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Abstract

Biological materials found at a crime scene are crucially important evidence for forensic 

investigation because they provide contextual information about a crime and can be linked to the 

donor-individuals through combination with DNA analysis. Applications of vibrational spectroscopy 

to forensic biological analysis have been emerging because of its advantageous characteristics such as 

the non-destructivity, rapid measurement, and quantitative evaluation, compared to most current 

methods based on histological observation or biochemical techniques. This review presents an 

overview of recent developments in vibrational spectroscopy for forensic biological analysis. We also 

emphasize chemometric techniques, which can elicit reliable and advanced analytical outputs from 

highly complex spectral data from forensic biological materials. The analytical subjects addressed 

herein include body fluids, hair, soft tissue, bones, and bioagents. Promising applications for various 

analytical purposes in forensic biology are presented. Simultaneously, future avenues of study 

requiring further investigation are discussed.

Introduction

Forensic science, a discipline of applied science contributing to criminal investigations and 

judicial systems, involves extremely broad analytical subjects encompassing illicit drugs, explosives, 

toxicology, biological tissues, questioned documents, and ballistic1, 2. Especially, biological materials 

(e.g., hair, soft tissues, body fluids, and bone) found at a crime scene can be crucially important clues 

for forensic investigations because analysis of biological evidence can indicate how a crime was 

committed. Moreover, such materials, when examined using DNA analysis, can narrow down or 

identify source individuals. Conventionally, forensic analyses of biological evidence have been 

implemented via a sequence of visual and microscopic observations, and via serological and 

biochemical techniques. Such techniques have been proven to be effective. They have contributed 

greatly to forensic exams to date.

However, some fundamental characteristics of conventional techniques have been critiqued in 

recent years. Destructive testing consumes the limited amounts of examined materials, which can deter 

practitioners from conducting some important examinations, directly proceeding instead to DNA 

analysis. Also, some current experiments are time-consuming, taking up to several days. The 

consequent delays to investigation can be problematic when quick results are demanded. Furthermore, 

the practitioners’ subjective assessments can bias qualitative findings3. Therefore, alternative methods 

have been demanded consistently so that forensic biology can conduct more reliable and efficient 

examinations of forensic biological materials. To satisfy such emerging demands, vibrational 

spectroscopy (i.e., Raman spectroscopy and Fourier-transformed infrared (FT-IR) spectroscopy) has 

been applied extensively to support forensic biology. The quantitative output of these non-destructive 
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and rapid spectroscopic techniques can be used with statistical evaluation, producing an automatic and 

cost-effective means of efficient forensic examination. 

This review is aimed at summarizing recent studies elucidating vibrational spectroscopy and 

biological materials with results that are relevant to forensic concerns. Muro et al. presented a 

comprehensive review about the development of vibrational spectroscopy for forensic purposes up to 

20141. Subsequently, the forensic applications of Raman spectroscopy were reviewed by Doty et al. 

in 20164 and by Khandasammy et al. in 20185. Surface-enhanced Raman scattering (SERS) 

applications to various forensic fields were summarized by Muehlethaler et al. in 20166 and by Fikiet 

et al. in 20187. Developments of body fluid analysis were discussed for FT-IR applications by Mistek 

et al. in 20188 and for both Raman spectroscopy and IR spectroscopy in a part of a review by Silva et 

al. in 20199. Since the publication of these reports, various important studies in the field of forensic 

biology have been reported. The review presented herein includes more recently reported studies as 

well as discussion that is more specific to the field of forensic biology. Additionally, this review is 

intended to emphasize chemometric techniques that have been adopted for the developed methods. 

The applications of vibrational spectroscopy have been investigated most intensively for body fluid 

samples, among other biological materials. Consequently, a considerable part of the discussion in this 

review is devoted to body fluid analysis. However, other subjects including hair analysis, forensic 

anthropology, and bioagent analysis have also shown considerably important progress in their 

analytical approaches based on vibrational spectroscopy and chemometrics. 

Vibrational spectroscopy for forensic biological materials

Both Raman spectroscopy and FT-IR spectroscopy are typical vibrational spectroscopic 

techniques used in modern science. These two spectroscopic techniques, based on different light-

induced phenomena, involve different properties to be considered in measurements.

Raman spectroscopy observes inelastic scattering, or Raman scattering, of light after irradiation 

on a sample. Raman scattering reveals the transitions between two molecular vibrational states in the 

corresponding energy shift of photons. The vibrational modes involving change of the molecular 

polarizabilities are Raman active. Typically, Raman scatterings are weak phenomena. The signal 

intensity is determined by the cross-section (max. 10-28 cm2) and the power of incident light, and by 

the relative abundance of chemical components10, 11. The cross section is positively dependent on the 

light frequency. Consequently, generally speaking, a shorter excitation light wavelength yields 

stronger Raman signals. However, short wavelength excitation can simultaneously cause a strong 

fluorescence background, particularly for biological samples. Therefore, Raman spectroscopic 

analysis often uses near-infrared (NIR) excitation lasers for biological samples, including forensic 

biology samples. Additionally, the resonance effect and enhancement on metal surfaces contribute 

considerably to the increase of Raman signal intensities. Furthermore, although Raman spectroscopy 
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is applicable to various gas, liquid, and solid samples, the upright and back-scattering arrangement of 

Raman optical systems is usually preferred for analysis of forensic biomaterials because they are 

mostly solid (or dried). 

Another mode of vibrational spectroscopy, IR spectroscopy, is based on absorption of infrared 

light by the corresponding molecular vibrational modes. The vibrational modes changing the dipole 

moments are IR active, which are complementary to the Raman active modes. Because infrared 

irradiation is used rather than the visible or near-infrared lasers of Raman spectroscopy, thermal 

damage or photo-damage to samples fundamentally does not occur with IR spectroscopy. As described 

below, FT-IR spectroscopy for forensic relevant biological materials has been conducted mostly using 

the attenuated total reflection (ATR) method. Few studies have used other FT-IR measurement 

methods such as transmission and external reflection. Actually, ATR method has become increasingly 

popular. It is increasingly applicable to various samples, even those with highly absorptive properties. 

The ATR phenomenon at a boundary between an ATR prism and a contacted sample generates 

evanescent waves toward the interior of the sample. Then, IR absorption occurs only on the sample 

surface (within several micrometers), which corresponds to the depth at which the evanescent wave 

can penetrate. The penetration depth of an evanescent wave is dependent on the light wavelength, 

incident angle, and refractive index of both the ATR prism and the sample12.

Chemometrics

Spectra of biological materials observed by both Raman and FT-IR spectroscopy are typically 

complex because of mixed signals from various chemical compositions. In addition, the relative 

abundances of the respective components can vary depending on heterogeneous spatial distributions, 

donor individualities, and experiment conditions. Therefore, the vibrational spectra of biological 

materials often require evaluation based on multivariate statistical methods. Here, chemometric 

techniques have been indispensable for obtaining the analytical outputs of interest. Chemometrics is a 

discipline that uses mathematical and statistical methods to elucidate and correlate external parameters 

from complex chemical data. Since the burgeoning of the discipline in the late 1960s and 1970s, 

spectroscopic data have been a central subject of chemometric investigation13. 

Exploration of spectral pre-processing techniques has been an interest in chemometrics along 

with development of analytical models based on spectral data 13, 14. Purposes of data pre-processing 

are data quality adjustment, data format organization, and data feature enhancement. Pre-processing 

for vibrational spectral data includes baseline correction, removal of outliers or low-quality (e.g., low 

signal-to-noise ratio) data, normalization, smoothing, differentiation, and binning15, 16. Raman spectra 

also require processing of wavelength calibration, spectral axis alignment, cosmic ray/spike removal, 

and removal of the fluorescence background. Variable selection techniques based on genetic 

algorithms (GA) and interval partial least squares (iPLS) are also available. The choice and 

Page 4 of 37Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

implementation of the spectral pre-processing are of crucial importance for subsequent predictive 

modeling.

Chemometric modeling is aimed at predicting qualitative or quantitative properties of 

multivariate data, which correspond respectively to classification and calibration analysis. Various 

chemometric techniques have been developed according to analytical purposes and data properties. 

Principal component analysis (PCA), hierarchical clustering, and self-organization map are useful for 

pattern recognition. Moreover, PCA is used for reducing the dimensionality of multivariate datasets 

and for de-noising before detailed modeling. Multivariate deconvolution techniques such as 

multivariate curve resolution (MCR) and independent component analysis are other approaches to 

decompose spectral datasets into a linear combination of a small number of significant spectral 

components. Classification is applied to assign the examined data to one or more classes. Multivariate 

one-class classification techniques involve soft independent modeling of class analogy (SIMCA), 

Hotelling’s T2, D statistics, and Q statistics. These techniques are designed to evaluate similarities 

among elements of the same class. However, conventionally used two or multi-class classification 

techniques determine the boundaries separating data of different classes in multi-dimensional space. 

Examples of such techniques are Euclidean distance to centroids, linear discriminant analysis (LDA), 

and quadratic discriminant analysis (QDA). For a dataset with a higher number of variables than 

samples, partial least squares discriminant analysis (PLS-DA) is an effective method because it 

involves the process of dimension reduction. Multivariate calibration is aimed at predicting 

quantitative properties (e.g., concentration of a constituent) by regression of spectral data. One relevant 

method is multivariate linear regression. For high-dimensional data, principal component regression 

(PCR) and partial least squares regression (PLSR) are used. The techniques described earlier are 

designated as linear modeling methods: they assume a linear relation between the response variables 

(categorical values for classification, and continuous values for calibration) and explanatory variables 

(i.e., spectral intensity at each wavenumber). For finer modeling of complex analytical data, nonlinear 

modeling techniques such as support vector machine (SVM), random forest (RF), and artificial neural 

networks (ANN) (e.g., recurrent neural network (RNN), convolutional neural network (CNN)) can be 

alternative means of constructing classification or calibration models.

