemical reactions. The scattering patterns reflect the structures of the molecules and 
can in principle be directly transformed to yield molecular structures16,17 and even the electron 
density18. Yet the limited range of the observed scattering momentum transfer and rotational 
averaging coupled with the intrinsic structural complexity of non-linear polyatomic molecules 
make the determination of accurate excited state structures challenging. We recently introduced 
an analysis approach that is capable of determining transient molecular structures in excited states 
with sub-angstrom resolution from time-resolved x-ray scattering signals14. An important question 
that we explore here is how the excited state structures so determined might depend on the 
computational methods used to create the required structure pools. We find that the excited state 
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structures depend minimally on the computational method and thus are largely of experimental 
nature.  
 
For static ground state structures, a least-squares refinement of structural parameters such as 
interatomic distances or characteristic torsional angles is traditionally employed to determine 
molecular structures from scattering data3. Based on an assumed structure, a matrix of interatomic 
distances 𝑅"# is created. To simulate the scattering signal the Independent Atom Model (IAM) is 
often invoked, which, for x-ray scattering, is written as1,  
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where 𝐼DE is the Thomson cross section, 𝑓"2(𝑞) and 𝑆">?@,"2  represent the elastic and inelastic atomic 
form factors5, respectively, for the 𝑖GE atom and 𝑁IG is the total number of atoms in the molecule. 
A similar formula applies to electron scattering3. The IAM formula is approximate and has well-
established limitations19,20, as discussed in Section 2.2.3. A least-squares refinement of selected 
adjustable structure parameters, for example a set of bond lengths and angles, is applied until the 
agreement between simulated and experimental scattering signals is satisfactory. Although this 
method yields interatomic distances with sub-angstrom random errors that reflect the experimental 
precision, care must be taken because systematic errors such as the correlation between structural 
parameters and even questions about the physical meaning of the parameters could affect the 
results3. The choice of the independent adjustable parameters is problematic since a N-atomic 
nonlinear molecule has :(:JB)

K
 interatomic distances while only 3N-6 geometrical parameters are 

needed to describe a molecular structure. Multiple solutions could occur when there are 
correlations among the parameters chosen for refinement, making the approach difficult to 
implement for complicated polyatomic molecules in excited electronic states.  
 
To circumvent this complexity, alternative approaches compare the experimental patterns with 
high-level theoretical simulations11,13 or restrict the studied systems to relatively simple 
models15,21. We have recently introduced a novel structure determination method and applied it to 
a vibrating polyatomic molecule in an excited electronic state14. The method yields precise 
molecular structures by matching the experimental x-ray scattering patterns against a large set of 
simulated patterns calculated from a pool of potential structures created from molecular dynamics 
simulations. Excited state molecular structures were obtained even in a complicated molecular 
system with 21 non-hydrogenic interatomic distances. Since then, additional evaluations and 
improvements have been made, resulting in a robust structure determination method without a 
need to reference to high level ab initio methods. In this article we provide a detailed description 
of the structure determination method. We introduce two additional methods for creating pools of 
potential structures that reduce the computational cost compared to molecular dynamics (MD) 
sampling. The excited state structures determined with the three different pools agree well with 
each other, suggesting that the procedure itself is independent of the quantum chemistry methods 
employed and could work for any pool that contains sufficiently dense structures that embody the 
correct structure. 
 
2. Concepts 
2.1 Time-resolved gas-phase x-ray scattering 
Optical excitation of tertiary amines, which typically are pyramidal in the ground electronic state, 
leads to Rydberg states with a nearly planar geometry22,23,24. As time-resolved photoionization 
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spectra have shown, excitation with an ultrafast pulsed laser launches a coherent wavepacket in 
the amine inversion direction that can persist for several oscillations before dephasing into a bath 
of low frequency modes25,26,27.  X-ray scattering experiments on N-methyl morpholine (NMM) 
using the Linac Coherent Light Source (LCLS) x-ray free electron laser revealed the corresponding 
structural evolution14. For the present investigation we adopt the experimental signals at long delay 
times (2.6–3.9 ps), which reflect the excited-state structure of N-methylmorpholine (NMM) in the 
3s Rydberg state.  
 
The experimental implementation has been described in detail previously28,29. The ensemble of 
free NMM molecules was excited by a 200 nm laser pulse and then probed with a 9.5 keV x-ray 
pulse generated by the LCLS. The scattering patterns were measured on a 2.3-megapixel Cornell-
SLAC Pixel Array Detector (CSPAD)30 at various delay times between the pump and probe pulses. 
The 2-dimensional scattering patterns can be decomposed into an isotropic component and 
anisotropic component31. The anisotropic part reflects a second order Legendre polynomials that 
arises from the polarized nature of the laser beam. Our analysis here focuses on the isotropic, 
rotationally averaged component that contains all the intrinsic molecular properties in the 
molecular frame. An additional analysis of the anisotropic component that reveals the initially 
excited electronic state has been described elsewhere32. 
 
