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Abstract

Machine learning (ML) is becoming an effective tool for studying 2D materials. Taking as input 

computed or experimental materials data, ML algorithms predict the structural, electronic, 

mechanical, and chemical properties of 2D materials that have yet to be discovered. Such 

predictions expand investigations on how to synthesize 2D materials and use them in various 

applications, as well as greatly reduce the time and cost to discover and understand 2D materials. 

This tutorial review focuses on the understanding, discovery, and synthesis of 2D materials 

enabled by or benefiting from various ML techniques. We introduce the most recent efforts to 

adopt ML in various fields of study regarding 2D materials and provide an outlook for future 

research opportunities. The adoption of ML is anticipated to accelerate and transform the study of 

2D materials and their heterostructures.
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Key learning points

1. Case studies for using ML toward the understanding, discovery, and synthesis of 2D 

materials.

2. The generation and gathering of training data for ML toward the discovery of 2D materials.

3. The key descriptors among a large number of characteristics of 2D materials for ML 

algorithms. 

4. The usability of ML techniques in various fields of study related to 2D materials.

5. The applicability of ML techniques in future 2D materials research.

1. Introduction

Since the discovery of graphene, two-dimensional (2D) materials have been considered 

wonder materials that can lead to significant advancements in applications such as photovoltaics, 

semiconductors, catalysts, and sensors. Due to this great expectation, a large number of new 2D 

materials, such as transition metal dichalcogenides (TMDs), carbides/nitrides/carbonitrides 

(MXene), and borides (MBene), have been discovered and appended to the 2D materials family.1 

However, only the tip of the iceberg has been revealed. According to a recent study performed 

using density functional theory (DFT), there are nearly 2000 2D materials which may be exfoliated 

from their bulk-layered counterparts.2 Furthermore, van der Waals heterostructures intentionally 

made up of combinations of stacked 2D materials significantly increase the total number of 

possible candidates in the 2D materials family. 

Unfortunately, conventional experimental and computational approaches can scarcely keep up 

with the rapidly growing demands in the study of 2D materials. In addition, both experimental 

methods and computational simulations using first-principles calculations, such as high-
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throughput DFT, require considerable time and cost, which slows progress in 2D materials study. 

In recent years, machine learning (ML) has become an effective tool for studying a wide variety 

of materials, and 2D materials are no exception. Using the structural, electrical, thermodynamical, 

and chemical features of already-known or simulated 2D materials, ML algorithms intelligently 

interpret complicated interconnections and correlations among such features, in an attempt to make 

predictions of unknown characteristics of new 2D materials.3 Moreover, once trained, ML models 

can make very rapid predictions, making ML a promising tool for evaluating a large number of 

2D materials. Therefore, the adoption of ML efficiently enables a wide variety of studies, including 

the understanding, discovery, and synthesis of 2D materials. 

There are a few recent reviews about ML applications in materials research,4-6 but they tend to 

cover the general use of ML in materials in general and mainly focus on the prediction of materials 

properties, which is one of the most common applications of ML. Therefore, a comprehensive 

review specifically concentrated on ML-enabled studies of 2D materials is still much needed. In 

this tutorial review, we condense and introduce the recent adoptions of ML in the field of 2D 

materials. Focusing on the understanding, discovery, and synthesis of 2D materials, we provide a 

comprehensive description and future outlooks. Starting from the review of various ML algorithms 

for supervised, unsupervised, and semisupervised learning, we describe how these algorithms have 

been applied to the specific study of 2D materials. More specifically, we discuss how various 

regression and classification algorithms can process labeled and unlabeled data and extract 

meaningful predictions that are otherwise difficult to detect. Such predictions enabled by ML 

algorithms are beneficial for understanding the mechanical, electrical, and chemical properties of 

2D materials and their heterostructures that have yet to be discovered. 
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Furthermore, ML accurately identifies the layer thickness and size of 2D materials prepared 

by the mechanical transfer method7-12 and predicts the synthesis probability of 2D materials,13 

which contributes to innovative synthesis approaches. Applicational studies that have benefitted 

from the use of 2D materials such as sensing14, 15 and catalysis16, 17 are also presented. Finally, we 

present future opportunities that could be an excellent starting point for researchers seeking to use 

ML in the field of 2D materials. It is highly anticipated that ML could significantly promote the 

study of 2D materials. Therefore, this review not only can inspire novice researchers but also guide 

mature researchers who are interested in applying ML in their studies.

2. Machine learning (ML) for 2D materials research

2.1.  Fundamental ML algorithms

Machine learning (ML) approaches, as a subset of artificial intelligence (AI), are a group of 

algorithms which seek to determine the underlying connectivity among data. This process is 

referred to as “learning”, in which ML algorithms are trained to review a specific data set and 

predict reliable outcomes upon new incoming data. Different from physics-based modeling, ML 

prediction is a type of data-driven decision-making process that can be self-improved by 

experiencing more data sets without direct reprogramming. Before discussing specific research 

examples that used ML to explore 2D materials, we first provide an overview of the ML 

techniques, followed by illustrative examples. An ML approach can be performed by four steps: 

data preparation, model selection, training, and evaluation. In data preparation, the dataset is 

collected, normalized or standardized, subjected to outlier removal (if appropriate), and split into 

training and testing, or training, validation, and testing subsets. Training consists of determining 

parameters to give functions that map inputs to outcomes in the training data (i.e., ML models). 
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Cross validation is performed by calculating the prediction errors of the ML models on validation 

data, in order to adjust and optimize the hyperparameters used in ML model training. Often, N-

fold cross validation is used, in which the training/validation data is split into N subsets, and the 

training is performed on N-1 subsets while validation is performed on the last subset, and the whole 

process is repeated 10 times. Testing is using the ML models on data set aside, i.e., are not used in 

training or validation, to determine the accuracy of prediction. Evaluation can be performed by 

using the various measures of error which compare the original and predicted data. Depending on 

how data is handled, ML techniques mainly comprise three categories: supervised, unsupervised, 

and semisupervised learning, in which specific tasks such as regression, classification, clustering, 

and feature dimensionality reduction are performed. Fig. 1a and Table 1 illustrate the different 

types of ML techniques and representative ML algorithms that have been widely used for 2D 

materials research. 

The first and most common type of ML is supervised learning, which requires a large volume 

of pre-labeled data. The labeled data implies that outcomes for given inputs are correctly defined, 

which trains ML algorithms in the way that a teacher who already knows the answers (labeled 

data) teaches students (ML algorithms). Conceptually, supervised learning is the process of finding 

a mapping function, f({x}), that can give outputs close to the labeled values of the original datasets 

for given inputs, {x}. The trained ML algorithms in supervised learning make predictions by 

“classification” or “regression” using known data. In classification, ML tries to find the best 

category (“class”) to which a given input dataset likely belongs. Such classification models are 

beneficial for answering “yes or no” or discrete questions, such as “the feasibility of synthesizing 

2D materials” or “the layer number of 2D materials”. Regression, on the other hand, predicts 

continuous outputs from a given dataset. In other words, supervised regression results in a specific 
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numerical output that is as close as possible to labeled outputs in the training data instead of 

producing discrete results. Therefore, regression is suitable for predicting the properties of 2D 

materials with specific values such as band gaps, mechanical modulus, and formation energies. 

A few ML algorithms commonly used for supervised learning to study 2D materials are 

support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), and 

random forest (RF). SVM is one of the most robust ML training algorithms for handling 

classification18 and regression (i.e., support vector regression (SVR)) problems. Based on 

statistical learning frameworks, SVM optimizes the process (Fig. 1b) to determine the hyperplane 

(red line) that bisects the maximized margin (the distance between the black dashed lines) and 

separates the datasets into different classes by choosing the appropriate support vectors (circular 

and star-shaped dots overlapped by dashed lines). Mathematically, the hyperplane is a set of point 

x that satisfies wTx – b = 0, where w is the normal vector to the hyperplane and b is the half distance 

of the margin. 

LASSO is a type of linear regression algorithm that uses regularization to shrink the data values 

towards a central point, such as the mean (Fig. 1c). Its objective is to find the coefficients of a 

fitting curve, which minimizes a loss function (least square errors plus the L1 norm, which is 

defined as the sum of the absolute values of the coefficients). In other words, for input vector x 

and target vector y, LASSO minimizes , where w is the vector of fitted {||𝒚 ― 𝑤𝑇𝐱||2
2 + 𝛼||𝐰||1}

coefficients, in contrast with ordinary least squares which minimizes . The {||𝒚 ― 𝑤𝑇𝐱||2
2}

parameter  is used for regularization and is typically determined by minimizing cross validation 

errors. LASSO is advantageous in regression problems in its ability to avoid overfitting, which 

enhances the generalizability of the regression model and thus increases prediction accuracy. 

Furthermore, LASSO performs variable (coefficient) selection, making the coefficients of trivial 
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variables zero and automatically ranking the remaining variables, and thus showing which 

variables are more important than others. This variable selection capability is beneficial for 

increasing accuracy and providing interpretability in many ML problems with a large number of 

possible input variables (input features).

Similar to LASSO, ridge regression (RR) and kernel ridge regression (KRR) are also widely 

used and robust supervised algorithms. RR estimates the coefficients of multiple-regression 

models and is used where independent variables are highly correlated. In RR, the quantity 

 is minimized. The key difference between RR and LASSO is that RR {||𝒚 ― 𝑤𝑇𝐱||2
2 + 𝛼||𝐰||2}

uses the L2 norm for regularization whereas LASSO uses the L1 norm, which results in small 

coefficients being more strongly penalized by LASSO than by RR. Therefore, while both RR and 

LASSO prevents overfitting, LASSO is more effective in model reduction. KRR combines RR 

with the kernel trick, which means learning a function in the space induced by the respective 

kernel. Instead of explicitly transforming data in raw representation into feature vector 

representations, KRR simply computes the inner products between the images of all pairs of data 

in the feature space. The amount of calculation significantly reduces for only access to the kernel 

and avoiding explicit computation of the coordinates. 

Like SVM, random forest (RF) is a robust algorithm widely used for both classification and 

regression. RF is an ensemble of decision trees constructed by random samples selected from the 

original training data set (Fig. 1d). This random sampling process, known as “bagging (or 

bootstrapping)”, repeatedly replaces the training set of decision trees. The RF fits the decision trees 

to the repeatedly updated samples and outputs the class most frequently selected by decision trees 

for the classification. In regression, an RF model outputs the mean or average of predictions 

returned by each tree. Additionally, the RF helps to rank the importance of variables by the order 
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of nodes and correct overfitting issues observed in a decision tree. Besides, more advanced 

methods have been developed to improve RF, such as gradient boosting machine (GBM) and 

extreme gradient boosting (XGBoost). GBM is a single strong prediction model in the form of an 

ensemble of weak prediction decision trees (i.e., shallow trees having high bias), which trains and 

improves the ensemble by iteratively adding previous weak trees, eventually reducing the high 

bias. Building upon GBM, XGBoost uses a more regularized model formalization that prunes the 

trees, which lowers the variance, thereby preventing overfitting. Furthermore, XGBoost builds 

trees in parallel, while GBM is sequential, resulting in faster predictions than GBM. 