Body Fluids

Body fluid identification

Body fluids (e.g., blood, saliva, and semen) are commonly collected in various contexts of a 

crime scene, particularly involving violence such as sexual assault and homicide. Analysis of body 

fluid evidence contributes to provision of contextual information of the crime. Moreover, identifying 

a source of DNA is critically important to demonstrate relevance between identified individuals and 

the evidence. The primary purpose of body fluid analysis in forensic investigations is to determine 

Page 5 of 37 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

body fluid types. Conventionally, forensic examinations of body fluid evidence have been conducted 

using biochemical and serological techniques designed to detect composition characteristics of various 

body fluid types. Today’s forensic exams comprise presumptive tests and subsequent confirmatory 

tests. For example, blood evidence is presumptively discovered via detection of hemoglobin’s 

oxidation activity based on luminol chemiluminescence or chemical colorimetric testing17, 18. 

Unfortunately, such easy and rapid presumptive tests can yield false-positive results. Subsequent 

confirmatory tests are more selective, providing more reliable results. Blood evidence is then 

conclusively identified by detection of human hemoglobin using the specific antigen, which is usually 

conducted with commercial immunochromatography kits. However, most current techniques for body 

fluids are destructive, which is disadvantageous because the amounts of examined evidence are usually 

limited. They must be preserved to the greatest extent possible for subsequent DNA analysis and future 

re-investigations.

Vibrational spectroscopic approaches are quite preferable for forensic body fluid analysis. 

Vibrational spectroscopy allows rapid, versatile and nondestructive examinations. The last decade has 

been a revolutionary era of forensic body fluid analysis using vibrational spectroscopy, for which 

numerous pertinent studies have been reported (Table 1). Investigations of Raman spectroscopic 

analysis for forensic body fluid samples were launched in 2008 by Virkler and Lednev19. They first 

reported the potential for discriminating typical body fluid types (i.e., human semen, canine semen, 

vaginal fluid, saliva, sweat, and blood) based on the characteristic Raman peaks and their 

corresponding components. Thereafter, the Lednev research group at the University of Albany has 

made great contributions to the development of this field to date. From early investigations, Raman 

spectral signatures were developed for various body fluid types (i.e., blood20, saliva21, semen22, sweat23, 

and vaginal fluid24) to identify them and simultaneously describe the heterogeneities of the traces and 

donor-dependent variations. Herein, multivariate deconvolution techniques of significant factor 

analysis (SFA), principal component analysis (PCA), and multivariate curve resolution (MCR) using 

alternating least squares (ALS) algorithm in chemometrics were used to find the Raman profiles of 

significant components. Raman spectroscopic analysis has been subsequently developed to 

discriminate body fluid samples based on advanced statistical or chemometric techniques. 

Discrimination of body fluid types has been studied, beginning with discrimination of three body fluid 

types (blood, saliva, and semen)25 and peripheral/menstrual blood26. In 2016, Muro et al. demonstrated 

discrimination of five common body fluids: peripheral blood, saliva, semen, sweat, and vaginal fluid27. 

They developed discriminant models using PLS-DA and support vector machine discriminant analysis 

(SVM-DA) algorithms. In addition, more informative spectral regions were selected using interval 

PLS-DA and GA, thereby achieving nearly perfect discrimination. More recently, Vyas et al. have 

expanded the Muro’s model for five body fluids including urine. They demonstrated 100% accuracy 

for the identification of all body fluid types28. 
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Surface-enhanced Raman spectroscopy (SERS) can be a powerful tool for forensic body fluid 

analysis, especially because of its high sensitivity. Premasiri et al. reported SERS spectra of whole 

blood, red blood cells, and blood plasma using a 785 nm excitation laser and Au particles covering a 

SiO2 substrate29. They demonstrated that SERS spectra of whole blood are dominated by signals from 

the blood plasma component, whereas normal Raman spectra of whole blood are almost entirely 

derived from oxyhemoglobin. Additionally, they demonstrated time-dependent changes of SERS 

spectra of whole blood, which were attributed to an increase of hypoxanthine leaked from cellular 

components after approx. 15 h of storage. Bonifacio et al. reported a systematic comparison of SERS 

spectra of blood plasma and serum using various Ag and Au aqueous colloids with three laser 

wavelengths (i.e., 514, 633, and 785 nm)30. After the authors assessed various sample preparation 

procedures, they concluded that only the combination of filtering proteins and the use of Ag 

nanoparticles and 785 nm excitation laser provided repeatable spectra. Recently, Shaine et al. reported 

confirmative detection of dried bloodstains using SERS31. They reported detailed assignments of 

SERS spectra of dried blood with Au and Ag nanoparticles on SiO2 substrates based on DFT 

calculations. They showed the SERS detection sensitivity for blood as similar or higher than that of 

common immunochromatographic kits such as the RSID test, hemoglobin HemDirect test, and 

HemaTrace test. Moreover, using the PLS-DA algorithm, they demonstrated the discrimination of 

SERS spectra of blood and four other body fluids that are commonly found at crime scenes. 

In 2011, Fourier transform infrared (FT-IR) spectra of body fluids were first reported in the 

context of forensic analysis by Elkin32. Elkin used attenuated total reflection (ATR) equipment to 

observe and compare infrared spectra of various human body fluids and materials. Results of that study 

indicated that amide I peaks and fingerprint regions were characteristic for the respective examined 

samples. That combination of distinctive peaks potentially enables differentiation of various samples. 

Orphanou et al. investigated the ATR FT-IR spectra of human blood, saliva, semen, and vaginal 

secretions, which are frequently obtained at scenes of suspected violent or sexual offenses33. The 

methods described in those studies determined detectable components and vibrational modes that were 

characteristic to each body fluid type, particularly in the spectral regions of lipids (3000–2800 cm−1), 

proteins (1700–1600 cm−1), and nucleic acids (1250–1000 cm−1). Based on the spectral patterns, 

combinations of peaks, and peak frequencies, the observed spectra of these body fluids were inferred 

as distinguishable. Zapata et al. reported discrimination of stains of semen, vaginal fluid, and urine 

using external reflection FT-IR spectroscopy and chemometric analysis34. The spectra of the respective 

body fluids were classified correctly from other body fluids and potential false positive substances by 

PCA and SIMCA. Takamura et al. reported discrimination between antemortem blood and 

postmortem blood using ATR FT-IR spectra and PLS-DA modeling35. Discrimination of postmortem 

blood is crucially important for forensic investigations to reveal a crime sequence. Using GA, 

contributive spectral regions are indicated, which represent a signal increase of lactic acids in the 
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spectra of postmortem blood. Takamura et al. also demonstrated a discriminant model for ATR FT-IR 

spectra of various body fluids (e.g., peripheral blood, saliva, semen, urine, and sweat) combining PLS-

DA, LDA, and Q-statistics36. They proposed a model architecture of a dichotomous classification tree 

based on hierarchical clustering analysis results. This model architecture enabled robust discrimination 

even for disturbed spectra of body fluid samples aged over several months. In addition, insertion of 

Q-statistics models functioned as outlier analyses for non-body fluid samples.

Species identification and phenotype profiling of body fluid traces

Forensic body fluid analysis using vibrational spectroscopy combined with chemometrics has 

been developed further for more advanced purposes: species identification and phenotyping of human 

donors (Table 1). Determination of origins of body fluid traces and narrowing down of donor 

candidates based on phenotypes are beneficial for forensic investigation. Components of a certain 

body fluid type are remarkably similar among various species and human individuals. Therefore, 

chemometric techniques have been invaluable for investigating similar spectral patterns. Species 

identification has been explored mainly for bloodstains. The Lednev research group has investigated 

discriminant analysis between human and animal (non-human) blood using Raman spectroscopy by 

stepwisely increasing the number of examined animal species37, 38. A recent report of their work by 

Doty et al. demonstrated the use of PLS-DA modeling for discrimination of the Raman spectra of 

blood from humans and 16 animal species39. The examined animal species included cat, chicken, dog, 

horse, mouse, opossum, pig, rabbit, raccoon, rat, chimpanzee, deer, elk, ferret, fish, and macaque, 

which were presumed to be forensically relevant. Receiver operating characteristic (ROC) analysis of 

the constructed PLS-DA model demonstrated 99% discrimination accuracy between human and non-

human subjects for an external dataset. Most recently, Wang et al. reported a recurrent neural network 

model for discriminating the Raman spectra of blood from 20 kinds of species including human40. 

These models were designed to classify a Raman spectrum into one of the examined species. The total 

classification accuracy of the constructed RNN model reached 97.7%. Additionally, they assessed 

resistance to wavenumber drift of −5 to 5 cm−1 and cross-instrumental modeling based on Raman 

spectra measured using two different Raman spectrometers. The RNN models trained by considering 

these variations also showed comparable classification performance.

Species identification has also been achieved using FT-IR spectroscopy. Mistek and Lednev 

developed a discriminant model for ATR FT-IR spectra between human, cat, and dog bloodstains41. 