The signal measured in the time-resolved x-ray scattering experiment is expressed as a percent 
difference, written as11,33 

%Δ𝐼(𝑞, 𝑡) = 100𝛾 $&R
(*,G)J$&SS(*)
$&SS(*)

,                                           (2) 

where q represents the magnitude of the momentum transfer vector, 𝐼T>(𝑞, 𝑡)  is the laser-on 
scattering signal at delay time t, and 𝐼TUU(𝑞)  is the reference laser-off scattering signal. The 
excitation fraction 𝛾  was previously determined to be 5.7%14, which is low enough to avoid 
undesired multiphoton processes. Expressing the time-resolved scattering signal as a percent 
difference has many advantages including accentuating the small changes in the laser-on scattering 
signal and canceling out various experimental artifacts that affect the laser-on and laser-off signals 
equally29.  
 
Since the reference scattering signal corresponds to the molecules in the ground state, the percent 
difference scattering patterns measures the excited state molecular structures in reference to the 
ground state. Considering that the change of the scattering patterns can be measured quite 
accurately29 and that the ground-state structure is usually well known3,5, accurate excited state 
molecular structures can thus be derived. In the present study, the ground-state structure of NMM 
(see equatorial structure in Figure 1) is taken from previous studies14. 
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Figure 1. The equatorial and planar structures of NMM. 

 
2.2 Structure determination analysis 
Our knowledge of ground state molecular structures is based on x-ray and electron diffraction 
investigations that started with the emergence of electron diffraction in the 1930s34 ,35 ,36 . A 
molecular structure is deemed to be determined when a comparison of an experimental pattern 
with a computed pattern yields satisfactory agreement. The process of refining a structure consists 
of adjusting the structure of the molecule until agreement is achieved3. Compared to this traditional 
least-squares refinement of structural parameters, the structure determination method introduced 
in this article (illustrated in Figure 2) has three main advantages. First, it inherently overcomes the 
problem of correlation among different structural parameters of the molecule since the scattering 
patterns used to compare with experiments are directly computed from 3D structures instead of a 
subset of independently adjustable structural parameters37. Second, the method utilizes a large 
number of trial structures that are sufficiently comprehensive and dense to include a structure that 
is close to the ‘right’ one, while reducing the space of all possible atom arrangements by restricting 
their positions to those that conform with fundamental chemistry concepts. This prevents the 
analysis from converging to a structure that is physically or chemically impossible37. Third, the 
analysis does not need to restrain the molecular symmetry or manually define independent 
structural parameters, making it applicable to relatively large polyatomic molecular systems.  
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Figure 2. Concept of the method for determining molecular structures in excited electronic states 
from experimental scattering patterns. 
  
2.2.1 Creating a large pool of structures 
The first step of the analysis creates trial structures in the vicinity of the target structure in the large 
conformation space. In principle, any procedure that could deliver an expansive and dense pool of 
chemically viable structures would work. It is advantageous for the sampled structural space to be 
confined to energetically allowed conformations that could potentially be accessed by the molecule 
in the excited state or during a dynamic process to be investigated. Based on the previous work14, 
we found that a pool of one million trail structures is large enough to reach the convergence for 
molecular systems like NMM. We applied three different methods to create structure pools. As 
was introduced previously, molecular dynamics simulations (MD) work well for this purpose14. 
One calculates trajectories that propagate on potential surfaces that resemble the subject of the 
study, and then extracts the structures without reference to their time sequence in the trajectories. 
In ref 14 we use the Rydberg-surface dynamics pool of NMM (MD pool) to create one million 
structures from a total of 107 surface-hopping trajectories. Although the Rydberg-surface 
molecular dynamics could sample nuclear geometries that are close to the correct structure of 
NMM in the excited state, the simulation of the molecular dynamics is nontrivial and 
computationally expensive. To make the structure sampling procedure more convenient and less 
dependent on quantum chemistry calculations, we introduce here two other methods that sample a 
large number of structures fast compared to the MD method while fulfilling the basic requirements.  
 