Furthermore, K-nearest neighbor (KNN) is a non-linear classifier that finds decision 

boundaries from training data and sorts testing data into various categories. Once a constant K is 

initially defined, the algorithm examines the K-nearest data around each testing data. 

Subsequently, testing data is assigned to a category where a majority among K-nearest data 

belongs. In addition, the neural network (NN) shown in Fig. 1e consists of input, hidden, and 

output layers and adaptively learns highly complex non-linear relationships between the input 

features and target outputs (i.e., labels of the original data). The input layer delivers input features 

to hidden layers comprised of neurons. Each neuron is connected to all the neurons from the 

previous layers and it adds up the input features multiplied by weights. The weighted sum of the 

input features is further delivered to the output layer, where the activation function determines the 

predicted variables. A series of such processes is repeated until the NN finds the optimal weights 

that minimizes the difference between prediction and labels (i.e., target outputs). With many 

hidden layers, the deep neural network (DNN) incrementally correlates input features with desired 

outcomes. There are several advantages of the DNN: (1) Automatic extraction of features from 

inputs without human intervention (i.e., DNN does not require additional labor to assign labels), 
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(2) ability to handle non-linear and complex problems, and (3) high predictive accuracy by 

increasing learning epochs, neurons, and hidden layers. 

Unlike supervised learning in which training data are labeled in advance, unsupervised learning 

attempts to determine new patterns and distribution from unlabeled data. For example, 

unsupervised clustering divides data into individual groups with similar features. For materials 

research, data belonging to the same group potentially can be considered to have similar 

characteristics in material properties or synthesizability. Prime examples of unsupervised learning 

are K-means clustering and principal component analysis (PCA). The K-means algorithm works 

by finding mutual similarity between samples and clustering them into groups. Its goal is to achieve 

high similarity within-cluster while keeping low similarity inter-cluster. Technically, the K-means 

algorithm iteratively and continuously updates the centers (or centroids) of clusters until the 

variances of each cluster are minimized. For example, as illustrated in Fig. 1f, to reach the clustered 

result, K-means first generates three centroids of clusters at random locations of the data space and 

assigns data points to the nearest cluster based on the Euclidean distance (d= ) to the 𝑥2 + 𝑦2 + 𝑧2

centroids. Once the initial clusters are established, the mean variance (sum of d2) of each cluster is 

evaluated and the centroids updated. These steps are iterated until the mean value of the variances 

saturates, indicating the formation of optimal clusters. 

PCA is a nonparametric statistical technique most widely employed to reduce the dimension 

of a large data set in exploratory data analysis while minimizing the loss of information. Such data 

reduction is realized by computing the principal components that constitute a set of orthonormal 

bases on the data, where only the first few principal components are significant and the rest is 

ignored. For example, the 2D data points shown in Fig. 1g tend to be on a straight line (y=x), 

which implies that such data contain redundant features. To reduce redundancy (lower the 
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dimensionality), PCA first looks for a new axis (PC1) that maximizes the variance of projected 

data, and then another new axis (PC2) orthogonal to it. The data points show minimal variance 

along PC2, which means that PC2 is not as important as PC1 to represent the data. In this example, 

the dimension of data is lowered from 2-D (x, y) to 1-D (PC1). By ignoring PC2, PC1 becomes 

the new axis representing the original data without losing too much information. Oftentimes, PCA 

is used prior to supervised regression or classification, in which the reduced data dimensionality 

afforded by PCA can lead to more compact supervised ML models with less overfitting and better 

generalizability.

Another straightforward yet powerful unsupervised learning method is hierarchical clustering, 

which is an algorithm that iteratively groups similar objects into multi-level clusters.19 It starts 

from merging two most similar objects, and proceeds through an iterative process that identifies 

and merges the two most similar clusters until the final state. The final state is a set of clusters in 

which each cluster is distinct from other clusters and the objects within each cluster are similar. 

The distance between any two clusters is called the linkage distance. The linkage criteria determine 

from where distance is computed. Single-linkage computes the minimum distance between two 

objects from two clusters, while complete-linkage takes the maximum distance, and mean or 

average-linkage takes the mean distance.

Semisupervised learning poses in between supervised and unsupervised learnings, playing its 

role when handling datasets in which only a few are labeled (supervised), but the rest is unlabeled 

(unsupervised). Such semisupervised learning is a practical ML model for dealing with many real-

world classification and clustering problems associated with predicting outcomes based on a dearth 

of correct information. In 2D materials research, for example, semisupervised learning can be used 

to classify and predict the synthesizability of 2D materials where there are a few 2D materials 
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known to be synthesizable (labeled as “Yes”) and many unknown 2D materials yet to be 

synthesized. Semisupervised learning is the most challenging ML approach compared with others 

and thus many algorithms are under development in this field. Specifically, the SVM shown in 

Fig. 1b can be applied to classify mixed datasets (labeled and unlabeled). The SVM first classifies 

such datasets using only labeled data, and predicts the probability of unlabeled data belonging to 

each class. Such probabilities in SVM are estimated using Platt scaling, which converts the outputs 

from the classification model into a probability distribution. Subsequently, unlabeled data showing 

high probability (i.e., a high confidence level) at a specific class is considered pseudo-labeled and 

added to the original training data. Finally, the augmented dataset is used for training the SVM. 

Another algorithm widely used in semisupervised learning is positive and unlabeled (PU) 

learning. PU learning is a binary classifier that deals with two sets of data: the positive set P 

(labeled) and a mixed set U (unlabeled). In PU learning, various techniques that are used for a 

supervised classifier can be adopted. The PU algorithm first randomly selects a few unlabeled data 

and considers them as positive. Then, such positive and pseudo-positive data are classified using 

classifiers, and the probability of the pseudo-positive data being positive is evaluated. By repeating 

this process, PU learning probabilistically classifies mixed datasets into two classes (positive or 

not).

Note that in most cases, it cannot be determined a priori which ML algorithm would be best 

for specific tasks in 2D materials research. A common approach is to train several typical ML 

models and judge their performance by the errors and corresponding uncertainties. In the 

following, we present detailed discussions on which ML algorithms introduced above are 

applicable to a specific task, how they work, and how to determine their hyperparameters, along 

with actual examples.
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2.2.  Performing ML and validation

In applying ML to the study of 2D materials, a series of steps including data preparation, model 

selection, training, cross validation, and testing should be successively carried out to build an ML 

model. It is worth noting that ML study on 2D materials often suffers from the lack of data, because 

data acquisition processes are limited to time-consuming experiments and computations. To 

address this problem, material databases that provide comprehensive information about 2D 

materials can be used to gather ML data. Table 2 shows a list of material databases, including the 

structural, electronic, elastic, thermodynamic, and optical properties of 2D materials obtained from 

previously performed experiments and computations. After accumulating the data, an ML model 

suitable for a specific study of 2D materials should be determined. Depending on the available 

data and the goal of the study, ML algorithms belonging to either supervised, unsupervised, or 

semisupervised learning should be considered for regression, classification, or clustering. For 

example, supervised regression can be used for predicting the properties of 2D materials. 

Furthermore, semisupervised classification can be considered for investigating the synthesizability 

of 2D materials. More examples of the application of ML models for specific studies are introduced 

in the following sections. Once an ML model is selected and trained, cross-validation is performed 

from validation dataset withheld from training to determine the accuracy of the model and adjust 

the hyperparameters. Afterwards, the trained and cross-validated ML model can generate 

predictions using test datasets. The predictions are further compared by labels from yet another 

test datasets, and their accuracy (i.e., error) is evaluated using various statistical measures.18 

Typically, there are two types of prediction errors in validating the ML model: variance and 

bias. Fig. 2a shows variance and bias errors that can respectively induce overfitting and 

underfitting of the model if not balanced. High variance error implies that the model captures too 
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many details in datasets, including unnecessary noise, making the model less generalizable and 

unable to predict beyond the original datasets. Many ML algorithms, e.g., decision trees, support 

vector machines, and k-nearest neighbors, can suffer from overfitting issues. To address such 

overfitting, several approaches such as regularization (e.g., using LASSO), removing features 

(using LASSO or PCA), ensemble (using RF), and cross-validation can be used.

On the other hand, high bias error originates from the model capturing the datasets too sparsely, 

resulting in an over-simplified model that does not include important details in datasets. Such an 

underfitting issue gives rise to inaccurate predictions and can be reduced by increasing the 

complexity of the model, the number of features, and the number of learning iterations.

Fig. 2b suggests useful statistical measures to evaluate such prediction errors and validate ML 

models. In regression models, RMSE, MAE, MAPE, and R2 shown below are the most popular 

metrics.

Root mean squared error (RMSE) =  
1
𝑁∑𝑁

𝑖 = 1(𝑌𝑖 ― 𝑌𝑖)
2

Mean absolute error (MAE) =  
1
𝑁∑𝑁

𝑖 = 1|𝑌𝑖 ― 𝑌𝑖|

Mean absolute percentage error (MAPE) =  
1
𝑁∑𝑁

𝑖 = 1

|𝑌𝑖 ― 𝑌𝑖|
𝑌𝑖

× 100

Coefficient of determination, 𝑅2 = 1 ―
∑𝑁

𝑖 = 1(𝑌𝑖 ― 𝑌𝑖)
2

∑𝑁
𝑖 = 1(𝑌𝑖 ― 𝑌)2

where  are the original labeled data,  are the predicted outcomes from the trained ML model, 𝑌𝑖 𝑌𝑖

and  is the mean of the original labeled data. Such metrics evaluate how much the regression 𝑌

curve fits the original data, determining the performance of the regression model.

Precision, recall, accuracy, and area under curve (AUC) for receiver operating characteristic 

(ROC) curve are widely used to evaluate the performance of classification models. To understand 

such metrics, basic terminologies such as true positive (TP), true negative (TN), false positive 
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(FP), and false negative (FN) should be demonstrated. TP and TN represent number of items for 

which the classifier correctly predicts the class of data, while FP (FN) shows the number of items 

for which the classifier incorrectly predicts the data belonging to a negative (positive) class to a 

positive (negative) class. Using such terminologies, precision is defined as Precision = TP / (TP + 

FP), showing the ratio of correctly predicted positives to all the predicted positives. On the other 

hand, recall, defined as Recall = TP / (TP + FN), shows the ratio of correctly predicted positives 

to all true positives. Such precision and recall metrics are used to evaluate how many incorrectly 

classified FP and FN the classifier produces, respectively. Combining these two metrics, F1-score, 

defined as F1-score = 2 * ((Precision * Recall) / (Precision + Recall)), or the accuracy, (TP + TN) 

/ (TP + TN + FP + FN), are generalized scores to evaluate the overall performance of the classifier. 