They recently expanded their work using blood samples from 11 animal species42. The two-class 

discriminant model based on PLS-DA showed superior discrimination accuracy between humans and 

animals. They also emphasized that none of the blood spectra from external animal species outside of 

model training was assigned as human, satisfying the forensic requisites. Wang and coworkers have 

explored species identification based on ATR FT-IR spectra, considering forensic practical challenges, 
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in their subsequent two studies. Lin et al. reported PLS-DA models to differentiate human bloodstains 

from the bloodstains of five animal species. They assessed the models’ performance for bloodstains 

subjected to indoor and outdoor conditions in addition to an aging process43. Wei et al. recently 

demonstrated the use of ATR FT-IR spectroscopy for species identification of semen stains based on 

the supernatants44. They compared effects of substrate types and time since deposition on the observed 

spectra. The developed PLS-DA model successfully discriminated the supernatants of human semen 

from those of nonhuman ones. In addition, species identification of semen supernatant without sperm 

cells indicated the applicability to azoospermia samples.

Phenotype profiling based on body fluid stains using vibrational spectroscopy has been developed 

for identifying the sex, race, and age of donors. Here also, the Lednev research group pioneered these 

analytical interests. Both Raman spectroscopy and FT-IR spectroscopy have exhibited promising 

potential. Phenotype profiling of bloodstains has been explored intensively for determining sex45, 46, 

race46, 47, and age48, 49. Sikirzhytskaya et al. reported sex determination of bloodstain using Raman 

spectroscopy45. They developed a classification model based on an artificial neuron network (ANN) 

coupled with GA for wavenumber selection. The obtained selectivity and sensitivity for sex 

discrimination were 95% for a training dataset and >80% for a test dataset, which were superior to the 

compared SVM-DA models. Mistek et al. demonstrated discrimination of both sex and race (i.e., 

Caucasian, African American, and Hispanic) based on ATR FT-IR spectra of bloodstains46. They used 

a PLS-DA algorithm. The main results of the external model validation were 92% prediction accuracy 

for both sex and race based on individual spectra, and 100% accuracy at donor-level classification. 

Mistek et al. also reported race differentiation of bloodstains by Raman spectroscopy coupled with 

SVM-DA47. The latest progress for phenotype profiling of bloodstains is to differentiate groups by the 

chronological age (CA) of donors. Analytical methods used for determination of CA are quite useful 

for forensics because such information cannot be obtained via DNA profiling. Doty et al. constructed 

a SVM-DA model based on Raman spectra of bloodstains to differentiate a donor’s CA between 

newborns (<1 year), adolescents (11–13 years), and adults (43–68 years)48. Cross-validation of the 

model showed high sensitivity and specificity of more than 0.96 and 0.97, respectively, for the donors’ 

age groups. After using ATR FT-IR and a PLS-DA algorithm, Giuliano et al. recently reported similar 

findings for bloodstains from the same CA groups49. The discrimination accuracy, as evaluated by 

subject-wise leave-one-out cross-validation, was 92% for the individual spectra and 95% for the 

donors.

Phenotype profiling has been explored for body fluids of other types as well as bloodstains. Sex 

determination of saliva traces was investigated by Muro et al. using Raman spectroscopy and SVM-

DA algorithms50. Muro and Lednev also reported race differentiation of semen traces using Raman 

spectroscopy51. For that study, SVM-DA combined with GA was adopted for the wavenumber 

selection. All 18 donors for internal CV and 7 donors for external tests were classified correctly 
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according to their corresponding races. Takamura and coworkers demonstrated sex determination of 

urine traces using ATR FT-IR52. Because DNA is often found only in small amounts, this technique 

is especially useful because genome-based analysis for urine traces is often unavailable. After the 

authors selected informative spectral regions using GA, they developed a PLS-DA and ANN 

discriminant model. The evaluated accuracy was 0.97 for donor-wise discrimination in the use of the 

PLS-DA algorithm. In addition, the constructed ANN model showed comparable discrimination 

performance to that of the PLS-DA model.

Prediction of time since deposition of body fluid traces

Development of analytical techniques to estimate time since deposition (TSD) of body fluid 

traces has long persisted as a great concern in forensic science53, 54. Such techniques are beneficial to 

indicate the relevance of an evidence to the crime, and to estimate when and how a crime was 

committed. Especially, the techniques for bloodstains have the most intensively explored. This is 

because bloodstains are frequently found in crime scene, and because hemoglobin (Hb), which is a 

representative component in blood, shows distinctive chemical changes by autoxidation during the 

aging. Specific autoxidation of hemoglobin, which involves oxyhemoglobin (oxyHb), methemoglobin 

(metHb), and hemichrome (HC), has been expected to be an indicator of the bloodstain aging53, 54. 

These hemoglobin changes are visible as changes of the visible color from red to brown during 

bloodstain aging, whereas the rate of the color change is affected by environmental conditions55-57. 

Other components in blood, such as RNAs in white blood cells and blood plasma, have also been 

analyzed during aging. They might change at different rates to that of hemoglobin autoxidation. 

However, currently proposed techniques targeting these compositions are fundamentally destructive 

and are rather costly54. Despite enormous research efforts undertaken over the last century, no 

analytical method has been established to predict the TSD of bloodstains in forensic practice. 

Nevertheless, techniques using vibrational spectroscopy have emerged, showing promising potential 

and the exclusive benefit of non-destructivity (Table 1). 

Raman spectra of blood excited by visible-wavelength or NIR-wavelength lasers, are dominated 

by signals from hemoglobin and the oxidized variants because of resonance and semi-resonance 

effects58, 59. The characteristic spectral patterns and the detailed peak assignment of hemoglobin 

variants have been explored intensively. For example, bands observed at 1638 cm−1 ((CCm)asym), 

1225 cm−1 (13 or 42 of (CmH)), 570 cm−1 ((Fe–O2)), and 419 cm−1 ((Fe–O–O)) are characteristic 

of oxyHb, which has Fe2+–O2 binding at Heme groups60-63. MetHb is known to show specific bands at 

376 cm−1 ((CCcCd)), 1629 cm−1 ((CCm)asym), 1372 cm−1 (4), and 1212 cm−1 (5+18 or 13)29, 60, 61, 

64. Moreover, earlier work has demonstrated that short wavelength excitation lasers, high laser power, 

and prolonged irradiation can cause photo-denaturation and thermal denaturation of hemoglobin as 

well as increasing of fluorescence background and signal-to-noise ratio61, 65. These denaturation 
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processes brings increases of some peaks at 1396, 1365, 1248, 972, and 662 cm−165, potentially 

accompanying an increase of HC concentration66. Such laser-induced denaturation produces similar 

spectra of bloodstains, which can hinder reliable TSD analysis61. Therefore, for forensic purposes of 

predicting TSD, the use of an NIR excitation laser (i.e., 785 nm) and low laser power have been 

regarded as suitable to avoid overestimation of TSD and to minimize prediction errors54, 61. Predictive 

methods for TSD of bloodstains using Raman spectroscopy were first reported by the Lednev research 

group. Doty et al. demonstrated chemometric models for prediction of TSD of bloodstains up to one 

week67, and further extended them up to two years68. Their second report described application of two 

linear regression methods, PLSR and PCR algorithms, to the observed Raman spectra of bloodstains 

excited by a 785 nm laser. The overall accuracies of approximately 70% for predicting the TSD at 

each time point were obtained for the respective regression methods. At the same time, they used a 

discriminant model that their group established earlier to assess whether an aged bloodstain is 

identifiable as “blood”27. The discrimination accuracy was 89%. It is noteworthy that the rate of 100% 

was obtained for bloodstains that had been aged for up to one month. Takamura et al. recently reported 

a multivariate spectral deconvolution model to describe spectral changes during bloodstain aging using 

Raman spectroscopy with 785 nm excitation66 (Fig. 1). They specifically examined the kinetics latent 

in the spectral changes derived from autoxidation of Hb variants and denaturation of other components. 

The identified kinetic formulas were used as constraints to deconvolute the Raman spectra into five 

significant spectral components, corresponding to the respective blood components. Consequently, 

based on the decomposed spectral components, they proposed an index for the relative degree of 

bloodstain age, which is available independently of the environmental conditions. 
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In contrast to Raman spectroscopy, ATR FT-IR spectroscopy presents some advantages for TSD 

analysis of bloodstains. The ATR FT-IR spectra are not adversely affected by fluorescence. Also, 

measurement via infrared incident does not cause photo-degradation or thermal degradation of blood 

compositions. Lin et al. used ATR FT-IR spectroscopy to investigate bloodstains that had been 

exposed to indoor and outdoor conditions69. They constructed PLSR models to predict the age of 

bloodstains for durations of 0.25–7 days, 7–85 days, and 0.25–107 days based on indoor and outdoor 

spectral data. The PLSR models showed reliable estimation for the samples under the same 

environmental conditions, but poor performance under different environmental conditions. Alternative 

models used to distinguish fresh (age<1 day) and older (age> 1 day) bloodstains were established via 

PLS-DA. The model trained using outdoor data represented good discrimination performance even 

for indoor data. Kumar et al. recently demonstrated estimation of bloodstain age based on the ATR 

FT-IR spectroscopy using different models including curve estimation, multiple linear regression 

(MLR), and PLSR70. The ATR FT-IR spectra were collected from bloodstains that had been aged for 

1–175 days. After 25 distinctive peaks on the first derivative spectra were selected as independent 

variables, they were used one by one for model building. The MLR model composed of the three 

variables was inferred as the best, with prediction error of approx. 3 ± 1 days. The PLSR model showed 

comparable performance, providing prediction error of approx. 4 ± 1 days. 