The goal of the structure pool is to provide many structures that are close to the correct target 
structure. Yet the purpose of sampling many structures is to displace their geometries so as to 
provide the opportunity to find unexpected structures. As the shape of the cationic state potential 
surface of the molecule is similar to that of the Rydberg states, the ion structure of NMM is likely 
quite similar to the structure in the 3s state. We thus use the optimized structure of NMM in its ion 
ground state as an initial structure and displace the geometries starting from there. Specifically, to 
sample the structure pool for NMM in 3s, we calculated the optimized ionic ground state structure 
of NMM (see planar structure in Figure 1). We found its vibrational normal modes at the UMP2/6-
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311++g** level using the electronic structure package Molpro38. A pool of one million geometries 
is sampled from a quantum Wigner distribution 39  at 1000 K using SHARC 40  based on the 
calculated vibrational normal modes of NMM in the ionic ground state. This provides a large 
variety of perturbed structures that most certainly includes the structure of the molecule in the 3s 
state. We use a 1000 K scaling temperature to make sure the displaced geometries are expansive 
enough to include target structures. For the sake of convenience we call this pool the Wigner pool 
in the following discussions. 
 
A third approach derives a sample pool with even less dependence on theory and with more 
randomness. A Monte Carlo (MC) based approach randomly creates chemically viable structures 
by making use of the vibrational normal modes in the molecule. In this procedure, each of the 
normal modes is represented as a Gaussian distribution in Cartesian coordinates with the 
displacement of the atoms depending on their mass and the vibrational frequency of the mode. By 
randomly exciting each of the normal modes we create a grid of displacements in Cartesian 
coordinates. A random value for each displacement is chosen in every normal mode and then all 
displacements are applied to the original molecular structure. This procedure not only guarantees 
the randomness of the method but also generates new molecular structures that are chemically 
sound. A pool of one million structures is generated using this routine based on the calculated ionic 
ground state structure of NMM and its vibrational normal modes as described above. The accuracy 
in the calculation of the vibrational normal modes does not affect the mapping procedure or the 
posterior analysis as the generated structure pool is randomized and any probabilistic distributions 
are reproduced within the structure pool. In the following sections we call this structure pool the 
MC pool.  
 
In the present simulation, the small mass of the hydrogen atoms often produces a distortion in the 
final structure as their displacements can be unrealistic for large excitations. Considering that X-
ray signals are not sensitive towards the positions of hydrogen atoms41 and that C-H bond lengths 
are well known and are quite stiff, one may choose to clamp the C-H bond lengths of all sampled 
geometries at 1.09 Å. While constraining the bond length, the direction of the C-H bond vectors 
remains free to adjust. This clamping greatly reduces the number of degrees of freedom to be 
considered in the structure analysis. Results using the structure pools with and without clamped 
C-H bond lengths are compared in the Result and Discussion section. 
 
2.2.2 Determining molecular structures from experimental patterns 
With the structure pool at hand, a scattering pattern is computed for each geometrical structure in 
the pool. To do so any method of calculating scattering patterns can be implemented as will be 
discussed further in section 2.2.3. For each computed scattering pattern from the structure pool the 
𝜒K deviation from the experimental pattern is calculated by using 

𝜒"K = ∑ W%XY8
(*)J%XYZ[\(*,G])

^(*,G])
_
K*`'[

*A*`8R
                     (3) 

where %Δ𝑆"(𝑞)  is the computed percent difference pattern for structure i in the pool, 
%Δ𝑆?ab(𝑞, 𝑡B) is the experimental percent difference scattering pattern %Δ𝐼(𝑞, 𝑡) divided by the 
excitation fraction 𝛾  at delay time 𝑡B , and 𝜎(𝑞, 𝑡B)  represents the experimental uncertainty of 
%Δ𝑆?ab(𝑞, 𝑡B), calculated as the statistical counting noise. Using equation 3, each structure in the 
pool is associated with a specific 𝜒"K value, which is a representation of how well the structure’s 
scattering pattern agrees with the experimentally measured pattern.  
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It is tempting to identify the structure with the lowest 𝜒K as the best result. But even with a large 
number of structures in the pool, it is very unlikely that the exactly ‘right’ structure is included. As 
a result, the structure with the lowest 𝜒K is not necessarily the correct structure, but may rather be 
an artifact from the sampling. To determine the best structure, the inverse of the 𝜒"K values, i.e. 
1
𝜒"K
d , are plotted against molecular structure parameters such as the interatomic distances, bond 

angles or torsional angles, for all structures. By looking at the complete distributions instead of 
just picking the lowest 𝜒"K structure, the artifact from the sampling is largely overcome. Given the 
randomness inherent in the generation of the structure pools, it is not surprising that for any value 
of a structure parameter, there are many structures that give poor fits, i.e. high values of 𝜒"K as 
sketched in Figure 2 for structural parameter 𝛼 and 𝛽. Those poor fits fall beneath the envelope of 
the overall distribution. Retaining only the best-fitting structure for each value of the structure 
parameter, the envelope of the distribution assumes a normal or skewed normal distribution14.  
 