ROC curve is a useful way to visualize the performance of a classifier, defined as the ratio of 

true positive rate (i.e., TPR or recall) to false positive rate (FPR = FP / (FP + TN)). The FPR shows 

how often the classifier incorrectly predicts the data as positive out of all true negatives. ROC 

curve plots the TPR or recall as a function of the FPR, indicating a better performance as the curve 

is closer to the top-left corner. Additionally, AUC calculates the area under the ROC curve, scoring 

the performance of the classifier between 0 (bad) and 1 (good).

Effective metrics widely applied to clustering models are the rand index (RI) and gap statistics. 

The RI, similar to the accuracy discussed above, is calculated by RI = (TP + TN) / (TP + TN + FP 

+ FN), showing how similarly the model predicts the data compared to the ground truth. Besides, 

the RI scores the similarity between clustered datasets using two different clustering models, 

validating the new model on the basis of the already verified model.  

In clustering models, choosing an optimal number of clusters (i.e., hyperparameter, K) is 

imperative to maximize the performance of the models. The simplest way to determine K is to use 
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the elbow method that plots within-cluster distances with respect to K, which determines the K, 

the starting point of significant drop. The elbow method is straightforward but often ineffective if 

the curve does not show a noticeable drop (i.e., elbow shape). The gap statistics method depicted 

below is an alternative and advanced strategy to address this issue. 

𝐺𝑎𝑝(𝐾) = log (𝑊𝑟𝑒𝑓
𝐾 ) ― log (𝑊𝑜𝑟𝑖𝑔

𝐾 )

𝑆𝐾 + 1 = 𝑆𝐾 1 + 1/𝑁

where and  are within-cluster distances obtained from the original dataset and the 𝑊𝑜𝑟𝑖𝑔
𝐾 𝑊𝑟𝑒𝑓

𝐾

reference dataset generated by uniform sampling when the number of clusters is K.  is the 𝑆𝐾

standard deviation of within-cluster distances, , calculated from reference datasets log (𝑊𝑟𝑒𝑓
𝐾 )

obtained from N times sampling. Finally, the optimal number of clusters is the smallest K that 

satisfies the following relationship.

𝐺𝑎𝑝(𝐾) ≥ 𝐺𝑎𝑝(𝐾 + 1) ― 𝑆𝐾 + 1

In short, the gap statistics compares the within-cluster distances of the original dataset with that of 

the reference dataset, thus finding a K value exhibiting the most significant gap between them.

Such evaluation metrics introduced above can be appropriately applied to various studies in 

2D materials. For example, metrics for the regression and classification models can be used in the 

studies, such as investigating the properties and correlating such properties with molecular 

structures. Furthermore, metrics for the classification and clustering models can be applied when 

identifying the thickness and size of 2D materials and studying their synthesizability. Detailed 

usage of such metrics is introduced in the following sections.
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3. Understanding and designing 2D materials using machine learning

2D materials have given rise to countless possibilities for applications due to their interesting 

two-dimensional planar atomic structures that contribute to promising mechanical, electrical, and 

chemical properties. Considering the tunability of 2D materials by composition tuning, defect 

engineering, surface doping, and the formation of heterostructures, the design space for potential 

2D materials is staggeringly large. Recent studies introduced below illustrate how the use of ML 

takes advantage of materials data to significantly enhance the speed and lower the cost of studying 

2D materials. 

3.1.  ML-enabled study on the mechanical properties of 2D materials

Unlike 3D bulk materials in which chemical bonds extend to three dimensions, bonding in 2D 

layered materials is strongly localized in-plane, resulting in weak out-of-plane stacking by van der 

Waals (vdW) forces. While this weak layer-stacking facilitates the separation of atomically thin 

2D materials, the strong in-plane bonds generally endow the isolated 2D materials with promising 

mechanical stiffness and strength, such as high elastic modulus and tensile/compressive strengths. 

Furthermore, the atomic-scale thickness of 2D materials gives rise to their superior flexibility 

compared to their 3D bulk counterparts made up of the same atoms. For example, graphene, the 

most renowned and first-isolated 2D material, has been ranked as the strongest material ever 

discovered, exhibiting high levels of stretchability and flexibility that exceed its 3D allotrope, 

diamond. Graphene’s intrinsic tensile strength, Young’s modulus, and stretchability are evaluated 

at 130 GPa, 1 TPa, and ~20 % (from its initial lateral dimension), respectively20, surpassing those 

of diamond (125 GPa, 1.1 TPa, and ~ 13.4 %, respectively, when the diamond is in the form of a 

60 nm-diameter nanoneedle engineered to achieve its maximum tensile strength and strain).21
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Besides graphene, other 2D materials such as hexagonal boron nitride (h-BN) and 

molybdenum disulfide (MoS2), which exhibit insulating and semiconductive behaviors, 

respectively, show excellent Young’s modulus and tensile strength of 270 GPa/22 GPa and 865 

GPa/70.5 GPa, along with high flexibility.22 The promising mechanical robustness of 2D materials 

triggers the rapid development of strong composite materials and flexible/wearable electronics. 

Additionally, 2D materials show interesting mechanical behaviors, such as easy interlayer fracture 

and shear due to the weak vdW forces, making them promising lubrication additives for controlling 

friction and wear. 

The prevailing methods for evaluating the mechanical behaviors of 2D materials are direct 

measurements and computational simulations. In a direct measurement, target 2D materials are 

carefully transferred to cover an etched hole on a substrate, forming suspended 2D materials. These 

materials are then subjected to several nanoindentation tests using an atomic force microscopy 

(AFM) tip, resulting in force-displacement (F-D) curves. The F-D curves are subsequently 

analyzed to calculate Young’s modulus (from the slope) and tensile strength (from the maximum 

stress point). The AFM can also be used to evaluate the tribological characteristics (i.e., friction 

and wear) of 2D materials. Specifically, lateral force microscopy (LFM) detects how much the 

AFM tip twists while traveling across the surface of 2D materials and converts the torsions to 

friction forces, thus evaluating nanoscopic friction behaviors. Yet such experimental approaches 

require intensive labor to prepare experimental setups and perform multiple tests. 

Computationally, MD and DFT simulate experimental configurations such as nanoindentation, 

bi/uni-axial stretching, and friction tests to calculate the mechanical properties of 2D materials; 

however, these methods can be computationally expensive, and thus are far from an efficient 

approach for studying numerous 2D materials. 
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To support such conventional methods, various ML techniques can be introduced to effectively 

study the mechanical properties of 2D materials. For example, SVM can be adopted to predict the 

fracture strength of graphene by identifying the monolayer and sampling its distribution of lateral 

sizes.12 The optical micrograph (OM) of graphene layers transfer-printed on an Si/SiO2 substrate 

shows different colors due to the thickness dependence of thin-film optical interference, and the 

intensities of red, green, and blue components from the image are extracted and used as input 

features for ML. In detail, each pixel on the OM can be represented by the combination of red, 

green, and blue (R, G, B) color values ranging from black (0, 0, 0) to white (255, 255, 255), which 

are strongly associated with the thickness of the 2D materials.

Fig. 3a shows the SVM classified graphene layers according to their thickness using labeled 

data (i.e., input features: intensities of red and green, labels: the thickness of graphene). The lateral 

sizes of the identified monolayer graphene layers were further determined by counting the number 

of pixels occupied in the OM. Compared with visual inspection, the accuracy of the ML-assisted 

identification of monolayer graphene and their sizes was 98.2% (Fig. 3b). It is noteworthy that the 

amount of time spent identifying the sizes of the monolayer graphene was ~136 sec, much faster 

than manual inspection. According to the Weibull strength theory, the size distribution of 

mechanically transferred graphene is dependent on the fracture behavior of graphene. Together 

with other materials properties such as shear modulus, Young’s modulus, and thickness, the 

fracture strength of a graphene layer can be predicted (Fig. 3c).

In another example, the mechanical properties (fracture strain, strength, and Young’s modulus) 

for tungsten disulfide (WS2) were evaluated using an RF regression algorithm.23 To obtain 

sufficient data for ML, uniaxial tensile tests were performed using MD simulations under various 

conditions. Specifically, the input conditions (e.g., chirality, strain rate, and density of defects) of 
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the MD simulations and the corresponding outputs (e.g., fracture strain, strength, and Young’s 

modulus) served as input features and labeled outputs, respectively. Fig. 3d shows the schematic 

of a regression tree comprised of multiple nodes including root, decision, and leaf nodes. Input 

features from collected data occupy root and decision nodes, where branch splitting occurs 

according to if-else statements. A regression tree divides labeled data into two categories at every 

node and evaluates the error using the metrics of RMSE, MAE, MAPE, or R2. If the error is 

minimized and meets the requirement, the tree splitting stops and reaches the leaf node. Finally, 

the data settled at the leaf nodes are averaged and used for prediction. The complexity of the RF 

algorithm is controlled by two hyperparameters, max-depth and n-estimator. The max-depth is 

related to the number of splits from a single tree, and n-estimator indicates the number of trees in 

the RF. The higher number of hyperparameters can lead to better prediction accuracy in the training 

dataset but at the cost of overfitting. To reduce overfitting, it is very important to choose an optimal 

feature at the root node. In selecting the optimal parameter, the RF generally calculates the Gini 

index of each feature, which counts the number of splits. The lower Gini index of the feature 

indicates more efficient data splitting, thus showing higher importance. However, in this study, an 

alternative metric that calculates feature importance was introduced. Fig. 3e shows the Pearson’s 

correlation evaluating a linear relationship between the input features and the target outputs. Five 

input features (type, chirality, temperature, strain rate, and defect) were correlated to three target 

outputs (fracture strain, strength, and Young’s modulus). In this study, “defect” was chosen for the 

feature at the root node because it showed a strong connection to the target outputs. Fig. 3f plots 

the prediction results of Young’s modulus of WS2 using the trained RF algorithm. The prediction 

error was 3.8 GPa (cf. 117.8 GPa Young’s modulus for WS2), revealing that the prediction using 

RF was highly accurate.
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Moreover, the nanoscopic friction behaviors of 2D materials were predicted using Bayesian 

learning in a recent study.24 Specifically, the inter-layer friction that occurs when two layers slide 

relative to each other was considered. Since the inter-layer friction occurs by overcoming the 

maximum energy barrier (MEB) of the potential energy surface (PES), the MEB is the core 

parameter for understanding the friction behavior of 2D materials. In this study, the structural, 

electronic, chemical, and thermal properties affecting the PES were used as the input features, and 

the DFT and MD-calculated MEB values of five different 2D materials found in the literature were 

used as the target outputs (i.e., labels). The low volume of labeled data (only five) would very 

likely end up overfitting many other ML models, and thus a probabilistic Bayesian algorithm was 

adopted in this study to handle such sparse data. Bayesian learning is based on Bayes’ theorem 

(Fig. 4a), in which the posterior probability of A given B (P(A|B)) can be calculated with the 

knowledge of the likelihood of B given A (P(B|A)), prior of A (P(A)), and evidence of B (P(B)). 