More recently, prediction methods for TSD of body fluids other than bloodstains have been 

Fig. 1 Deconvolution of Raman spectra of bloodstains during aging. (a) Spectral series observed during bloodstain 
aging at 24 °C. The spectra are shown before subtraction of fluorescence background. (b) Decomposed Raman 
spectral profiles of bloodstains by multivariate curve-resolution alternating least squares. (c) Index for bloodstain 
aging at 30 °C (magenta), 24 °C (purple), and 16 °C (blue). The index was defined as the ratio scores between the 
first and the fourth spectral components yielded via multivariate deconvolution technique based on the latent 
kinetics. The circles, crosses, and triangles represent data from three donors. The modeled ratios are shown as 
dashed lines with the standard deviations (shaded areas) for each temperature.
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explored, although they are still in an early stage of development. Zha et al. reported a preliminary 

study to predict TSD of semen stains using ATR FT-IR71. Semen stains were prepared on glass, tissue, 

and fabric made of regenerated cellulose. The semen stains were stored for up to six days, then the 

semen supernatants via extraction were assessed. In this work, PCA results indicated interference from 

the substrates as negligible compared to spectral variations derived from sample aging. The PLSR 

models were constructed using the absorbance and second derivative of the “bio-fingerprint” region 

of 1800–900 cm−1, respectively. The model based on the second derivative spectra demonstrated better 

prediction accuracy, with evaluated coefficient of determination (R2) values of 0.81 for cross-

validation and 0.74 for external validation. Work particularly addressing the drying processes of three 

body fluids (semen, saliva, and urine) was undertaken by Das et al.72. Changes of ATR FT-IR spectra 

of these body fluid traces were observed during the drying of phase I (water dominant) and phase II 

(rapid water evaporation) up to 42 min. Phase II showed more drastic changes of the spectra during 

drying. The PCR and PLSR models were constructed using several age-linked peaks, indicating the 

potential of this analytical approach for estimation of the TSD, particularly during the initial drying 

process, for each body fluid.

Practical challenges: substrate interference and body fluid mixtures

Challenging issues presented by the practical use of vibrational spectroscopy for forensic body 

fluid analyses are mixtures of different body fluid sources and interference of the substrate on which 

the body fluid has been deposited. Body fluid evidence is often discovered as mixed with body fluids 

of other types. Such mixed body fluids can exhibit complicated spectral patterns: the spectral 

characteristics of the respective body fluids are overlapped, simultaneously involving donor-

dependent variations. The substrate interference also causes mixed signals of body fluids and the 

substrate materials. How much the interference affects the body fluid spectra is dependent on substrate 

properties such as absorptiveness, thickness, porosity, and surface roughness73, 74. Moreover, 

heterogeneous substrates (e.g., cloth of denim and blended fabrics) increase the difficulty of spectral 

treatment75, 76. These tendencies of body fluid mixtures and substrate interference have been studied 

using both Raman spectroscopy and FT-IR spectroscopy with assessment of various body fluid types 

and substrate materials (Table 2). 

Elkin reported identification of various body fluid types based on characteristic bands in ATR 

FT-IR spectra, even when deposited on interfering substrates such as a white T-shirt and white copier 

paper32. Later, Quinn and Elkins showed ATR FT-IR spectra of venous blood, menstrual blood, semen, 

saliva, and breastmilk in a neat state or after deposition on various substrates including cotton, nylon, 

wood, paper, and glass73. They demonstrated that the characteristic signals of body fluids were still 

detectable on the substrates. However, their intensity was decreased considerably, and decreased 

especially when pipetted onto a porous substrate (e.g., cotton, nylon, paper, or wood) into which body 

fluids were absorbed. They also showed that the substrate roughness (i.e., weave of fabrics) can lessen 
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body fluid signals. Recently, Sharm et al. reported the use of ATR FT-IR spectroscopy for 

discrimination of menstrual blood and peripheral blood74, seminal fluid77, and vaginal fluid stains78. 

In that work, they comprehensively studied practically challenging factors such as substrate 

interference, mixture with other body fluids, differentiation of look-alike non-biological materials, 

dilutions, washing, and chemical treatments. Regarding substrate interference, substrates of various 

types were assessed including white cotton, denim, polyester, paper, wood, skin, plastic, grass, glass, 

condoms, sanitary napkins, and floor tiles. The non-porous substrates provided spectral profiles of 

body fluids that were almost consistent with those in the neat states. However, the porous substrate 

alleviated or altered body fluid signals, whereas only some distinctive peaks of proteins such as Amide 

I and Amide II were still recognized. Body fluid mixtures of seminal fluid or peripheral/menstrual 

blood with vaginal fluid showed overwhelming signals of seminal fluid or peripheral/menstrual blood, 

which hindered observation of vaginal fluid signals77, 78. Hager demonstrated identification of urine in 

a liquid state and on fabrics such as white cotton, blue jeans, a white lab coat, and a blue uniform 

(polyester) as well as sweat-contaminated cotton shirts79. For this study, they used a hand-held Raman 

spectrometer to facilitate on-site analysis. Actually, PLS-DA algorithms for the observed Raman 

spectra showed high discrimination accuracies between the presence and the absence of urine on all 

studied fabric types.

Chemometric strategies have also been explored to examine vibrational spectra of body fluids 

with interference by a substrate and after mixture with other body fluids. Sikirzhytski et al. combined 

Raman spectroscopy and SVM-DA to demonstrate classification of pure blood, pure semen, and a 

blood–semen mixture80. The constructed model enabled classification with high accuracy, whereas 

only mixture samples with a small portion of blood (5%) were misclassified as semen. The Lednev 

research group also investigated treatments of the Raman spectra of body fluid stains (blood75, 81 and 

semen76) with interference by substrate materials. They manually subtracted substrate contribution 

from the interfered body fluid spectra. Subsequently, they performed multivariate fitting of the 

recovered body fluid signals using the corresponding Raman signatures derived from pure body fluid 

spectra. Goodness of fit scores (i.e., sum of squares due to error (SSE), R2 and root mean squared error 

of prediction (RMSE)) showed reliable results for identifying bloodstains, irrespective of substrate 

and contaminant types75, 81. Scores for semen identification were lower than expected, indicating the 

possibility of semen component separation because of capillary effects of fabrics76. Takamura et al. 

demonstrated discrimination of antemortem and postmortem blood deposited on clothes of cotton, 

denim, and polyester35. The ATR FT-IR spectra of the bloodstains were subjected to multivariate 

fitting using the PCA loadings of both pure blood and substrates. Additionally, a weight factor 

developed based on the PLS-DA loadings were also incorporated into the fitting calculation. The 

extracted spectral profiles of blood signals allowed the discrimination of blood origins with high 

accuracy (max. 95%). More recently, McLaughlin et al. reported automatic extraction of body fluid 
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signals from Raman spectra in the presence of substrate interference82. For this study, hypothetical 

addition multivariate analysis with numerical differentiation (HAMAND) was used. It is a spectral 

processing technique used to separate and quantify the contributions of a known spectral component 

in a mixture or overlapping spectrum83, 84. The spectral components of semen were identified 

successfully in the Raman spectra of semen stains on glass and polyester, even though the net 

contribution was estimated as only less than 0.01%. 

During the last few years, the applications of vibrational spectroscopy and chemometrics to 

forensic body fluid analysis have been explored intensively: the identification techniques have covered 

most of common body fluid types; the phenotype profiling methods have developed to determine sex, 

age, and age-group. The techniques for TSD prediction have begun to target various body fluid types 

as they have for bloodstains. At the same time, challenging aspects of body fluid analysis based on 

vibrational spectra have been revealed. Issues of substrate interference and body fluid mixture remain. 

Other factors such as low concentration and degradation of body fluid evidence must also be settled. 

Through continuous efforts undertaken to date, the promising potential of vibrational spectroscopy for 

forensic body fluid analysis has been widely explored and proven. Methods to be developed will move 

from proof-of-concept studies to in-depth validation studies to address the full scope of pragmatic 

difficulties encountered when examining forensic cases.

Hair

Hair is ubiquitous in ordinary environments. It is commonly discovered at crime scenes. Hair 

evidence discovered at crime scenes can provide important information about source individuals. 

Although it is beyond the scope of this review, hair evidence has also been used to detect drug use and 

to obtain a DNA profile from a hair root, if present, or mitochondrial DNA from the hair shaft. Among 

hairs found on various regions of human body, mostly scalp and pubic hair can be important evidence 

for forensic investigation of crimes such as intrusion into homes by a sneak thief, violence, and sexual 

assault. Forensic analysis of hair basically aims at determination of whether the sample is natural hair 

rather than a synthetic fiber, whether it is from a human or an animal, and if human, whether the 

examined unknown hair is matched to hair collected from a known source, usually from the suspect. 

Microscopic observation is used currently to evaluate attributes of hair, including the length, diameter, 

cross-section shape, medullary index, chemical treatment, and somatic region. The microscopic 

analysis of hair by experienced examiners has proven its worth and has contributed to forensic 

investigation to date. However, its scientific validity has been questioned in recent years3, 85. First, 

subjectivity is an inherent flaw of microscopic observation. Even for well-trained examiners, their 

conclusion can be biased on information received before or during the exam. In addition, absence of 

clear criteria can result in inconsistent conclusions, depending on the examiner. Therefore, other 
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analytical techniques to characterize hair are worth exploring to improve the reliability of forensic hair 

analysis. Here, vibrational spectroscopy can offer alternative methods of forensic hair analysis in a 

nondestructive manner. 