As an illustration, Figure 3 plots the 1 𝜒"Kd  values as a function of the O-N interatomic distance for 
the 3s excited state of NMM when using three different structure pools. To select the structure 
with the best fit for each value of the structure parameter, it is necessary to choose a bin size for 
the chosen interatomic distance. Figure 3 shows the result for two different bin widths: 0.1% and 
1% of the distance of the ground state structure for each selected structural parameter, respectively. 
For example, the O-N distance of the ground-state structure is 2.818 Å. Thus 0.1% bin corresponds 
to a bin size of 0.003 Å while 1% bin has a bin size of 0.028 Å in the O-N coordinate as shown in 
Figure 3. For each structure bin, one best fitting structure is plotted so that there are more points 
in the plot with the smaller bin size. These data points, which are essentially the envelope of all 
structures, are then fitted with Gaussian functions and the maxima of the fitted curves are extracted 
as the determined value for the structural parameters of interest. As expected, the best structural 
parameters so determined depend slightly on the chosen bin widths.  
 
To characterize the similarity between two selected structures while considering all relevant 
interatomic distances, we define the mean absolute percent deviation (MAPD) as41 

MAPD = B
:%&%

∑ 100 ∙
lm89
nnJm89

n l

m89
n

:%&%
"o#     (4) 

where 𝑁GTG  is the total number of interatomic distances of interest while 𝑟"#q  and 𝑟"#qq  are the 
interatomic distances between atoms 𝑖 and 𝑗 for two different selected structures, respectively.  In 
the case of NMM, we consider all interatomic distances between the seven non-hydrogenic atoms 
so that 𝑁GTG = 21. For the two bin sizes used in Figure 3, we find that the MAPD (with the 
determined structural parameters using 1% bin as 𝑟"#q  and the determined structural parameters 
using 0.1% bin as 𝑟"#qq) is only about 0.6%. This is much smaller than the previously reported 
experimental uncertainty of ~1.0% (averaged relative standard deviation over 21 distances) of the 
excited-state structure determined from many time points14. We therefore consider the 1% bin size 
sufficient for the subsequent analysis as it reduces the computational complexity of the procedure 
without sacrificing accuracy. It nevertheless is important to emphasize that the bin size and the 
fitting function must be carefully chosen to ensure that the envelopes of the 1 𝜒"Kd  error plots are 
well captured.  
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Figure 3. The inverse of the 𝜒K fitting errors plotted as a function of the O-N interatomic 

distance and fits as described in the text with bin widths of 0.1% (left) and 1% (right) of the O-N 
distance of the ground state structure as bin size, respectively. Blue (MD pool), purple (Wigner 
pool) and red (MC pool) dots: best-fitting structure with the highest 1 𝜒"Kd  value retained in each 
distance bin, for the experimentally measured time delay of 3.55 ps of NMM. Black curves: fits 

using Gaussian functions. The maxima are taken as the determined molecular structure. 
 
Conceptually, the plot of 1 𝜒"Kd  is a surface in a multi-dimensional space, as it depends on the 3𝑁 −
6 dimensions for a non-linear molecule with 𝑁 atoms. The best-fitting structure should be the 
extremal point on this surface. Because it is impractical to analyze such a multi-dimensional 
surface we reduce this to a series of one-dimensional fits. Figure 3 can be viewed as a one-
dimensional projection to a specific structural parameter of the multi-dimensional surface. We note 
that a list of determined structural parameters does not necessarily correspond to a physically 
possible structure because there may be correlations between structural parameters.37 One could 
examine this effect by characterizing the similarity between the representative structures in the 
pool and the list of experimentally determined best-fitting structural parameters, as explained in 
detail in Section 3. We find that the correlations between structural parameters are largely 
preserved during our analysis, benefiting from the fact that each 1 𝜒"Kd  value shown in the plot is 
calculated from a 3D geometrical structure. 
 
2.2.3 Calculation of scattering patterns   
The structure determination method introduced here can be conceptually implemented with any 
choice of method to calculate the scattering patterns. As the simplest and most straightforward 
model, the IAM has many advantages despite being a rather crude approximation19,20. The IAM, 
Equation 1, is constructed from atomic form factors and interatomic distances. While neglecting 
the specific effects of electron density distributions, it also avoids potential systematic errors that 
might be introduced by inaccuracies of ab initio electronic structure methods. The IAM also offers 
computational simplicity and efficiency. Nevertheless, the IAM ignores several effects that are 
important for the determination of excited state molecular structures, in particular the effects of 
electronic excitation. In the following we discuss how these effects could impact the scattering 
patterns and introduce corrections that can be used to partially overcome the problem, including 
taking into account the effect of thermal vibrations. Importantly, the structure-determination 
method presented herein can easily be combined with more advanced methods for predicting the 
scattering patterns20,42,43, especially if the current computational bottlenecks can be addressed. 
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As has been introduced previously, the theoretical percent difference scattering signal between a 
molecule in an excited state versus the ground state can be written as9 