Namely, it makes a prediction (posterior) by adjusting the likelihood in consideration of other 

probabilities (e.g., prior, evidence) associated with the target outputs. In this study, the Bayesian 

algorithm predicted MEB values of ten new 2D materials to be close to the known MEB values 

from five 2D materials in probability according to their similarity. Fig. 4b shows the correlation 

coefficients among 15 different 2D materials obtained by comparing their input features. A similar 

approach was used in the Bayesian algorithm, and, consequently, the MEB values of 15 different 

2D materials, including five already-known values, were predicted, as shown in Fig. 4c.

The examples discussed above indicate that ML algorithms can produce fast and accurate 

predictions when synergistically combined with computational simulations and previously 

reported data, thereby reducing the time and cost to investigate the mechanical properties of 2D 

materials. Notably, conventional approaches to studying 2D materials are usually used for 
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accumulating data, while ML subsequently infers outputs by determining the correlations among 

data and applying these correlations to other materials.

3.2.  ML-enabled study on the electronic properties of 2D materials

Other appreciated characteristics of 2D materials are their fascinating electronic and optical 

properties resulting from the confinement of electrons in a 2D plane. Contrary to 3D bulk 

materials, the crystal structure of 2D materials loses its periodicity along the direction normal to 

the plane, generating interesting band structures. For example, several 2D materials such as 

graphene, silicene, germanene, and graphynes (sp-sp2 allotropes) show a Dirac-cone band structure 

which gives rise to massless Fermions, resulting in ultrahigh carrier mobility that is more than 100 

times higher than that of silicon.25 Additionally, the band structures of most 2D materials are highly 

dependent on the thickness (i.e., the number of layers) from bulk to monolayer, providing the 

tunability of band gaps. Such tunable band gaps combined with high carrier mobility could enable 

the development of next-generation optoelectronic, semiconductor, and sensor devices. Moreover, 

the dimensional confinement of 2D materials reduces the dielectric screening effect between the 

electrons and the holes, thus increasing the Coulomb interactions and exciton binding energy. As 

a result, excitons found in 2D materials are more tightly bound and stable than those in bulk 

materials, which leads to strong light-matter interactions. More interestingly, naturally existing 

conducting (e.g., graphene), semiconducting (e.g., MoS2), and insulating (e.g., h-BN) 2D materials 

present many advantages, thus opening new opportunities to design electronic devices in which all 

the components (e.g., semiconducting channel, metallic electrode, and insulating dielectric) 

consist of atomically thin 2D materials. Such a combination benefitting from the variety in the 
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band gap of 2D materials is expected to overcome the scaling limit issue in current semiconductor 

devices.

In order to investigate these electronic properties of 2D materials, sophisticated experimental 

approaches and expensive computational calculations are required. For example, absorption 

spectroscopy is widely used to extract band gap and exciton energies by analyzing the absorption 

spectrum representing the absorption intensity of 2D materials to the incident radiation as a 

function of wavelength. In addition, carrier mobility can be experimentally inferred from the 

transfer characteristic curve of field-effect transistors (FETs) or Hall measurement. In a 

computational approach, DFT is used to calculate the band structure of 2D materials, identifying 

electronic characteristics such as the band gap and the effective mass, and with some 

approximations also the mobility of the charge carrier and conductivity. However, DFT says 

nothing of the experimental methods and some of the calculations require a significant amount of 

time and resources, even with the use of high-performance computers.  

In recent years it has been shown that ML supports experimental and computational 

approaches, thus enabling productive studies on the electronic properties of 2D materials. For 

example, ML has been employed to unearth 2D MXenes with band gaps ranging from 0.5 to 2 eV 

and thus hold significant potential for various applications.26 Additionally, the band gaps of the 

discovered MXenes were accurately predicted within seconds with the aid of ML. A series of ML 

steps for the above tasks is depicted in Fig 5a. Initially, 23,870 functionalized MXenes with a 

structure described as MM’XTT’, where M and M’ are elements in groups IIIB to VIB, X 

represents either C or N, and T and T’ are either single elements (H, F, Cl, Br, O) or groups (CN, 

NO, PO, OH, OCl, OBr, OCN, SCN, NCS), were considered as subjects of the study. Afterwards, 

the evaluation of the Perdew-Burke-Ernzerhof (PBE) band gaps was carried out using DFT for 
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7,200 MXenes randomly chosen from the total of 23,870. The calculation of PBE band gaps is 

faster but significantly underestimated compared with GW band gaps (which currently are closest 

to experimental values among first-principles band gap prediction approaches for solids). 

However, such PBE band gaps are enough to be used as data labels for qualitatively building a 

metal-semiconductor classification model. In a decision tree (DT) classification model, a single 

tree from the RF method described in Section 3.1 was used to divide the MXenes into metallic and 

semiconducting. For the DT model, the PBE band gaps served as labels (i.e., target outputs) and 

the corresponding input features were adopted from materials databases.26 As mentioned earlier, 

ML study on 2D materials often suffers from the lack of data, because data acquisition processes 

are limited to experiments and computations. Here, 643 MXenes randomly selected from 7,200 

MXenes with pre-evaluated PBE band gaps were used to train the DT model. This trained model 

successfully screened out the metallic MXenes from all 23,870 MXenes, with an accuracy greater 

than 94%. After the classification, it was found that MXenes based on Sc and Y have band gaps 

between 0.5 and 2 eV, which is suitable for electronic and catalytic applications. Although the DT 

classification model successfully discovered promising semiconducting MXenes buried in a large 

number of MXenes, the predicted band gaps were underestimated because the model was trained 

with PBE band gaps. Therefore, additional ML was carried out to evaluate the accurate band gaps 

of classified MXenes. Here, 70 randomly chosen MXenes among as-classified MXenes underwent 

further high-accuracy band gap calculations based on the GW approximation. The GW band gaps 

along with 47 primary features of MXenes (e.g., Volume per atom: , Lattice parameter: , Phase 𝑉 𝑎

of MXene: , Boiling point: , etc.) collected from material databases were used for the labels 𝑐 𝑇𝑀

(Y) and input features ({x}), respectively. The 47 input features were subsequently reduced to 15 
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features that strongly correlated to GW band gaps, resulting in an efficient ML model with high 

accuracy and a low chance of overfitting. 

The feature reduction was performed using the LASSO algorithm, and the 15 features (e.g., 

Vacuum potential for lower surface: , Standard meting point: , etc.) having non-zero ∅𝐿 𝑇𝑆𝑇𝐷
𝑀

correlation to the GW band gap are shown in Fig. 5b. The LASSO described in Section 2.1 is one 

of the regression algorithms and expressed as  (summation of L1 and 𝐿(𝛽) =  ‖𝑌 ― 𝑋𝛽‖2
2 +𝛼‖𝛽‖1

L2 norms), where  is coefficients of the regression model, Y is target outputs (here, GW band 𝛽

gaps), and  is the coefficient to control the penalty. Since the constraint boundary of the L1 norm 𝛼

of the  is a diamond shape, which makes zero coefficients  at vertices, input features not 𝐿(𝛽) 𝛽

directly involved (i.e., irrelevant) to the regression model can be removed. 

Finally, supervised learning with the Gaussian process regression (GPR) algorithm was 

performed using the input features and GW band gaps as the data set {X, Y}. The GPR is a kernel-

based stochastic process which is highly accurate even when using a low volume of data. In GPR, 

the regression model (i.e., regression function) does not predict deterministic outputs, but rather 

outputs with stochastic randomness because the model consists of Gaussian distributions, . 𝑁(𝜇,𝜎2)

The following equation implies the concept of the GPR, , where  are the 𝑦′ =  ∑𝑁
𝑖 = 1𝑤(𝑥′,𝑥𝑖)𝑦𝑖 𝑤

weights,  and  are original data, and  and  are missing data points and corresponding outputs, 𝑥𝑖 𝑦𝑖 𝑥′ 𝑦′

respectively. In the GPR the  is represented by a kernel, and learning is the process to tune the 𝑤

kernel in order that  reflects  more as  is closer to . GPR has a strong advantage of accurate 𝑦′ 𝑦𝑖 𝑥′ 𝑥𝑖

prediction and provides the uncertainty of predictions. Fig 5c shows the predicted band gaps of 

MXenes using GPR, which is highly consistent with GW gaps with a RMSE of 0.14 eV. The 

trained model could successfully predict accurate band gaps of MXenes within seconds, even 

though the model did not include PBE band gaps  as one of the input features. This indicates 𝐸𝑇𝑃𝐵𝐸
𝑔
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there is no need to perform DFT calculations for extracting the GW band gaps of MXenes, as 

illustrated in Fig 5d.

Another recent study demonstrates that ML combined with DFT calculations can also 

significantly contribute to predicting the band gaps of 2D heterostructures.18 Since 2D 

heterostructures consist of different 2D materials stacked vertically or stitched laterally, the use of 

ML dramatically enhances the efficiency of studying countless combinations of them. In this study, 

21 non-metallic 2D materials such as MoS2, HfS2, BN, and CdO were used to construct 210 2D 

heterostructures consisting of two different monolayers stacked vertically. Subsequently, DFT 

calculations were carried out to collect the band gaps from 49 heterostructures that were randomly 

selected from 210. For data preparation, the property-labeled materials fragments (PLMF) method, 

which extracts a materials’ characteristics from a graph representing a crystal structure, was used. 

In the PLMF method, the adjacency matrix is widely used to represent the crystal structures of 

materials.27 Fig. 5f shows an example of the adjacency matrix constructed from MoS2. Each atom 

in the MoS2 has numbered labels and the connectivity is represented as a matrix, where 1 indicates 

the existence of a bond between atoms and 0, otherwise. The adjacency matrix does not necessarily 

reflect only the connectivity using either 1 or 0; instead, components of the matrix can include the 

structure and properties of materials such as bond lengths, angles, and charges, among others, 

which can be found in the materials databases shown in Table 2. Therefore, the PLMF method 

using the adjacency matrix can produce a considerable number of input features that encode the 

topology and properties of the corresponding materials. Furthermore, in this study, 1,529 input 

features were obtained using the PLMF method and then reduced to 11 significant features using 

LASSO. 
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Using such features and band gaps obtained from DFT, a neural network (NN) was trained 

and used to predict the band gaps from all 210 2D heterostructures. Fig 5g shows the band gaps 

predicted from the trained NN for a test set of 2D heterostructures have a linear correlation with 

the gaps from DFT calculations, with an MSE of 0.047 eV2. Additionally, the trained NN 

successfully predicted the band gaps of all possible 210 2D heterostructures, revealing the 

powerful and promising advantage of ML for the study of 2D materials.