Hair analysis using Raman 

spectroscopy has not been common, 

primarily because high fluorescence from 

melanin granules, hair pigment, interferes 

with the spectra. However, some studies 

have demonstrated the great potential of 

Raman spectroscopy to evaluate detailed 

chemical states of hair components. 

Kuzuhara and coworkers have investigated 

Raman spectroscopic features of human hair 

exposed to permanent wave treatments 

including steps of reduction, stress 

relaxation, and oxidation86. Raman spectra 

were collected from cross-sections of white 

human hair untreated and treated via each 

step. That study revealed that disulfide (-SS) 

bonds of gauche-gauche-gauche (GGG) and 

gauche-gauche-trans (GGT) conformations decreased by reduction processing with thioglycolic acid, 

whereas trans-gauche-trans (TGT) conformations showed no marked change. Subsequent stress 

relaxation processing further promoted cleavage of the GGT and GGT conformations. The final 

oxidation treatment caused an increase of the S–O band assigned to cysteic acid and a greater decrease 

of GGG contents, indicating molecular disorganization in the cuticle and cortex cell. In a recent study, 

Kuzuhara reported damage effects on hair by reduction treatment with thioglycerol87. The cross-

sections of white human hair reduced with thioglycerol shows less decreases of GGG and GGT 

disulfide contents, or less damage, than those reduced with thioglycolic acid. Nevertheless, 

thioglycerol provided higher waving efficiency than thioglycolic acid. dos Santos et al. compared 

Caucasian and Afro hair, applying different treatments of heating, bleaching, and straightening88. 

Raman spectra of intact Caucasian and Afro hairs were similar, but the Afro hair showed slightly 

higher intensity of the Amide III band. I Also, changes at some characteristic bands, such as the S–S, 

C–C, S–O, and Amide III, after each and all three treatments were observed differently between the 

Caucasian and Afro hair. 

SERS techniques to detect colorants in dyed hair have been investigated for forensic purposes. 

Kurouski et al. used gold nanorods and 785 nm excitation laser to observe SERS spectra of artificially 

Fig. 2 SERS spectra of hair colored by blue 
semipermanent dye (BLUsp) and re-dyed after by black 
semipermanent dye (BLUsp → BLKsp). The spectra of 
hair colored by BLKsp and the dyes themselves (BLKsp 
(D) and BLUsp (D)) are also included. Reproduced from 
ref. 90 with permission from American Chemical 
Society, copyright 2019. 
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dyed hairs89. They demonstrated that the distinctive bands in the SERS spectra of dyed hair exactly 

matched those of chemical colorants contained in the commercial dyes. However, normal Raman 

spectra showed no colorant signal. Importantly, the SERS spectra were observed without interference 

from natural hair pigments because the pigments exist in the inner structure of hair (i.e., the cortex), 

thereby separated from SERS effects. Based on the characteristic SERS bands, hair that had been dyed 

using different commercial brands were distinguishable even when they were the same color. They 

also showed the usability of a portable Raman spectrometer to measure SERS spectra with a high 

signal-to-noise ratio, offering potential for field examinations of hair at a crime scene. Recently, 

Esparza et al. expanded the work described above. SERS were used to examine the underlying 

colorants in re-dyed hair90. Results indicated that SERS enabled detection of blue semipermanent 

colorant on hair that had been re-dyed with both black semipermanent and permanent dye (Fig. 2). 

Meanwhile, black permanent colorant could not be detected if the hair had been re-dyed with another 

permanent dye because of the presence of similar oxidation products. Furthermore, as long as nine 

weeks before analysis, SERS were able to sense colorant on dyed hair that had been subjected to 

normal daily washing. 

Forensic hair analysis using FT-IR spectroscopy has also been explored. Boll et al. used ATR 

FT-IR spectra to (1) determine if the sample is of dyed or non-dyed hair, (2) distinguish brands of dye, 

and (3) discriminate between the dye color (i.e., black or medium brown), combined with the PLS-

DA algorithm91. They examined hair collected from donors of different ages, biological sexes, and 

races. The natural color of the donated hair included blonde, brown, black, and red. The constructed 

three classification models provided an average prediction accuracy of 98.1% ± 3.0% for the spectrum 

level, and at least 90.0% confidence for donor-wise classification. Pienpinijtham et al. demonstrated 

ATR FT-IR spectra of human hair, which were measured using a homemade dome-shaped Ge IRE 

accessory92. This equipment enabled detection of cosmetic residues on a single hair surface as well 

as the hair compositions. The ATR FT-IR spectra from hair from the same person were found to be 

identical even between black and white hairs. Hairs from different individuals are distinguishable 

because of differences in bands of peptide (Amide I, II, and III) and cosmetics particularly involving 

disulfide bond variations and the signals of silicone oil. Moreover, they showed that split hairs 

exhibited red-shifts of amide bands and a new peak at 1575 cm−1 compared because of peptide bond 

cleavage. Most recently, Contreras et al. showed techniques using ATR FT-IR spectroscopy to 

elucidate the hair history of bleaching and dyeing93. The PLS-DA models were constructed based on 

the ATR FT-IR spectra to discriminate whether hair had been bleached or not, and if bleached then to 

determine what bleaching agent had been used: a commercially available bleaching agent or 

professional bleach. Furthermore, the PLS-DA demonstrated the promising capability to assess 

whether hair had been colored before being bleached; then to assess whether the colorant used was 

permanent or semi-permanent. 
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In recent years, vibrational spectroscopy has demonstrated that it provides detailed chemical 

information for hair. Especially, cosmetic treatments of different types applied to hair (i.e., hair dyes 

and bleach) have been proved to exhibit characteristic changes of the spectral pattern. Actually, SERS 

has shown highly specific and strong bands derived from artificial colorants on the hair surface, 

allowing determination of the dye brand. Combination with chemometric modeling has enabled the 

objective discrimination and identification of hair treatments. Although further research and validation 

are necessary, vibrational spectroscopy is anticipated as a helpful tool to complement current 

microscopic observations for forensic hair examinations. 

Forensic Anthropology

Forensic anthropology is a sub-discipline of forensic science for recovering, analyzing, and 

identifying human remains. The remains examined in criminal investigation are recoverable in various 

conditions such as decomposing, mummified, and skeletonized, depending on the surrounding 

environment and time since death. Regarding completeness, it ranges from a piece of bone, tooth and 

a part of body to an entire individual. Based on the recovered soft tissues and skeleton, forensic 

analysis of the remains is aimed at determining the biological profiles of the individuals (e.g., sex, age 

at death, and race), cause of death, and time since death, or postmortem interval (PMI). Such analysis 

engenders indication of deceased individuals and events before and after the death, which are helpful 

for forensic investigations. Traditionally, analytical methods applied by forensic anthropologists have 

consisted of observations and measurements of the remains. Observations of the remaining soft tissues 

can result in estimation of the cause of death and PMI. Measurements of the size and morphology of 

the skeletons, including distances between osteological landmarks, are useful to predict sex. The 

individual’s age at the death can be estimated by epiphyseal fusion and dental development in addition 

to bone measurements. These current methods have been effectual. However, most of the techniques 

are qualitative. They can thereby be influenced by the examiners’ bias. Moreover, the manual 

measurements might involve considerable error and might not be reproducible. Therefore, 

development of novel techniques based on an objective evaluation has been demanded to improve the 

accuracy and reliability of forensic anthropological analysis.

Vibrational spectroscopy selectively provides information about chemical states of the composite 

molecules in tissues94 and bones95. Its quantitative and nondestructive nature is advantageous 

compared to current methods of forensic anthropology and other destructive analytical methods such 

as mass spectroscopy and protein or DNA analysis94, 96. Because of the nondestructive manner, 

vibrational spectroscopy of tissues has also been applied widely to medical diagnosis. The use of 

vibrational spectroscopy for the remains has been investigated for various previously described 

analytical interests and was described in 2015 in an earlier review by Muro1. A literature search has 

revealed that the recent pertinent reports were mostly about studies of estimation of age at death, PMI, 
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and analysis of burned bones for pre-burned metric estimation. Herein, vibrational spectroscopy is 

particularly advantageous because DNA analysis is unable to offer the information. Herein, we review 

recent works, particularly studies involving samples of human remains.

In 2015, Pezzotti et al. assessed the use of Raman spectroscopy to predict human cadaver skin 

donor age97. Skin samples were obtained from five donors aged from a few months to 62 years. Raman 

spectra with a 532 nm excitation laser were measured from the top surface to deeper zones (approx. 

700 m) of skin. They attempted to assign all bands observed in the Raman spectra of skin via spectral 

deconvolution. Then they correlated the intensities with the donor age. Results show that Raman bands 

corresponding to protein folding were sensitive to infants and young individuals. The bands of lipid 

crystallization particularly varied with the age of adult individuals. Pedrosa et al. showed correlative 

relationships between distinctive bands of ATR FT-IR spectra and donor’s age of bones98. The 

assessed bone samples were femora and humeri collected from 44 females and 36 males. They 

evaluated the bands of bone collagen (Am/P), carbonate type A (API), carbonate type B (BPI), the 

relation between the carbonate content (types A and B) to type B carbonate (C/C), carbonate-

phosphate ratio (C/P), and the crystallinity index (CI). The femora of female bones showed increased 

CI and decreased BPI with donor age because of a crystalline structure disorder. Consequently, the 

potentials of these variables for age estimation were found, particularly for females. Most recently, 

Bonicelli et al. evaluated 113 rib cortical bones from subjects of 12–84 years old, using various 

methods including ATR FT-IR spectroscopy and other physicochemical and mechanical analyses99. 