Δ𝑆wxy(𝑞, 𝐑q) = 100 ${|}
~���*,𝐑n�J$�(*,𝐑𝟎)

$�(*,𝐑𝟎)
                      (5) 

where 𝐼wxy�5�(𝑞, 𝐑q)  is the excited state scattering intensity including vibrational excitation and 
𝐼�(𝑞, 𝐑𝟎) is the ground state scattering intensity. Here, 𝐑q is the equilibrium nuclear geometry of 
the molecule in the excited state and 𝐑𝟎 is the equilibrium nuclear structure of the ground-state 
molecule. By inserting two null contributions, 0 = 𝐼��5�(𝑞, 𝐑q) − 𝐼��5�(𝑞, 𝐑q) and 0 = 𝐼�(𝑞, 𝐑q) −
𝐼�(𝑞, 𝐑q), Equation 5 can be rewritten as9 

Δ𝑆wxy(𝑞, 𝐑q) = 100 · �${|}
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            = 	Δ𝑆w�wy(𝑞, 𝐑q) + 	Δ𝑆�5�6�y�(𝑞, 𝐑q) + 	Δ𝑆26�y�(𝑞, 𝐑q),				          (6) 
where Δ𝑆w�wy(𝑞, 𝐑q) recognizes the electronic contribution describing the change of the scattering 
signal between the excited and ground electronic states at nuclear structure 𝐑q , assuming the 
electronic excitation is independent of nuclear vibrations. The term Δ𝑆�5�6�y�(𝑞, 𝐑q) represents the 
effect of the changing vibrational distributions upon laser excitation at a given structure 𝐑q, and 
Δ𝑆26�y�(𝑞, 𝐑q) is the scattering difference caused solely by the changing equilibrium structure.  
 
The IAM expression, Equation 1, can adequately describe the Δ𝑆26�y�(𝑞, 𝐑q) term but ignores the 
effect of electronic excitation and nuclear vibrations. Previous studies have established that the 
Δ𝑆w�wy(𝑞, 𝐑q)  term for electronic excitation to a Rydberg state is nearly independent of the 
molecular geometry, suggesting that the time-evolving scattering signal can be approximated as 
arising mainly from nuclear structural dynamics with the electronic contribution as a correction 
term9,14. In this study, we use the electronic contribution of the near-planar structure (𝐑q) in the 3s 
state calculated previously from the state-averaged complete active-space self-consistent field 
method (SA5-CASSCF(2,5)/6-311++G(d,p)) as the electronic scattering correction factor14.  
 
Next we address the effect of nuclear vibrations. Using a Boltzmann distribution, the IAM formula 
in Equation 1 is traditionally modified for harmonically vibrating molecules as3 

$�
~��(*,𝐑)
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where 𝑙E,"# is the mean vibrational amplitude centered at 𝑅"#. Equation 7 could be used to express 
the 𝛥𝑆�5�6�y�(𝑞, 𝐑q) term for systems with significant vibrational distributions. 
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Figure 4. The vibrational correction term, Δ𝑆�5�6�y�(𝑞, 𝐑q), for NMM in the 3s Rydberg state, 

assuming a vibrational temperature of 1000 K. 
 
To explore the importance of the vibrational term, we use Equation 6 and 7 to examine a special 
case where the nuclear vibrations are thermalized to all degrees of freedom. The excitation and 
subsequent electronic relaxation of NMM with 200 nm inserts ~1.50 eV of excess kinetic energy 
into the vibrational manifold25, which corresponds to 990 K of vibrational temperature if 
thermalized harmonic vibrations are assumed. To model this situation, we created ensembles of 
structures from quantum Wigner distributions at 𝑇2 = 0	K  and 𝑇′ = 1000	K  using SHARC 
software, and extracted the corresponding 𝑙E,"# for all interatomic distances. Equation 7 is then 
used to calculate 𝐼��5�(𝑞, 𝐑q), 𝐼�(𝑞, 𝐑q) and 𝐼�(𝑞, 𝐑𝟎), where 𝐑q is the ionic near-planar structure 
of NMM optimized at the UMP2/6-311++g** level of theory. The vibrational term Δ𝑆�5�6�y�(𝑞, 𝐑q) 
is then calculated using Equation 6, yielding the result shown in Figure 4.  
 