Lastly, the exciton valley polarization landscape of monolayer WSe2 was predicted using the 

RF algorithm.28 Typically, the exciton valley polarization of 2D materials can be observed using 

a low-temperature photoluminescence (PL) measurement, which requires high-end experimental 

apparatus. In this study, RF correlates the PL spectra obtained from 300K with those acquired from 

15K, allowing the prediction of the exciton valley polarization landscape of WSe2 without 

performing onerous low-temperature PL. For the ML, the polarization and position-resolved PL 

spectra from nine WSe2 were measured under 300K (for input features) and 15K (for target outputs 

or labels). Fig. 6a shows the intensity, energy, full-width at half-maximum (FWHM) and the trion-

exciton intensity ratio (T-X ratio) spectra obtained from the 300 K experiment that were used for 

the input features. The trained RF algorithm successfully predicted the exciton valley polarization 

of other WSe2 using PL spectra measured from 300K, thereby mitigating the experimental 

complexity and cost required to perform low-temperature measurements. Fig. 6b displays a strong 

correlation between the predicted and experimentally measured exciton valley polarizations with 

a correlation coefficient (R2) of 0.97.

In summary, supervised learning that correlates the input features with target outputs has been 

adopted to predict the electronic properties of 2D materials. In addition to conventional 
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experiments and simulations, materials databases provide comprehensive data for ML, which is 

expected to promote many more studies on the various properties of 2D materials.

3.3.  ML-enabled design of 2D materials

2D materials design and engineering reveal fantastic prospects as well as significant challenges 

for fully leveraging quantum confinement effects. Novel 2D materials can be designed through 

various routes, such as defect engineering, the adsorption of atoms or molecules, and 

heterostructures, among others. Defect engineering is an attractive option, and studies have shown 

that purposefully-designed defects in 2D materials could exhibit exciting performance for novel 

applications such as single-photon emission, resistive switching, and neuromorphic computing. 

However, the diversity and complexity of defects makes their control challenging, and 

experimental screening and exploration is very slow. Therefore, the rapid prediction of defect 

properties in 2D materials through highly efficient methods, such as ML, is crucial. 

A recent study has employed ML to rapidly predict defects in 2D materials for quantum 

emission and neuromorphic computing.29 In this work,  the most promising 2D material hosts for 

point defects were first identified through deep learning (DL), and then defects in these 2D material 

hosts for quantum emission and neuromorphic computing were predicted by the RF algorithm, as 

illustrated in Fig 7a. To identify the 2D material hosts, a dataset of 4,000 2D materials is available 

from the Computational 2D Materials Database (C2DB)30, but this amount of training data is still 

insufficient for deep neural networks (DNNs). Thus, the DNN was pretrained on a data set of 104 

~ 105 bulk materials from the Materials Project31 database. Three models of graph networks as 

implemented in MatErials Graph Network (MEGNet)32 were used to map the input structure 

graphs to the output target properties. The input graph representations were characterized by the 
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atomic numbers of the constituent elements and the spatial distance (bond lengths) between atoms. 

The output targets were formation energy, band gap, and Fermi energy. As an example of transfer 

learning, these pretrained models were then trained on the 2D materials data set C2DB (∼103), and 

the model weights were fine-tuned for 2D cases. Fig 7b shows the good performance of the deep-

learning model on the formation energy prediction, as the R2 is 0.98 and the MAE is 0.06 eV/atom 

on the test data. The accuracy of the metal versus nonmetal classifier is 0.84, with an F1 score 

(which measures a combination of precision and recall) of 0.88 and 0.73 for metals and nonmetals, 

respectively. Though the performance of the 2D band gap model is worse than the others with an 

R2 of 0.73, its MAE (0.36 eV) is similar to that of the bulk model (0.33 eV).32 

For applications in quantum emission and neuromorphic computing, a good host material 

should have a wide band gap for isolating deep defect levels and small spin-orbit coupling (SOC). 

To identify optimal host 2D materials for these applications, the screening criteria were set as 

screening for nonmagnetic materials with band-gaps greater than 2 eV calculated with the GW 

approximation. Here, 158 candidate wide band gap (WBG) semiconductor 2D materials were 

identified. Screening out compounds with heavy elements to reduce the effects of SOC, 150 WBG 

candidates were obtained. Next, potential defects for quantum emission and neuromorphic 

computing in these 2D material hosts were explored by ML. To build the ML model, a data set 

with more than 1,000 quantum point defects (QPDs) was generated. The model started from the 

combination of the 150 optimal 2D material hosts identified from the first step through DL and 70 

defects in 2D materials containing all possible vacancies, divacancies, antisites, and common 

dopants, which yielded more than 10,000 defect structures. These candidate defects were funneled 

into a subset for electronic structure calculations, which were then used to test ML models, as 

illustrated in Fig 7c. Relaxed defect geometries and band structures were computed for more than 
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1,000 QPDs and for 140 substitutional metal defects in the atomically thin resistive memory 

materials MX2 (M = Mo, W; X = S, Se, Te) and h-BN. To identify promising defects, two ML 

models were built: one classifier to identify the deep center defects and one regressor for predicting 

defect formation energies. The output targets for ML prediction were DFT-computed band 

structures for the classifier, and the neutral defect formation energies Ef for the regressor. For the 

classifier, ΔVB and ΔCB were defined, which are the energy differences between the defect level 

and the valence band maximum and conduction band minimum, respectively. The threshold for a 

deep center defect was set as ΔCB > kBT and ΔVB > kBT at room temperature. For both the 

classifier and regressor, the input features for the ML approach were the structural and chemical 

properties of the host material and defect that were obtained from C2DB databases or the first-step 

deep transfer learning model predictions. The defect descriptors were normalized as percent 

differences between the corresponding descriptor for the bulk structure and the unrelaxed defect 

structure. The RF algorithm from scikit-learn was used for both models, and some descriptors 

were generated with matminer33 and automatminer. Here, 90% of the data was split into a training 

set and 10% was held as a test set. Fig 7d shows the RF model for Ef prediction has R2 of 0.74 and 

MAE of 0.67 eV on the test set. From the permutation feature importance in Fig 7e, the chemical 

potential of the defect species is directly related to Ef among the most important features. The 

linear Pearson correlations of individual features is lower than 0.3, implying the invalidity of a 

simple linear model to predict defect properties. Indeed, the performance of the nonlinear RF 

model on Ef prediction is much better than previously reported linear models such as LASSO and 

Ridge regression34. The RF model performed even better for the deep-center classifier, with F1 of 

0.92 on the test set, and 442 deep-center QPDs were identified. The most important feature is the 

lowest unoccupied molecular orbital (LUMO) energy. 
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Finally, to identify optimal defect candidates, a defect score metric that represents the fitness 

as a deep-center defect for quantum emission was defined as

𝑆 =
1
𝑁(𝐸𝐺𝑊

𝑏𝑔 + (1
2𝑠𝑑 +

1
2𝑠𝑡) ― 𝐴 ― 𝐸𝑓)

where , sd, st, A, and Ef are the GW band gap, dynamic stability, thermodynamic stability, 𝐸𝐺𝑊
𝑏𝑔

maximum atomic number in the host, and defect formation energy, respectively. N is an overall 

normalization factor. Higher scores indicate the optimal defect candidates with larger band gaps, 

greater stability, smaller defect formation energies, and smaller SOC. The top 100 defect scores 

are plotted in Fig 7f, with the top 10 highlighted in the inset. Furthermore, a subset of substitutional 

metal defects in TMDs and h-BN with defects were identified for their potential nonvolatile 

resistance switching (NVRS) applications for information storage and neuromorphic computing. 

They were screened out based on Δz and EBE, which are the change in out-of-plane distance 

relative to the equilibrium distance between the TM plane and the chalcogen plane, and the defect-

binding energy of a metallic dopant, respectively. Fig 7g shows the highest five and lowest five 

defects by the maximum binding energy EBE. The highest binding energy defects are of interest in 

memory applications for their assumed stability, while the lower binding energy defects require 

small switching voltages that are useful for neuromorphic architectures. These identified optimal 

defect candidates may find applications in quantum emission, resistive switching, and 

neuromorphic computing.

Adsorption is another effective way to engineering and design 2D materials. The intriguing 

success of 2D TMDs synthesis achieved through various methods such as mechanical exfoliation, 

chemical exfoliation, physical vapor deposition, and solution synthesis has led to intensive study 

of their potential applications. The adsorption of alkali metal atoms on 2D TMDs plays a crucial 

role in their performance as batteries, catalysts, and sensors. A recent work35 has used a linear 
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regression ML model to investigate the characteristic energetic factors that determine the 

adsorption energy of lithium on 2D TMDs. The work demonstrated and was supported by ML that 

the lowest unoccupied states ELUS is a novel efficient descriptor for predicting adsorption energies, 

due to the linear correlation. 

In the ML process for this work, 112 cases were considered through the combination of seven 

transition metals (Ti, Hf, V, Nb, Ta, Mo, and W), two chalcogens (S and Se), two phases (the 2H 

stable semiconducting phase and 1T metastable metallic phase of TMDs), and four adsorbed alkali 

metals (Li, Na, K, and Rb). The input features were the DFT-calculated lowest unoccupied states 

ELUS and the cohesive energy Ecoh, and the ionization energy of the adsorbate EIE from the 

literature. The output target was the DFT-calculated adsorption energy. A linear regression was 

performed, taking the ordinary least squares (OLS) scheme as implemented in the scikit-learn 

package, to determine the values of the parameters x0, a, b, and c in the equation Eads ≈ x0 + a∙ELUS 

+ b∙Ecoh + c∙EIE. The six-fold cross-validation scheme was used, i.e. the data set was randomly 

divided into six sets, five of each was used for training and one for testing. This procedure was 

repeated for all six sets and the performance on the test set was averaged and reported. Fig 7h 

shows the OLS-predicted adsorption energies versus the DFT-calculated results. To assess the 

regression model, the R2, RMSE, and the MAE were calculated to be 0.968, 0.012 eV and 0.080 

eV, respectively, and thus confirmed the validity of the model. The ML-trained parameter for ELUS 

was 0.974, implying a linear correlation of Eads and ELUS. This result suggests that the lowest 

unoccupied state energy ELUS can be used as a descriptor and further assist a high-throughput 

scanning of materials with desired adsorption properties.
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4. Strategies for producing 2D materials using machine learning

The two most common methods for producing 2D materials are top-down and bottom-up. 

Simply, 2D materials can be transferred from their corresponding bulk crystals to target substrates 

using scotch tape in the top-down method. The transferred 2D materials can then be placed on top 

of other 2D materials to form 2D heterostructures. Recent deterministic methods using viscoelastic 

(e.g., Polydimethylsiloxane (PDMS)) or sacrificial polymers (e.g., polymethyl methacrylate 

(PMMA)) as carrying layers place the target 2D materials precisely on the designated locations on 

a substrate using control apparatus equipped with a motorized stage and an optical microscope. 