Multivariate linear equations to predict the age of bone were developed by selectively combining 

variables extracted the respective analytical data. The best accuracy demonstrated was R2 = 0.863 and 

Fig. 3 Plots of predicted versus actual PMI from the calibration and prediction datasets by PLSR models coupled 
with GA. Gray lines represent the perfect prediction. Reproduced from ref. 100 with permission from Elsevier, 
copyright 2017.
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mean absolute error of 4.64 years. 

Estimation of time since death or PMI has been a main subject of recent searches for human 

remains using vibrational spectroscopy. Wang et al. used FT-IR spectroscopy to construct prediction 

models of PMI of human bones100. For 76 to 552 days, bone samples collected from 56 human corpses 

were exposed to two conditions: buried (i.e., placed in soil) and unburied (i.e., exposed to the air). The 

PLSR models with GA provided prediction results of R2 = 0.64 and RMSE = 71.03 days for unburied 

bones, and R2 = 0.82 and RMSE = 50.93 days for buried bones (Fig. 3). Buried bones showed superior 

prediction accuracy probably because the rapid decomposition rate led to more significant spectral 

changes. Moreover, GA determined that amide I band was especially important, corresponding to 

protein degradation and the decrease of nitrogen. Woess et al. observed human bones using reflection 

and ATR IR microscopy and Raman microscopy with 785 nm excitation101. Assessed bone samples 

were archaeological (n = 2, PMI = 650 ± 870 years, 1030 ± 1260 years) and forensic (n = 4, PMI = 1 

day – 85 years). The reflection and ATR IR spectra showed an increase of bone mineralization 

represented at 1042 cm−1 and a decrease of organic compounds (e,g., phospholipids, proteins, 

carbohydrates) in archaeological bones compared to forensic bones. Raman spectra provided a similar 

result: reduction of bands assigned to phospholipids, proteins, and carbohydrates in bone with higher 

PMI (> 3 years), especially in bones associated with archaeological sites. They also demonstrated that 

PCA of the observed spectral set enabled them to distinguish bone samples with different PMIs. Using 

a micro FT-IR spectrometer, Li et al. demonstrated PMI estimation based on annular cartilage 

samples102. Annular cartilage was assumed to be preferable for PMI estimation because of the slower 

degradation rate than those of other soft tissues and biofluids. For this study, annular cartilage samples 

were obtained from human remains for which PMIs were within 30 days. The samples were fixed in 

formalin and were then sliced into 4 m thickness using a microtome. PLSR models to predict PMI 

were constructed while varying spectral processing. The best result was R2 = 0.95 and RMSE = 1.49 

days for the test dataset. Moreover, evaluation of “variable importance in projection” indicated 

significant contributions of the bands of collagen proteins and carbohydrates for PMI estimation. More 

recently, Baide et al. reported the use of a hand-held Raman spectrometer with an 830 nm laser to 

analyze PMI based on dental enamel surfaces of incisors103. A hand-held Raman spectrometer allows 

in situ analysis without risks to the preservation of bones and quick measurements in intervals of 30 

s. Furthermore, incisor samples provide easy accessibility and involve less risk of detachment during 

exhumation than anterior dentition. Teeth in the early stage of decomposition (PMI of 22–42 days) 

showed a distinctive spectral profile and specifically higher intensities at 1402 cm−1. The teeth in PMI 

of 64–84 days provided higher intensities of bands at 1134 and 1180 cm−1. These features are expected 

to be useful to distinguish them from further decomposed teeth. 

Heat exposure of remains induces shrinkage or warping of bones as well as destruction of 

surrounding soft tissues. Morphological alteration in burned bones hampers metric evaluation in 
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conventional anthropological analysis, causing difficulty of identifying sex, status, and age at death of 
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remains104, 105. Therefore, alternative methods would be useful to diagnose changes induced by a 

certain heat condition and subsequently facilitate estimation of the pre-burnt condition or metrics of 

bones. During the past few years, research groups including de Carvalho and Gonçalves et al. have 

consecutively reported analysis of burned bones using vibrational spectroscopy. In 2016, Vassalo et 

al. assessed the dependence of occurrence of bone warping on various bone attributes and experimental 

parameters of burning106. FT-IR spectroscopy was used to evaluate collagen contents of human bones. 

A logistic model to predict occurrence of bone warping revealed a significant contribution of collagen 

contents, but it was partial. This result indicated that bone warping is affected complexly by various 

factors such as maximum temperature and burning time or other un-assessed factors. In the following 

Fig. 4 FTIR-ATR spectra of human humerus: intact and burned at different temperatures (400–1000 °C). The inset 
represents a region of the asymmetric stretching carbonate bands ν3(CO2

3−). The spectrum of reference calcium 
hydroxyapatite (HAp, SPM 2910b) is also included for comparison. Reproduced from ref. 107 with permission 
from Springer Nature, copyright 2018.
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study, Marques et al. assessed spectral features of FT-IR, Raman, and inelastic neutron scattering 

(INS) spectroscopy for human bones burned under controlled temperature conditions of 400–1000 °C 

(Fig. 4)107. Results of INS spectroscopy revealed detailed assignments of bans observed in respective 

spectroscopy. Particularly, bands of OHlib, ν(OH) and ν4(PO4
3−), which are all infrared-active, showed 

distinctive dependence on temperature. Consequently, it was inferred that these bands are useful as 

spectral biomarkers for routine analyses such as those using a bench-top ATR FT-IR spectrometer. 

Festa et al. also demonstrated the use of INS, FT-IR and Raman spectroscopy for ancient burned bones 

to investigate heating conditions108. Most recently, Gonçalves et al. reported a technique to predict 

pre-burned metric based on ATR FT-IR spectra of burned bones109. Measurements of bone metrics 

were conducted both before and after burning at various temperatures and for various durations. 

Indices to describe the heat-induced osteometric changes were generated based on the distinctive band 

intensities in the ATR FT-IR spectra of burned bones. Several multivariate regression models built for 

metric change prediction provided accuracy of R2 = 0.19–0.54 and RMSE = 3.41–4.76. Furthermore, 

the constructed model showed better accuracy of sex determination of burned bones than other 

osteometric methods, and showed comparable accuracy to that found for estimation based on pre-

burned bones.

As for miscellaneous research topics, Wang et al. used FT-IR spectroscopy to demonstrate 

discrimination between human and non-human (pig, goat, and cow) bones110. To simulate practical 

forensic cases, bone samples were prepared by boiling and decomposition, along with fresh ones. A 

PLS-DA model showed discrimination accuracies between human and non-human bones: 99.72% and 

99.53%, respectively, for internal and external validation. Moreover, the loading plots of PLS-DA 

(and PCA) represented the diversity of inorganic portion (i.e., carbonates and phosphates), which is 

preferable for forensic practices because of long-term stability under various conditions. Lin et al. 

reported a technique for postmortem diagnosis to determine fetal anaphylactic shock based on FT-IR 

spectroscopic measurements of pulmonary edema111. In fact, PCA determined that the FT-IR spectra 

of the fetal anaphylactic shock group showed more contents of turn and -helix protein and less 

tyrosine-rich protein than the control group including mechanical asphyxia, brain injury, and acute 

cardiac death. The PLS-DA model built by combining GA demonstrated good separation between 

these two groups.

Vibrational spectroscopy has been applied to various analytical subjects in forensic anthropology. 

Chemometric evaluation has contributed significantly to realize reliable and advanced analyses based 

on the observed spectra of bones, teeth, and soft tissues. The conditions of samples addressed in 

forensic anthropology can be changed drastically depending on the surrounding environments and the 

temporal interval as well as donors’ physical properties. Such conditional effects are expected to be 

reflected to a considerable degree in variations of the spectral characteristics. Here, evaluating and 

describing experimental and simulating conditions precisely are anticipated as key factors to share 
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findings and to promote further progress in this research field. Although actual cases in forensic 

anthropology are quite diverse and complex, vibrational spectroscopy is expected to be a useful 

analytical tool for more objective and quantitative evaluation.
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Bioagents

Bioagents (biological agents) are pathogens and their toxic products that threaten human health 

or even cause death of infected persons112. The diversity of bioagents includes viruses, bacteria, 

protozoa, fungi, and toxin from biological sources. In the context of forensics or homeland security, 

bioagents usable as biological weapons are an important concern. Bioagents involve severe properties 

in terms of public security and criminal investigation: they are often reproduced rapidly, easily 

transported, usually odorless, and are visually indistinguishable from ubiquitous materials such as 

powdered medicine and food; the recognition of outbreaks or appearance of a victim’s symptoms lag 

behind the attack because of an incubation period; moreover, bioagents might be genetically modified 

for weaponization to increase transmissibility and lethality. Consequently, rapid and reliable 

identification of bioagents is a quite important task for defense against potential attacks. 