Although the details of the calculated vibrational term might not be accurate due to the intrinsic 
shortcomings of Equation 7, it nevertheless provides a fair estimate of the magnitude of the effect. 
The change in the percent difference scattering patterns due to vibrations is less than 1%, 
corresponding to a change in the experimental scattering signal of less than 0.06% given the 
excitation fraction of the present experiment. This is approaching the current experimental 
detection limit of ~0.05%14. Because the experiment is not able to uncover this effect, we don’t 
include this factor in the further analysis. Looking forward to upcoming improvements in the 
instrument design and the ongoing development of robust methods for data analysis, the effects of 
vibrational distributions may become observable. Equation 6 offers an approach to treat such 
effects as an additive correction term. This will be adequate as long as the vibrational term 
Δ𝑆�5�6�y�(𝑞, 𝐑q) remains independent of the nuclear structure 𝐑q.  
 
3. Results and Discussion  
In a prior publication, the original MD pool (without clamping C-H bond lengths) was first used 
to determine the excited-state structure of NMM from the experimental patterns at long delay times 
(2.6-3.9 ps, totally 25 time points)14. These experimental difference scattering signals converge to 
an essentially constant value. Viewing each time point as an independent measurement of the 
equilibrium structure of NMM in the 3s state, the standard deviation associated with these repeated 
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measurements is a measure of the precision of the structure determination. The present analysis 
builds on that by clamping the C-H bond lengths of all structures in the pools, an approximation 
that is rational because x-ray scattering is only weakly sensitive to the positions of hydrogen 
atoms41. Of course, the calculation of the scattering patterns includes all hydrogen atoms.  
Clamping the C-H bond lengths greatly reduces the dimensionality of the conformational space, 
which leads to a better agreement between the calculated scattering patterns and the experimental 
results. We also introduce two additional randomized structure pools to determine excited 
structures, demonstrating that the structure analysis method is robust vis-à-vis the computational 
method chosen to create the structure pool.  
 
The structure determination analysis is performed independently for each of the 25 time points and 
then averaged to obtain the structural parameters. Experimental signals at three representative 
delay times are shown in Figure 5, along with the calculated scattering patterns using the 
interatomic distances optimized from the respective data. The excellent agreement between 
calculated and experimental scattering patterns indicates that the experimentally determined 
distances are rather accurate. The remaining small discrepancies could originate from the 
vibrational effects that the current analysis ignores, or from uncertainties in the calculated 
electronic correction term.  

 
Figure 5. Experimental and calculated percent difference scattering patterns at several 

representative delay time points. The experimental results (black dots) are adopted from Ref 14 
with 3𝜎 error bars and scaled to 100% excitation. Calculated scattering patterns (red lines) are 

computed using the structural parameters determined with the present method, using the Wigner 
pool and a computed electronic correction term as described in the text. 

 
To investigate how the structure pool might affect the outcome we followed all the analysis steps 
separately for the three different structure pools with clamped C-H distances, giving rise to three 
sets of interatomic distances as listed in Table 1. The table also lists the precision of the 
measurement for each set of determined distances, i.e. how reproducible the results are over the 
measurement of the 25 independent time points. Although our method does not constrain the 
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molecular symmetry, the results show that those bond lengths that should be symmetrically 
equivalent (grouped in the same cells) are determined to be equal within the stated uncertainties.  
 
Because the calculation of structures of polyatomic molecules in highly excited electronic states 
is problematic27,32, we do not have theoretical results that can be used as absolute benchmarks. In 
Table 1, we include the interatomic distances calculated for the electronic ground state of the NMM 
cation for a qualitative comparison. Even though the structure of NMM in the molecular Rydberg 
state is not identical to the structure in the ion state, they are probably fairly similar. That said, the 
dependence of the Rydberg state binding energy on the vibrational motions of the 3s-excited 
molecule observed in the photoelectron spectra indicates that at least in some coordinates there are 
substantial differences between the 3s and the ion structures25. In light of this caveat, the good 
agreement between the experimental and the calculated results suggests a good accuracy of the 
structure analysis method.  
 
Importantly, the results of the analysis using three different structure pools are very close to each 
other, as indicated by the small standard deviations (SD) shown in Table 1. Averaged over all 21 
interatomic distances, the standard deviations are only 1.1% of the respective atom-atom distances. 
Thus we conclude that the structures determined using three very different structure pools are in 
good agreement with each other. This illustrates that the presented structure analysis method is 
largely independent of how the structure pool is created. Any structure pool must, however, contain 
a sufficiently expansive and dense pool of chemically viable structures in the vicinity of the sought 
structure. Since the standard deviations reported here are calculated from independent analyses of 
the same set of experimental data using the three different structure pools, they validate the 
structure determination as a largely experimental method.  
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Table 1. Experimentally determined and calculated structural parameters of NMM in Rydberg and 
ion states. MD, Wigner and MC: best-fitting structural parameters determined from experimental 
scattering patterns using the three different structure pools, respectively. Precision: standard 
deviations over measurements of independent experimental time points. SD: standard deviations 
over structural parameters determined using the three pools. Calculated Ion Ground State: 
calculated ionic ground state structure of NMM reported in ref. 14.  