Such methods have opened a facile pathway to fabricate various types of 2D heterostructures, but 

the use of heterostructures produced via these methods is still limited to research, because their 

production requires extensive pre-processing time to identify the optimum 2D materials (e.g., ideal 

size and thickness) to be transferred. To expand the usability, this tedious pre-process should be 

automated, and the latest studies using ML give hints for coping with the issue. Another top-down 

method is liquid exfoliation, which delaminates the monolayers of 2D materials from their 

corresponding bulk crystals using etching or ion intercalation to weaken the van der Waals forces 

and expand interlayer spacing. Even though these methods have successfully synthesized many 

TMDs and some MXenes, numerous newly proposed 2D materials have yet to be synthesized. 

Liquid exfoliation also requires lots of time to find and transfer optimal 2D materials with the ideal 

size and thickness.

With bottom-up approaches such as chemical vapor transport (CVT) and chemical vapor 

deposition (CVD), precursor molecules are supplied to a heating tube and 2D materials are 

synthesized as a result of chemical reactions. Recently, these synthesis approaches combined with 

theoretical calculations have been efficiently performed by reducing potentially fruitless attempts 
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to synthesize new 2D materials. The theoretical calculations can screen out a large number of 2D 

materials that are less likely to be synthesized by investigating the critical materials’ features, such 

as lattice parameters, formation energies, and cohesive energies that affect the stability of 2D 

materials in the ambient. A recent described in Section 4.1 correlates the critical features of such 

materials with the synthesizability and successfully predicts the most synthesizable 2D materials 

rapidly using ML, which could be an essential strategy in producing new 2D materials.

4.1.  ML-enabled automatic identification of exfoliated 2D materials

The most critical weakness of the current mechanical exfoliation and transfer method is the 

lack of controllability in the size, thickness, and location of transferred 2D materials. Even though 

several previous studies demonstrated that pre-patterned 2D materials stamps or the use of 

adhesion layers (e.g., Au, Ni)36 can control the size and thickness, respectively, of 2D materials 

after transferring, they are still premature and have a low rate of success. Therefore, identifying 

2D materials with the optimal size and thickness among numerous other randomly distributed 2D 

materials transferred together is still required before moving on to the next step of the study of 2D 

materials. The identification process performed under the optical microscope is usually tedious 

and time-consuming, but strongly required to design functional devices with the desired size and 

thickness of 2D materials or heterostructures. 

While observed under the optical microscope, 2D materials transferred on an Si/SiO2 substrate 

have different colors depending on their layer thickness, which results from the thin-film optical 

interference. Once the incident visible light to the 2D materials on the substrate reflects at 

interfaces (e.g., air/2D materials, 2D materials/SiO2), reflected lights produce constructive or 

destructive interference depending on their phase (i.e., optical path) difference modulated by the 
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different thickness of the 2D materials. As the 2D materials get thinner, reflected lights with shorter 

wavelengths corresponding from yellowish to greenish tend to sequentially generate constructive 

interference (i.e., Bragg’s law), resulting in a color code used to estimate the thickness of 2D 

materials. Recent studies have demonstrated that ML can precisely and promptly distinguish such 

a subtle color change and thus automatically identify the thickness and size of 2D materials with 

high accuracy and reliability.7, 8, 11

Fig. 8a shows the use of the K-means clustering algorithm to identify mechanically transferred 

graphene. At first, an OM of graphene was analyzed using image processing tools such as 

MATLAB, Python, and ImageJ, followed by extracting color features (R, G, B) from all pixels 

comprising the OM. Afterward, the K-means algorithm clustered the color features into sub-groups 

according to their mutual similarity. In Fig. 8a, the color features were grouped into four clusters 

and the thickness value was subsequently assigned to each cluster using the AFM measurement. 

The labeled clusters were used to determine the thickness of graphene very quickly.

A similar approach was used to identify the thickness of MoS2, as shown in Fig. 8b.8 The 3D 

plot shows the distribution of the color features obtained from the OM of MoS2, displaying wide-

spreading features with a rod shape. Based on the shape of the distribution of features, it is 

necessary to consider other ML algorithms, because the K-means algorithm performs best when 

the distribution of features have a round shape with roughly equal sizes/density clusters. In this 

study, SVM was applied to classify color features into sub-groups implying different thicknesses. 

The color features of the OM were used as a feature vector, x = (R, G, B), and the thickness of the 

MoS2 investigated using AFM and Raman was added to the vector as labels. Finally, a training 

data set, (x, y) = (R, G, B, y), was acquired and used to train the SVM classification model.

Page 34 of 74Chemical Society Reviews



35

The performance of the classification models explained above depends on the quality of the 

OM. In other words, OMs for training and testing should be taken under consistent conditions such 

as optical contrast, color temperature, and balance to acquire reliable classification results with 

high accuracy. Such requirements need an optical microscope well-suited for the classification 

models, which results in low accessibility. This limitation was resolved in a recent study 

employing a DNN. Fig. 8c illustrates how a DNN works to identify 2D materials that possess 

mono- or bi-layer thicknesses. In this study, 24 images for MoS2 were initially obtained, which 

then were increased to 960 images by augmentation processes such as randomly cropping, rotating, 

changing color, and changing the HSV (hue, saturation, value) from the original images. The 

augmentation process is expected to impart the DNN with high robustness in variations on input 

images, thereby improving the generalizability and increasing the accessibility of the model. The 

DNN learned by using cross-entropy, softmax, and stochastic gradient descent (SGD) as loss, 

activation functions, and solver, respectively. Fig. 8d shows a segmented image using the trained 

DNN. The DNN was trained for solving a multi-classification problem that classifies 2D materials 

shown in the image into monolayer, bilayer, or nothing. It was reported that the optimized DNN 

algorithm could distinguish mono- and bi-layer MoS2 from bulk MoS2 and graphene with an 

accuracy of 70 ~ 80%.

As another top-down approach, liquid exfoliation holds great promise to realize the 

industrialization of various 2D materials in the form of dispersions in solution. For example, 2D 

materials dispersions can be applied to high throughput manufacturing technologies such as spin 

and spray coating, and inkjet printing, possibly enabling mass production of 2D materials. 

However, the most significant challenge in such dispersions is to control the quality, guaranteeing 

the industrially-required ratio of successfully exfoliated to un- or partially exfoliated sheets. In a 
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recent study shown in Fig. 8e and f, K-means clustering combined with advanced optical 

microscopy, such as quantitative polarized light microscopy (qPOM), has efficiently evaluated the 

quality of graphene-based dispersions.37 Fig. 8e shows the clustering process of graphene oxides, 

unexfoliated and partially exfoliated graphite oxides in a dispersion after the liquid exfoliation 

process. Two optical parameters, brightness and retardance, extracted from brightfield microscopy 

and qPOM, respectively, were used as principal components for ML datasets. It is noted that the 

retardance (R=∆n × t, where ∆n is a birefringence and t is the layer thickness) derived from the 

anisotropy in the refractive indices along the in-plane and out-of-plane directions of 2D materials, 

is strongly related to the layer thickness. Such brightness and retardance at each pixel in the 

original image were normalized to the range between 0 and 1, clustered into three sub-groups using 

the K-means algorithm. The optimal number of clusters (i.e., hyperparameter, K) was determined 

by the aforementioned gap-statistics, i.e. finding a K value that results in the largest gap between 

within-cluster distance curves both obtained from the original dataset and a reference dataset 

distributed with no apparent clustering. Finally, Fig. 8f shows the quantified fraction of GO sheets 

(i.e., successfully exfoliated) from the dispersion. Within 30 minutes, K-means algorithm along 

with qPOM quantified unexfoliated graphite oxide (uGtO, 13.9%), partially exfoliated graphite 

oxide (pGtO, 13.6%), and graphene oxide (GO, 72.6%) in the dispersion, which can significantly 

advance the evaluation process of 2D materials dispersions manufactured by the liquid exfoliation.

The identification of optimal 2D materials occupies a substantial fraction of the current top-

down methods such as mechanical transfer and liquid exfoliation processes. Therefore, the 

strategies for replacing manual laboratory work with an ML-based system could significantly 

enhance the efficiency and yield in producing 2D materials. Furthermore, the ML approaches 
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described in this section could be combined with a modern robotic system, resulting in a fully 

automated identification and transferring system for producing 2D materials and heterostructures.

4.2.  ML-enabled prediction of the synthesizability of 2D materials

Even though countless 2D materials have been predicted to exist, only very few have been 

demonstrated experimentally due not only to technical difficulties but also to fundamental 

limitations. Such limitations originate from the fact that 2D materials which have been predicted 

to exist may not always be synthesizable, which renders many experimental efforts unsuccessful. 

For example, only approximately 20 out of many MXenes whose existence had been predicted by 

theoretical (e.g., DFT, MD) calculations have been successfully synthesized.1 To cope with this  

problem, ML can be used to predict synthesizable candidates among numerous 2D materials, 

which could be an efficient strategy for saving resources by minimizing trials and errors for the 

synthesis. In a recent study, synthesizable MXenes were predicted in the order of the highest 

probabilities of being synthesized using ML.13 From the perspective of ML, there was a small 

amount of positively labeled data (i.e., already proved to be synthesized) and a large amount of 

unlabeled data (i.e., MXenes to be tested for their synthesizability), which produced imbalanced 

data that required an advanced ML algorithm. In this study, the positive and unlabeled (PU) 

learning algorithm in semisupervised learning was adopted and trained to tackle such an 

imbalance. 

Fig. 9a shows schematics of material search space and the PU learning algorithm. Considering 

11 transition metal M, 12 A group elements, two X (carbon or nitrogen), and n = 1, 2, or 3 (number 

of layers of X), a total of 792 MAX and 66 MXenes were considered as the initial materials search 

space. MAX, a bulk phase of MXene, was also added to the search space because the 
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corresponding MXene could potentially be produced from MAX via the liquid exfoliation process 

as long as there is synthesizable MAX. Therefore, synthesizable MAX and MXene were 

independently predicted among the search space in this study. 