Current methods used to characterize and detect bioagents are based on immunological assays 

including enzyme-linked immunosorbent assay (ELISA)113, polymerase chain reaction (PCR), whole-

genome sequencing114, and mass spectrometry112, 115. However, these methods are constrained by their 

low sensitivity and time-consuming processes112, which are entirely unsuitable for bioagent detection 

considering possible scenarios of bioterror. Here, vibrational spectroscopic techniques have some 

potential to fulfill the demands of rapid and reliable detection of bioagents. Furthermore, they might 

enable on-site analysis using portable instruments. 

The Popp research group at Friedrich Schiller University Jena has been investigating analytical 

techniques of pathogenic microorganisms or bacteria using Raman spectroscopy for clinical diagnosis, 

food safety, agriculture, and environmental science116, 117. In recent work, Arend et al. demonstrated 

detection of infected neutrophils based on Raman spectra observed with 532 nm excitation118. They 

used an RF algorithm to classify the Raman spectra. The results showed discrimination between 

infected and non-infected neutrophils with 90% accuracy, and further demonstrated determination of 

pathogen species (i.e., bacteria or fungi) with 92% accuracy. Lorenz et al. reported prediction of E.coli 

pathogenicity119. They prepared seven strains of non-pathogenic E.coli and seven strains of pathogenic 

E.coli for training of a PCA-SVM classification model. The constructed model was assessed for 

discrimination of external E.coli strains: two pathogenic and one non-pathogenic. The average 

sensitivity was 77%, indicating its usefulness as a rapid screening method of E.coli pathogenicity. 

Walper et al. provided an excellent and comprehensive review about detection methodologies for 

biothreat agents112. Although FT-IR spectroscopy for microorganism can be hampered by water 

interference, a few works for applications of FT-IR spectroscopy were examined. They included 

detections of foodborne pathogens such as E.coli, Salmonella, and Listeria.   

SERS has been regarded as advantageous for bacteria detection because of its higher sensitivity 

and lower degree of interference by the fluorescence background than normal Raman spectroscopy. 

Villa et al. demonstrated SERS analysis to discriminate bacteria genera and species using SERS120.  
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For their study, filter paper coated with gold nanoparticles was used as the SERS substrate. The 

substrate is inexpensive for fabrication; it provides numerous hot spots for SERE with high porosity. 

The PLS-DA model for the SERS spectra of bacteria achieved complete classification at the genus 

level, with correct classification at the species level except for one sample among 60 test samples. 

Moreover, potential identification of new species was demonstrated based on the proposed model by 

outlier analysis with Q-residuals and Hotelling’s T2 values. Liu et al. reported detection of pathogenic 

bacteria using a silver nanorod (AgNR)-based SERS substrate optimized for bacterial analysis121. The 

AgNR monolayer formed by air-liquid interface self-assembly method showed sensitive SERS signals 

of 22 bacterial strains. A t-test analysis unveiled the most distinctive regions in SERS spectra of each 

strain from those of the other 21 strains. Consequently, ROC analysis for the selected spectral features 

determined that 20 out of 22 strains could be discriminated. More SERS studies have been reported 

recently for efficient pathogen detection using other types of SERS substrate: detection of atmospheric 

bioaerosol by a commercial SERS substrate (i.e., Klarite)122 and virus detection by a novel substrate 

Fig. 5 A convolutional neural network (CNN) for identifying bacteria based on Raman spectra. (a) An SEM cross-
section of the sample which bacterial cells are deposited on to gold-coated silica substrates. Scale bar is 1 μm. (b) 
Measurement schematic: Raman signal from single cells can be acquired from a diffraction-limited spot size by 
laser focusing. (c) A schematic of classification of low-signal Raman spectra via a one-dimensional residual 
network with 25 total convolutional layers into one of 30 isolates and antibiotic treatment groups. (d) Average 
Raman spectra of 30 bacterial isolates (bold lines) overlaid on representative noisy single spectra for each isolate. 
The spectra are colored according to antibiotic treatment group. Reproduced from ref. 124 with permission from 
Springer Nature, copyright 2019.
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composed of hollow nanocones at the bottom of microbowls123.The combination of Raman 

spectroscopy and deep learning technologies is promising for the identification of various bacteria 

species. Ho et al. applied a CNN to classification of 30 common pathogenic bacteria (Fig. 5)124. Herein, 

an extensive dataset of the bacteria Raman spectra was collected using 633 nm illumination; then it 

was used for model training. Classification into 30-class bacteria strains was achieved with more than 

82% accuracy, even for the noisy Raman spectra observed in 1 s measurement times. Antibiotic 

treatment for bacteria was also identified with 97.0 ±0.3% classification accuracy. The author finally 

validated their approaches for empirical clinical strains obtained from patients, then demonstrated 

eminent accuracy (approx. 99.7%) of identifying appropriate treatment corresponding to the respective 

pathogens. 

Vibrational spectroscopy has shown sufficient capability to represent characteristics of bioagents 

based on their spectra. The observation is applicable without sample culturing as well as in the rapid 

and non-destructive manner. Data analysis approaches involving chemometrics and artificial neural 

network have been strongly advancing the reliability and versatility of detection techniques of 

pathogenic organism. Additional research for bioagent identification should progress considering 

selectivity, rapidity, and applicability for various bioagent types, sample conditions and possible 

genetic modifications. 

Conclusions and Future Perspectives 

In contrast to current methods used in the field of forensic biology, such as visual and microscopic 

observations and serological and biochemical techniques, vibrational spectroscopic analysis presents 

several important advantages of non-destructivity, rapidness, and quantitative observation. 

Additionally, when used in combination with chemometric techniques, it offers objective and 

statistical evaluation of complex vibrational spectra, which is especially demanded for the 

development of modern forensic science. 

Throughout the extensive studies conduced during past decades, the potential applications of 

vibrational spectroscopy have been demonstrated for various forensic biological subjects. At the same 

time, the fundamental issues and demands to be investigated further before practical implementation 

have been indicated. Particularly, they are sample degradation, substrate interference, mixture and 

contamination with other materials, and effects of environmental conditions. Moreover, the analytical 

evaluation needs to be accompanied by error rate estimation. Inter-laboratory validation is also 

necessary to confirm the independence of executed conditions and instruments. In that sense, a spectral 

database or library is requested: it can be expected to facilitate inter-laboratory comparison of the 

spectral data. Then it enables develop spectral processing techniques to correct differences among 

laboratories. In addition, the database can be expected to help to construct more versatile chemometric 
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models by training with large amounts of spectral data observed by different experimental conditions. 

Another direction of future development is integration of chemometric tools. As this Review has 

discussed, a single vibrational spectrum can provide various information that is expected to be useful 

for different analytical purposes in forensic biology. Therefore, the establishment of a chemometric 

platform to provide manifold analytical outputs from a single examined datum (or dataset) can be an 

ultimate goal of developments in these research fields.

As for the instruments, the possibility of in-situ analysis using portable or hand-held instruments 

is another advantage of vibrational spectroscopy. Whereas most current studies have been conducted 

using desktop instruments, the usability of spectra observed using hand-held Raman spectrometers has 

already been demonstrated in several works for analyzing hair, body fluid stains, and teeth. Further 

expansion of applications of the portable instruments is being pursued. Furthermore, precise 

comparisons of the analytical qualities between desktop and portable instruments are demanded.

Despite the research progress discussed herein, the position of vibrational spectroscopic analysis 

in the sequence of forensic biological exams has not been determined. Whereas some developed 

methods have aimed to provide confirmatory or conclusive results, such techniques still require 

improvements and more rigorous validation, considering various points of difficulty encountered in 

forensic casework. Supplementary use to the current methods is a possible method in practice, such as 

for screening or exploratory analysis and corroboration of results using current methods. For either 

usage, whether confirmatory or supplementary, defining suitable experimental conditions or 

limitations for the reliable use of new techniques is expected to be necessary.

Requirements for further study and improvement remain, but vibrational spectroscopy has 

promising potential for application to forensic biological analysis. In addition, its combination with 

chemometrics has been proven to be invaluable for completing reliable and advanced analyses of the 

complex spectra of forensic biological materials. The developments of vibrational spectroscopic 

analysis are expected to contribute to increased reliability and efficiency of practical examinations in 

forensic biology. Moreover, portable instruments can provide alternative means and modes of forensic 

biological investigation in the field. Continued investigation is anticipated by effectively integrating 

knowledge and perspectives gained from vibrational spectroscopy, chemometrics, and forensics. 
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Table 1 Body fluid analysis studies for different analytical interests discussed in this review
Analytical interest Spectroscopic 

techniquea

Body fluid sample Chemometric technique/Spectral analysis Model 

validation

Ref

.