 

Experimental 3s Rydberg State Calculated 
Ion 

Ground 
State 

MD Wigner MC 

SD Interatomic 
Distances 

(Å) 
Precision 

Interatomic 
Distances 

(Å) 
Precision 

Interatomic 
Distances 

(Å) 
Precision 

O-N 2.862 0.026 2.892 0.026 2.890 0.027 0.017 2.762 
O-C1 
O-C3 

1.370 
1.376 

0.015 
0.012 

1.283 
1.349 

0.064 
0.010 

1.341 
1.329 

0.013 
0.012 

0.044 
0.024 1.401 

O-C2 
O-C4 

2.479 
2.476 

0.032 
0.017 

2.476 
2.503 

0.014 
0.022 

2.505 
2.509 

0.023 
0.017 

0.016 
0.018 2.425 

O-C5 4.156 0.054 4.142 0.036 4.130 0.038 0.013 4.015 
N-C1 
N-C3 

2.496 
2.469 

0.026 
0.021 

2.494 
2.502 

0.019 
0.019 

2.519 
2.521 

0.019 
0.016 

0.014 
0.026 2.433 

N-C2 
N-C4 

1.449 
1.440 

0.016 
0.024 

1.434 
1.439 

0.015 
0.010 

1.414 
1.418 

0.015 
0.013 

0.018 
0.012 1.439 

N-C5 1.438 0.015 1.429 0.012 1.467 0.020 0.020 1.454 
C1-C2 
C3-C4 

1.584 
1.571 

0.021 
0.010 

1.601 
1.634 

0.008 
0.017 

1.655 
1.658 

0.021 
0.023 

0.037 
0.045 1.580 

C1-C4 
C2-C3 

2.819 
2.823 

0.016 
0.032 

2.819 
2.819 

0.018 
0.015 

2.818 
2.827 

0.018 
0.017 

0.001 
0.004 2.864 

C1-C3 2.316 0.017 2.234 0.015 2.224 0.014 0.051 2.345 
C2-C4 2.424 0.026 2.388 0.017 2.335 0.021 0.044 2.433 
C5-C2 
C5-C4 

2.524 
2.512 

0.017 
0.039 

2.514 
2.511 

0.020 
0.019 

2.520 
2.501 

0.027 
0.025 

0.005 
0.006 2.525 

C5-C1 
C5-C3 

3.667 
3.629 

0.051 
0.035 

3.604 
3.632 

0.037 
0.037 

3.600 
3.600 

0.028 
0.036 

0.038 
0.018 3.493 

 
In Figure 6 we examine the performances of the three structure pools using several different 
metrics. In Figure 6a we see that the scattering patterns calculated from structure pools with 
clamped C-H bond lengths agree better with the experimental results than those calculated from 
the original, un-clamped structure pools. This is consistent across all structure pools and possibly 
caused by the large number of O-H, N-H, C-H and H-H distances, which means that the 
dimensionality of the full structure space is vastly larger when the C-H distances are not clamped. 
Considering that the C-H bond lengths are well known to be near 1.09 Å, clamping the C-H bond 
lengths proves to be a simple but effective way to reduce the dimensionality of the structure space, 
which increases the density in the remaining space. Furthermore, although the deviations of all 
three pools in Figure 6a are all rather small, the Wigner pool appears to yield the best fits. This 
might be due to a better balance between expansiveness and denseness of the Wigner pool 
compared to dense but overly localized MD pool, and the expansive but too sparse MC pool, as 
illustrated in the phase space density plots for three pools in Figure 7. 
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Figure 6. Comparison of structure analysis results using three different structure pools. (a) The 

scattering pattern deviations calculated as 
∑ �%�YZ[\J%�Y%�Z&� �¡

∑ B¡
 and averaged over all 25 time 

points, where %𝛥𝑆?ab is the experimental scattering pattern at each time point (black dots in 
Figure 5) and %𝛥𝑆GE?Tm¢ is the corresponding calculated pattern (red curve in Figure 5). Black 
and Blue bars: Results when using structural pools before (black) and after (blue) clamping the 
C-H bond lengths, respectively. (b) Mean absolute percent deviation calculated by Equation 4 
with the determined structural parameters as 𝑟"#q  and distances of representative structure as 𝑟"#qq. 

(c) Averaged relative experimental precision over 21 interatomic distances as reported in Table 1 
for analyses using the individual structure pools. 