Input features including structural, thermodynamic, electronic, and elemental information were 

gathered from DFT simulations and materials databases to train the ML algorithm. In the process 

of predicting synthesizable MXenes, a total of 66 MXenes, including 10 experimentally 

synthesized MXenes such as Hf3C2, Mo2C, and Ti2C (true positives), and 56 unlabeled MXenes 

were applied to the PU learning algorithm using the bootstrapping method. Bootstrapping is 

typically used for augmenting the original dataset by sampling with replacement. For example, k-

times repeated bootstrapping produces k number of bootstrapped datasets that complement the 

deficiency of the original dataset. Such augmented datasets help avoid overfitting from insufficient 

original data and enhance the stability of the ML algorithm. Before applying the PU algorithm, the 

bootstrapped data were divided into training sets (90%) and test sets (10%). In Fig. 9a, the PU 

algorithm first randomly chooses some of the unlabeled data (blue squares) and labels them as 

“negative” (green squares, not synthesizable). Subsequently, a classification algorithm finds a 

hyperplane that classifies the dataset as positive (red circles, synthesizable) or negative. Thereafter, 

the trained classifier determines if individual unlabeled data not chosen in the first step belongs to 

“positive” or “negative”. Such processes are repeated for all bootstrapped datasets, which results 

in k-times repetitions. In this study, a decision tree was used as a classifier and a “synthesizability 

score” was defined to sort MXenes in the order of high synthesizability. The synthesizability score 

can be described as the ratio of the number of times an unlabeled MXene is classified as positive 

out of k-repetitions. Specifically, k-repetitions of the PU algorithm with k-augmented datasets 

result in a k-trained decision tree. If l-number of decision trees out of k classify a given unlabeled 
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MXene as “positive”, the synthesizability score of the specific MXene is evaluated as l/k. In the 

study, 18 out of 56 unlabeled MXenes were predicted as synthesizable because their high 

synthesizability score exceeded 0.5. With the same approach applied to MAX, 111 out of 729 

unlabeled MAX were suggested as synthesizable. 

Fig. 9b shows the probability of synthesizing MAX and MX with respect to transition metals 

M and A group elements. It was predicted that MAX comprised of Zr, Ti for M and Al, and Ga 

for A exhibits the highest possibility of being synthesized, and MX based on Hf and C as M and 

X, respectively, displays the most promise. Since most MXenes are synthesized by etching the A 

layer from the corresponding MAX, synthesizability predicted separately for MAX and MXene 

may not necessarily guarantee the true synthesizability. For example, although a MAX is predicted 

to be synthesizable, it could not produce the corresponding MXene if it requires high etching 

energy. Similarly, an MXene predicted to be synthesizable could not be synthesized if there is no 

synthesizable corresponding MAX, and thus it is important to investigate the synthesizability of 

MAX and MX pairs as combined synthesizability. Fig. 9c illustrates a schematic of the process to 

evaluate the combined synthesizability of MAX and MX pairs. First, the synthesizability scores of 

111 pairs of MAX and the corresponding MX were obtained from the PU learning algorithm, and 

then the etching energy (Eetch) of 111 MAX was calculated. Subsequently, the 111 MAX and MX 

pairs were plotted as functions of the synthesizability of MAX and MX and the etching energy. 

Finally, the k-means algorithm was used to cluster 111 pairs and found the top 20 pairs with the 

highest combined synthesizability scores, as shown in Fig. 9d. These MAX/MX pairs include 

Zr2GaC/Zr2C, Nb3AlC2/Nb3C2, and Ti4AsC3/Ti4C3, which have yet to be synthesized but the 

outlook is promising. 
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Such predictions of synthesizability using ML could be an essential pre-process for efficiently 

synthesizing numerous new 2D materials, because the ML algorithm can filter out only those 2D 

materials likely to be synthesized successfully, thereby accelerating the synthesis process. 

Furthermore, the ML combined with DFT calculations can help understand the fundamentals in 

the synthesis of 2D materials by revealing input features most relevant to the synthesizability.

5. ML-assisted applications of 2D materials

Due to their excellent properties, 2D materials have had a significant impact on applications 

such as transistors, optoelectronics, sensors, and catalysts. Recent studies have shown that ML can 

be an effective tool for studying such applications14, 15, 17, 38, 39 because it can determine the complex 

connectivity and relationships between numerous data and draw meaningful results beyond human 

intuition. The studies introduced in the following section show how ML can be used for 

applications based on 2D materials.

5.1.  ML-enabled application of 2D materials in chemical sensing

2D materials have pushed the boundary of detection in sensing applications because their 

excellent structural, electrical, optical, and electrochemical properties enable them to outperform 

conventional 3D sensing materials. Specifically, the large surface area, tunable band gap, high 

electron mobility, electrically low-noise, long-lived plasmons, high stability, and low toxicity of 

2D materials have been exploited to design electrochemical, electrical, and optical-based sensing 

schemes.40 In an electrochemical sensing scheme, 2D materials are designed for a working 

electrode (WE) of electrochemical sensors that measure the change in the Faradaic current (using 

amperometry or voltammetry) or interfacial impedance (using electrochemical impedance 
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spectroscopy (EIS)) by reduction-oxidation (redox) reactions upon the adsorption of target 

analytes to the WE. Field-effect transistors (FETs) made of 2D materials are used for the sensing 

channels in electrical sensors to assess the change in channel resistance by the gate potential 

modulation due to the binding reactions between the analytes and receptors grafted on the surface 

of the 2D material. Additionally, optical systems such as surface plasmon resonance (SPR) and 

surface-enhanced Raman spectroscopy (SERS) measure the change in the local refractive index 

resulting from the adsorption of analytes on the sensor surface made of 2D materials. Sensors 

consisting of 2D materials as a sensing membrane show unprecedented detection capabilities that 

conventional 3D sensing materials cannot achieve; for example, a single molecule of NO2 gas was 

detected using a graphene FET in 2007. Other 2D materials such as MoS2, phosphorene, and 

Ti3C2Tx have been demonstrated as sensitive bio- and environmental sensors, exhibiting a low 

signal-to-noise ratio, high sensitivity, and low limit-of-detection.40

Recently, new trials adopting ML techniques have been reported for improving the superior 

potential of 2D materials in sensing applications. For example, the atomically thin layer of 2D 

materials has enabled the sensitive analysis of the sequence of bases in DNA by detecting 

corresponding amino acids.14 This sensing technology, known as nanopore-sequencing, takes 

advantage of the conductance change while a strand of DNA passes through a nanopore in 2D 

materials, as shown in Fig. 10a. However, the conductance change from the single nanopore of 

2D materials is very subtle, measuring in the pico-ampere (pA) range, which requires a well-

controlled experimental setup and analysis to discern the sensor signals from background noises. 

In a recent study, ML was used to identify sensor signals coupled with noises for detecting amino 

acids using MoS2 with a nanopore.14 Once a chain of amino acids travels through a nanopore of 

MoS2, the change in ionic current originating from the conductance change is observed, depending 
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on the type of amino acids comprising the chain. Each amino acid has various functional groups, 

such as amino (-NH2) and carboxyl (-COOH), molecular sizes, and weights, which show different 

interactions with the nanopore and result in varying residence times. Therefore, the ionic current 

and residence time associated with amino acids can serve as critical sensor signals during the 

nanopore-sequencing process. In the study, the ionic currents and residence times from 20 standard 

amino acids moving through a nanopore in MoS2 were calculated using MD simulation with 100 

repetitions. Fig. 10b plots the ionic currents and residence times that form scattered clusters. This 

plot was further used as training data for ML algorithms such as KNN and RF. Fig. 10c and d 

show the decision boundaries obtained from the KNN (k = 3) and RF (n-estimator = 9), 

respectively. Different color regions shown in Fig. 10c and d are associated with the individual 

amino acid, enabling the classification of testing data depending on their two features (i.e., ionic 

current and residence time). These decision boundaries trained by the KNN and RF efficiently 

classified the testing data with an accuracy of 94.6% and 99.6%, respectively. Furthermore, the 

trained KNN and RF algorithms were further used to identify a chain of amino acids, reflecting a 

more realistic sensing problem because amino acids favorably form a chain. Fig. 10e shows a 

chain of 16 amino acids used as test data and a plot of the corresponding ionic current with respect 

to the residence time. The plot obtained from a chain of amino acids includes a high degree of 

fluctuations originating from background noises, and thus it is unlikely that the sensor signals 

corresponding to amino acids can be easily deciphered. ML, given this condition, can be a powerful 

tool to analyze sensor signals buried in noises. In this study, two characteristic features were 

extracted by averaging ionic currents and residence times obtained from 10 repetition tests using 

the same chain of amino acids. Following that, predictions of amino acids were performed by 

applying such features to trained KNN and RF algorithms. The RF predicted better than the KNN, 
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and the overall accuracy was 62.5%. It should be noted that only two features were used for 

training the ML models in this study, which could be one of the reasons for such relatively low 

accuracy. Therefore, capturing multiple characteristic features related to amino acids could further 

increase the accuracy.

In another recent study, material databases beneficial to construct materials data for ML were 

used to discover 2D materials suitable for adsorbing and detecting airborne mercury (Hg0) through 

a series of screening processes.15 Materials databases (pymatgen41 and AFLOW42 listed in Table 

2) and a thermochemical software (FactSage) were used to screen a number of 2D materials, as 

shown in Fig. 10f. First, stable TMDs were investigated using Pymatgen. Subsequently, easily 

synthesizable TMDs selected from previously chosen TMDs were identified using FactSage. Fig. 

10g shows phase diagrams of WS2 obtained from pymatgen and FactSage. The red dots in the 

pymatgen phase diagram show the stable compounds that can be obtained from the combinations 

between transition metals and chalcogens, and WS2 was found as a stable TMD. Moreover, the 

FactSage diagram displays synthesizable chemical compounds from precursors. For example, 

type-I (pure TMD, WS2) occupies a large portion of the diagram, indicating that 2D WS2 is likely 

to be synthesized compared with other partial TMDs (from type-II to VI, WxOy-H2S-H2). In the 

last screening, the AFLOW database was used to confirm the atomic structure of previously 

screened TMDs and discover only 2D TMDs. Throughout such screening processes, TiS2, NiS2, 

ZrS2, MoS2, PdS2, and WS2 survived as promising TMDs for Hg0 detection. Finally, DFT 

calculations confirmed that PdS2 is the most suitable TMD because of its high Hg-uptake capacity 

and high charge density change under Hg adsorption. This study used open-source online 

databases that provide ML-based predictions to discover the best TMDs for the Hg sensor, which 

is beneficial for designing sensors with maximum sensing performance. Additionally, with the use 
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of the databases, this study could be carried out with minimal knowledge of ML and thus can serve 

as an excellent example for novice researchers.

The studies introduced in this section show that ML and material databases can be used to 

obtain meaningful findings from noisy sensing signals and find optimal 2D sensing channels for 

detecting a specific target analyte, thus improving the resolution and sensitivity of the 2D 

materials-based sensor. ML could also be considered for calibrating 2D materials-based sensors 

and compensating for the drift of sensor signals. A brief discussion on potential research ideas on 

these topics is e provided in Section 6.