Confocal RS (785 nm) Human semen, canine semen, vaginal fluid, 

saliva, sweat, blood

Visual comparison of characteristic peaks — 19

Blood SFA, PCA, ALS, Goodness of fit statistics EV 20

Saliva SFA, ALS, Goodness of fit statistics EV 21

Semen SFA, ALS, Goodness of fit statistics EV 22

Sweat SFA, PCA, ALS, Goodness of fit statistics EV* 23

Vaginal fluid SFA, PCA, ALS, Goodness of fit statistics EV 24

Blood, saliva, semen SFA, ALS, SIMCA, LDA, PLS-DA CV, EV* 25

Peripheral blood, menstrual blood, vaginal 

fluid

PCA, PLS-DA. SVM-DA, ROC CV 26

Peripheral blood, saliva, semen, sweat, 

vaginal fluid

PLS-DA, SVM-DA, interval PLS-DA, 

GA

CV, EV 27

Peripheral blood, saliva, semen, sweat, 

vaginal fluid, urine

Nonnegative PCA, SVM-DA coupled 

with GA

CV, EV 28

SERS (785 nm) Blood (whole blood, red blood cells, blood 

plasma)

Visual comparison and quantification of 

characteristic peaks

— 29

SERS (514, 633, and 

785 nm)

Blood plasma, serum Visual comparison and quantification of 

spectral regions of interest

— 30

SERS (785 nm) Blood, four other body fluids (saliva, semen, 

urine, vaginal fluid)

PLS-DA CV, EV* 31

ATR FT-IR Blood, nasal mucus, vaginal mucus, saliva, 

tears, urine (other human solid material)

Visual comparison of characteristic peaks — 32

Blood, saliva, semen, vaginal secretion Comparison of characteristic peaks — 33

Antemortem and postmortem blood PLS-DA, GA CV 35

Peripheral blood, saliva, semen, urine, sweat HCA, PLS-DA, LDA, Q-statistics CV 36

Body fluid 

identification

External reflection FT-

IR

Semen, vaginal fluid, urine on cotton fabrics PCA, SIMCA EV 34

Confocal RS (785 nm) Human, canine and feline blood SFA, PCA CV 37

Human blood, animal blood from 11 species PLS-DA CV, EV 38

Human blood, animal blood from 16 species PLS-DA, ROC CV, EV 39

Human blood, animal blood from 19 species RNN, ROC CV, EV 40

ATR FT-IR Human, cat, and dog blood PLS-DA, GA CV, EV 41

Human blood, animal blood from 11 species PLS-DA, GA CV, EV 42

Human blood, animal blood from 5 species PCA, K-means clustering, PLS-DA CV, EV 43

Species identification

Supernatant of human semen and animal 

semen from 5 animal species

PCA, PLS-DA CV, EV 44

Phenotype profiling

Confocal RS (785 nm) Blood from male and female donors HCA, SVM-DA, ANN, GA CV, EV 45

Saliva from male and female donors SVM-DA, ROC CV, EV 50

Sex

ATR FT-IR Urine from male and female donors PLS-DA, ANN, GA CV 52

Sex, race ATR FT-IR Blood from male/female Caucasian, African 

American, and Hispanic donors

PCA, PLS-DA, ROC CV, EV 46

Confocal RS (785 nm) Blood from Caucasian and African American 

donors

PCA, SVM-DA, GA, ROC CV 47Race

Semen from Black and Caucasian donors SVM-DA, GA, ROC CV, EV 51

Confocal RS (785 nm) Blood from newborn, adolescent, and adult 

donors

SVM-DA CV, EV 48Age group

ATR FT-IR Blood from newborn, adolescent, and adult 

donors

PLS-DA, GA CV 49

Confocal RS (785 nm) Bloodstains aged up to one week 2D correlation spectroscopic analysis, 

PLSR

CV, EV 67

Bloodstains aged up to two years PLSR, PCR CV, EV 68

Prediction of TSD

Bloodstains aged at three different MCR-ALS, Modified ALS for kinetics EV 66
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temperatures up to 121 days

ATR FT-IR Bloodstains aged up to 107 days in 

indoor/outdoor conditions

PLSR, PLS-DA CV, EV 69

Bloodstains aged for 1–175 days Curve estimation, MLR, PLSR CV 70

Supernatant of semen stains aged up to 6 

days on glass, tissue, and fabric

PLSR CV, EV 71

Semen, saliva, urine during drying PCR, PLSR CV, EV 72

a Wavelength used for excitation is shown in parentheses.

*Validated partially rather than for all models reported nor for all sample types assessed.

RS: Raman spectroscopy; SERS: surface enhanced Raman spectroscopy; ATR: attenuated total reflection; 

FT-IR: Fourier transform infrared spectroscopy; CV: cross-validation; EV: external validation; TSD: time 

since deposition; SFA: significant factor analysis; PCA: principal component analysis; ALS: alternating 

least squares; SIMCA: soft independent modeling of class analogy; PLS-DA: partial least squares 

discriminant analysis; LDA: linear discriminant analysis; SVM-DA: support vector machine discriminant 

analysis; SFA: significant factor analysis, PCA: principal component analysis; MCR: multivariate curve 

resolution; ROC: receiver operating characteristic analysis; GA: genetic algorithm; HCA: hierarchical 

clustering analysis; RNN: recurrent neural network; ANN: artificial neural network; PLSR: partial least 

squares regression; PCR: principal component regression; MLR: multiple linear regression.
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Table 2 Vibrational spectroscopic studies for body fluid mixture and substrate interferencea

Spectroscopic techniqueb Body fluid sample Interfering substrate Spectral analysis for body fluid mixture/ 

substrate interference/

Ref.

ATR FT-IR Blood, nasal mucus, vaginal 

mucus, saliva, tears, urine (other 

human solid materials)

White T-shirt, white copier paper Visual comparison of characteristic peaks 32

ATR FT-IR Venous blood, menstrual blood, 

semen, saliva, breastmilk

Cotton, nylon, wood, paper, glass Visual comparison of characteristic peaks 73

ATR FT-IR Menstrual blood White cotton, denim, polyester, paper, wood, 

plastic, grass, glass, floor tile, sanitary napkin

Visual comparison of characteristic peaks 74

ATR FT-IR Semen, semen/vaginal fluid 

mixture

White cotton, denim, polyester, paper, wood, 

skin, plastic, grass, glass, condom, floor tile

Visual comparison of characteristic peaks 77

ATR FT-IR Vaginal fluid, vaginal 

fluid/semen mixture after coitus, 

vaginal fluid/menstrual or 

peripheral blood mixture

White cotton cloth, denim, polyester, tissue 

paper, glass, plastic, floor tiles, polished 

wood

Visual comparison of characteristic peaks 78

Hand-held RS (1064 nm) Urine White cotton, blue jeans, lab coat, uniform 

shirt, sweat-contaminated cotton shirt

PLS-DA (CV) 79

Confocal RS (785 nm) Blood Dust, sand, soil Multivariate regression with body fluid 

signatures

75

Confocal RS (406.7, 457.9, 

488, 514.5, 647.1 and 785 

nm)

Blood Glass, tile, denim, cotton Manual subtraction of substrate 

contribution, multivariate regression with 

body fluid signatures

81

Confocal RS (785 nm) Semen Pig skin, glass, cotton, polyester, blended 

fabric

Manual subtraction of substrate 

contribution, multivariate regression with 

body fluid signatures

76

ATR FT-IR Antemortem and postmortem 

blood

Cotton, denim, polyester Multivariate regression using PCA 

loadings weighted by a factor derived 

from PLS-DA loadings

35

Confocal RS (785 nm) Semen Glass, polyester MCR, HAMAND 82

Confocal RS (785 nm) Blood-semen mixture — SVM-regression, SVM-DA (CV, EV) 80

a Each abbreviation can be referred to footnotes of Table 1.
b Wavelength used for excitation is shown in parentheses.
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Figure Legends

Fig. 1 Deconvolution of Raman spectra of bloodstains during aging. (a) Spectral series observed 

during bloodstain aging at 24 °C. The spectra are shown before subtraction of fluorescence background. 

(b) Decomposed Raman spectral profiles of bloodstains by multivariate curve-resolution alternating 

least squares. (c) Index for bloodstain aging at 30 °C (magenta), 24 °C (purple), and 16 °C (blue). The 

index was defined as the ratio scores between the first and the fourth spectral components yielded via 

multivariate deconvolution technique based on the latent kinetics. The circles, crosses, and triangles 

represent data from three donors. The modeled ratios are shown as dashed lines with the standard 

deviations (shaded areas) for each temperature.

Fig. 2 SERS spectra of hair colored by blue semipermanent dye (BLUsp) and re-dyed after by black 

semipermanent dye (BLUsp→BLKsp). The spectra of hair colored by BLKsp and the dyes themselves 

(BLKsp (D) and BLUsp (D)) are also included. Reproduced from ref. 90 with permission from 

American Chemical Society, copyright 2019

Fig. 3 Plots of predicted versus actual PMI from the calibration and prediction datasets by PLSR 

models coupled with GA. Gray lines represent the perfect prediction. Reproduced from ref. 100 with 

permission from Elsevier, copyright 2017.

Fig. 4 FTIR-ATR spectra of human humerus: intact and burned at different temperatures (400–

1000 °C). The inset represents a region of the asymmetric stretching carbonate bands ν3(CO2
3−). The 

spectrum of reference calcium hydroxyapatite (HAp, SPM 2910b) is also included for comparison. 

Reproduced from ref. 107 with permission from Springer Nature, copyright 2018.

Fig. 5 A convolutional neural network (CNN) for identifying bacteria based on Raman spectra. (a) An 

SEM cross-section of the sample which bacterial cells are deposited on to gold-coated silica substrates. 

Scale bar is 1 μm. (b) Measurement schematic: Raman signal from single cells can be acquired from 

a diffraction-limited spot size by laser focusing. (c) A schematic of classification of low-signal Raman 

spectra via a one-dimensional residual network with 25 total convolutional layers into one of 30 

isolates and antibiotic treatment groups. (d) Average Raman spectra of 30 bacterial isolates (bold lines) 

overlaid on representative noisy single spectra for each isolate. The spectra are colored according to 

antibiotic treatment group. Reproduced from ref. 124 with permission from Springer Nature, copyright 

2019.
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