 
Figure 6b explores how the sparseness of the sampled conformation space affects the structure 
determination analysis. The structural parameters reported in Table 1 are the optimal values of the 
individual one-dimensional 1/𝜒K error distributions. The question is how close these best-fitting 
structural parameters are to a real geometrical structure that exists in the structure pool. We note 
that a priori, a list of bond distances and angles must not necessarily imply a physically possible 
structure. Our analysis picks the structure that most closely approximates the bond distance table. 
To select that representative structure, we find the structure in the pool that has the smallest MAPD 
(see Eq. 4) across all 21 non-hydrogenic interatomic distances. As shown in Figure 6b, the three 
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representative structures from the different pools are very close to their corresponding determined 
structural parameters, with MAPD deviations of only 0.3%-0.6%. This is well within ~1.0% of the 
experimental precision, see Table 1, indicating that the uncertainty arising from examining one-
dimensional projections rather than a multi-dimensional surface is negligible. The MD pool 
exhibits the smallest MAPD value, 0.35%, suggesting that it has the highest density near the 
optimal structures. This is consistent with the phase space densities shown in Figure 7, where the 
MD shows the largest density around the determined structural parameters using that pool (blue 
cross). On the other hand, the MC pool shows a very sparse density in some particular coordinates 
such as N-C bonds, leading to the largest MAPD of 0.65%.  
 
To further investigate the local density around the determined structure, we selected the 100 
structures with the smallest MAPD from the structure pool and calculated their average MAPD. 
We define an indicator of local density, Υ, by dividing the averaged relative experimental precision 
of 1.0% by the averaged MAPD over the 100 nearest structures. The Υ of MD, Wigner and MC 
are calculated to be 0.92, 0.65 and 0.55, respectively. A larger value of Υ means that those selected 
structures are much closer to the determined structure, indicating a larger local density around the 
determined structure. This is again consistent with the results in Figure 6b and Figure 7. A careful 
inspection of the determined structural parameters in Table 1 shows that the results from the MC 
pool contribute the most to the SD values. Specifically, the C1-C2 and C3-C4 bond lengths are 
longer than usual. This could be caused by the relatively low local density of the MC pool, leading 
to less accurate results compared to the other two structure pools. This again emphasizes the 
importance of the local density near the sought structure. Since the results of MC pool starts to 
show minor deviations due to the sparseness, we estimate that the Υ should be larger than 0.6 to 
assure the accuracy of the determined structures. 
 
Figure 6c plots the precision of the measurements with the different structure pools, which are 
largely independent of the chosen structure pools. As explained previously, since these precisions 
are calculated from the standard deviations over 25 independent time point measurements, they 
mostly reflect the precision of the experiment itself regardless of the chosen structure analysis 
method. 
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Figure 7. Phase space density of three structural pools, projected onto two of the structure 

dimensions. (a) MD pool. (b) Wigner pool. (c) MC pool. The color intensity shows the number 
of structures per pixel in each structure pool. A pixel is defined as 0.004 × 0.004	ÅK for the left 

column and 0.008 × 0.008	ÅK for the right column. Blue crosses: best-fitting structural 
parameters determined using each individual structure pool. 
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4. Conclusions 
We examine a novel method to determine excited-state structures from time-resolved gas-phase x-
ray scattering measurements. The method should be equally applicable to time-resolved gas-phase 
electron scattering experiments as long as the representation of percent difference signals is used41. 
Examining three structure pools created using three different computational methods, we show 
that the resulting structures deviate very little from each other, with only a 1.1% standard deviation. 
A sufficiently expansive and densely sampled structure pool is essential for the quality of the 
structure analysis, suggesting that the structure pool should be carefully examined when using the 
method. The choice of the method to create a structure pool is partially a matter of convenience 
and should depend on the experiment at hand. For an equilibrium excited-state structure that is 
near the minimum of a potential surface, the Wigner and MC pools are most effective. For example, 
we have recently used the Wigner pool to determine the charge-localized and charge-delocalized 
structures of N,N′-dimethylpiperazine (DMP) in the 3s Rydberg state 44 , demonstrating the 
method’s applicability to other molecular systems. If the molecular system involves a coherent 
molecular motion through a significant part of the potential energy surface, the MD pool is a better 
choice as it samples structures across a larger section of the potential surface(s). 
 
Looking ahead, we plan to develop the method further to determine the vibrational distributions. 
One possible option could be to include them as additive factors as discussed in Section 2.2.3. It 
also seems possible to explore the information contained in the width of the error distributions 
illustrated in Figure 3. So far, we have considered only the maxima of the distributions. Moreover, 
the current method applies to the experimental pattern that measures only one single classical 
structure. An extension of the method to cases where the experimental pattern measures multiple 
structures in different channels simultaneously still requires further development. Ultimately, we 
hope the structure determination method introduced here could be applied to determine both 
nuclear and electronic structures of the molecule in the excited state from time-resolved gas-phase 
scattering experiments. 
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