5.2.  ML-enabled application of 2D materials in catalysis

As the worldwide demand for energy continues to rise, the exploration of electrocatalysis, such 

as the hydrogen evolution reaction (HER), oxygen evolution reactions (OER), and nitrogen 

reduction reaction (NRR), is flourishing as it plays a central role in clean, effective, and sustainable 

energy conversion. Electrocatalysis has even been accelerated by 2D materials and single-metal-

atom doping, as the former has a large surface area for reaction and the latter introduces more 

active-sites. However, as an experimental approach, electrocatalysis is time-consuming and 

expensive. A recent work has used ML to rapidly and accurately screen out excellent HER catalysts 

from MBenes and MXenes.17 In this work, bare MBenes and MXenes were first compared to 

understand their differences in HER activity, then bare and single-atom doped MBenes were 

investigated extensively to predict the ideal HER catalysts. In both cases, simple structural and 

elemental descriptors were used as input features in the ML model. These descriptors can be 

grouped as DFT-calculated and elemental. As a major indicator of the catalytic activity, the Gibbs 

free energy of hydrogen adsorption ΔGH*
43 (with optimal value of ~0 eV) was calculated by DFT 
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and used as ML output targets. For bare MBenes and MXenes, 66 MXenes and 46 MBenes were 

geometrically optimized and used as the dataset. Fig. 11a shows example structures. A simple 

linear regression algorithm was applied in the ML model. Fig. 11b shows descriptor-predicted and 

ΔGH*. It was found that MBenes have much better HER performance than MXenes, as the ranges 

of ΔGH* were -0.4 to 0.4 eV for the former and −1.2 to −0.5 eV for the latter, respectively. Pd2B1 

and Co2B2 were selected as potentially promising HER catalysts with ΔGH* of only −0.04 and 

−0.05 eV. Next, bare and single-atom doped MBenes were explored, since single-metal-atom 

doping may introduce more active-sites and improve HER performance. A workflow for the ML 

screening process of combined bare and single-atom doped MBenes is illustrated in Fig. 11c. A 

dataset containing 180 MBenes was generated. It started from the combinations of 19 bare 

MBenes, 23 metal elements of dopant, and n = 1, 2 of the layer ratio in M2Bn, yielding 874 potential 

candidates. Then, 70 candidates were randomly selected and combined with 110 pre-existing 

candidates to generate a diverse dataset. 

The dataset was divided, randomly placing 75% of the candidates in a training set and 25% in 

a testing set. Four ML algorithms were employed and compared to predict ΔGH*: least absolute 

shrinkage and selection operator (LASSO), random forest (RFR), kernel ridge (KRR) and support 

vector (SVR) regression. LASSO, KRR, and SVR paradoxically exhibit predictions with lower 

RMSE for the testing set than for the training set. Fig. 11d shows that the performance of SVR 

was quite good, with RMSE and R2 of 0.12/0.09 eV and 0.85/0.91 for training/testing data. 

Considering the distribution of RMSE and R2 values from more than 100 random trials, LASSO 

and SVR show better prediction of ΔGH* through the preliminary evaluation. To accelerate the 

training process, the correlated features, especially the DFT-calculated features, which are 

relatively expensive, should be removed to further speed up the predicted process. Using the 
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Pearson correlation coefficient (PCC), reducing the number of the features from 21 to 16 led to a 

0.02 eV increase of the testing RMSE for LASSO, while the RMSE of SVR decreased by 0.01 eV. 

Thus, SVR is the best of the four models in this work. Then, an additional 25 single-atom doped 

MBenes were randomly selected and trained by the SVR model using 13 simple features. The 

value of RMSE is 0.15 eV, as shown in Fig. 11e. Based on the criteria that ΔGH* should be in the 

range of −0.25 to 0.25 eV and the cohesive and substitution energies should be less than −5.02 

(MoS2) and 0 eV, respectively, five MBenes (Co/Ni2B2, Pt/Ni2B2, Co2B2, Os/Co2B2 and 

Mn/Co2B2) were determined using the SVR model and DFT calculations to be promising HER 

catalysts among 205 MBenes and 66 MXenes, as shown in Fig. 11f. To ensure accurate screening, 

accurate DFT calculations, including spin-polarization, vdW-interaction, and PBE+U, were 

calculated for the final candidates. The changes in the predicted ΔGH* were small, indicating that 

reliable screening can be obtained by ML models trained on less accurate DFT calculations. 

Furthermore, the phonon dispersion curves and dynamic stability were calculated and considered. 

Finally, Co2B2 and Mn/Co2B2 were predicted as excellent HER catalysts, with |ΔGH*| < 0.15 eV 

among bare and single-atom doped MBenes. 

2D transition metal dichalcogenides (TMDs) have been reported as very promising catalysts, 

but the performance of intrinsic TMDs for electrocatalysis processes such as water splitting is 

inadequate.44 However, different 2D TMDs can be stacked to form heterojunction materials with 

novel properties. A recent study has applied the LASSO ML approach to predict the vertical 

stacking heterostructures of 2D TMDs as bifunctional electrocatalysts for HER and OER.39 In 

consideration of the stacking rotation angles, the study predicted that MoTe2/WTe2 with a rotation 

of 300° is the best electrocatalyst for water splitting, exhibiting an overpotential of 0.03 V for HER 

and 0.17 V for OER, respectively. The catalytic performance can be estimated through reaction 
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free energy ΔG. The mechanism for HER is H+ + e− + * → *H, whereas for OER four steps are 

involved:

H2O(g) + * → *OH + H+ + e−

*OH → *O + H+ + e−

*O + H2O(g) → *OOH + H+ + e−

*OOH → * + O2 + H+ + e−

The ideal HER catalyst should have ΔG*H near 0 eV, while the ideal OER catalyst should have 

similar reaction free energies in those four charge transfer steps at zero potential (4.92 eV/4 = 1.23 

eV). In this work, the overpotential of HER ηHER and OER ηOER were calculated to estimate the 

catalytic performance, where ηHER is |ΔG*H|/e for HER, and ηOER is determined by the potential 

limiting step as ηOER = ΔGmax/e − 1.23. For the ML approach, 48 systems were optimized, which 

were constructed by combining eight heterostructures (MoS2/WS2, MoSe2/WSe2, MoS2/WSe2, 

MoSe2/WS2, MoTe2/WTe2, MoS2/WTe2, MoTe2/WS2, and MoTe2/WSe2), and six rotation angles 

(0°, 60°, 120°, 180°, 240°, and 300°). The input variables were the rotational angle θ, the distance 

d between two TMDs, the average bond length l, and the ratio (λ) of the bandgaps of two 

component materials. Output targets were the reaction overpotential ηHER and ηOER. First, 257,703 

possible descriptors were generated by combining one or more input variables through operations 

including addition, subtraction, multiplication, division, absolute value, square, and square root. A 

linear regression LASSO algorithm was applied and repeated 50 times. The best-fit descriptor 

expression PL(λ, θ, d, l) was selected. For OER, a good linear relationship between the best-fit 

descriptor PL (x) and the catalytic performance (y) was found to be y = 1.04x + 0.6 with an R2 of 

0.83, as shown in Fig. 12a. For HER, the same descriptor PL led to y = −1.73x + 0.18 with an R2 

of 0.80. Then, these equations from the LASSO regression were used to predict the overpotentials 
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ηHER and ηOER. Fig. 12b and c shows the relationships of the rotational angle and the overpotentials. 

It was concluded that MoTe2/WTe2 with a rotational angle of 300° had the best overall 

performance for HER and OER, with an overpotential of 0.03 V for HER and 0.17 V for OER. 

The nitrogen reduction reaction (NRR) on the transition metals (TMs) is promising, but the 

efficiency was low in most cases. Recently, boron(B)-doped graphene (B-Gr) exhibited a higher 

efficiency of NRR than most TMs.45 A recent study has designed a DNN to predict efficient 

electrocatalysts for NRR among B-doped graphene single-atom catalysts (SACs).38 Three 

candidates were selected as very promising catalysts for NRR, especially B-Gr, with CrB3C 

exhibiting a minimal overpotential of 0.13 V. In this work, the metric for a good NRR catalyst is 

determined by the adsorption energy ∆EN2 of N2 and the hydrogenation free energy ∆G for each 

reaction step, as ∆EN2 < -0.50 eV, ∆GN2-N2H < 0.55 eV, and ∆GNH2-NH3 < 0.7 eV. To construct the 

ML dataset, 182 structures of B-doped graphene with single-metal atoms were considered by 

combining 26 transition metals and seven different types of coordination in single-atom catalysts 

(SACs), as shown in Fig. 12d. Fig. 12e shows the designed DNN model through the Keras library. 

A Coulomb matrix with components of the atomic number position was used as an input descriptor 

for representing atomic structures. PCA was used to reduce the dimensions of the Coulomb matrix 

into one axis (PC1). The adsorption energies and free energies of some intermediate steps involved 

in the NRR were predicted by using the Light Gradient Boosting Machine (LGBM) model, as 

shown in Fig. 12f. The output of the DNN is the probability of efficient catalysts. After screening, 

three B-Gr SACs were proposed to be very promising for NRR: B-Gr with CrB3C, TcB3C, and 

HfBC2. 
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6. Conclusion and outlook

Over the last decade, the rapidly growing number of 2D materials and their heterostructures 

have surpassed the capacity that conventional experimental and computational approaches can 

handle. In recent years, ML has been on the rise as a powerful tool to support such conventional 

methods, thus bringing new opportunities to study them in intelligent ways. Harvested from 

materials databases and experimental and computational observations, the characteristics of 2D 

materials serve as input features to train various ML algorithms belonging to supervised, 

unsupervised, and semisupervised learning approaches. By understanding the intricate 

interrelationships among input features or correlating input features with target outputs, such 

trained ML algorithms result in new insights from accurate predictions, enabling the 

understanding, discovery, and synthesis of 2D materials. 

This tutorial review has introduced recent efforts that seek to understand how ML can 

contribute to the study of 2D materials. The early and frequent adoption of ML is for predicting 

their properties. ML algorithms have quickly and accurately predicted the properties of numerous 

undiscovered 2D materials and heterostructures which otherwise would have required 

considerable time and resources. A relatively recent application of ML is for synthesis. ML 

algorithms, trained by using the features from optical images, are able to identify mechanically 

transferred 2D materials with the optimal size and thickness. Furthermore, ML predicts their 

synthesizability, thus significantly enhancing productivity by pre-screening countless candidates 

that are unlikely to have been synthesized. Finally, ML has been adopted to study the applications 

of 2D materials, which opens new opportunities such as ultrasensitive sensing and discovering the 

most competent catalysts. The recent studies performed using ML are organized and listed in 

Table 3.
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Yet despite such great opportunities, there are several challenges that must be kept in mind in 

order to apply ML. First, it is rather difficult to obtain a sufficiently large volume of data to use 

ML to study newly discovered 2D materials. For example, as described in Section 4.2, only 20 

MXenes were used as labeled data to predict the synthesizability of numerous others because 

MXenes are relatively new whose synthesizability has not been thoroughly investigated. Although 

advanced ML techniques such as PU learning can be applied to handle such sparse data, a minimal 

volume of data for the algorithms should be accumulated in advance through experimental or 

computational methods. Furthermore, such a low volume of data often cannot impartially represent 

the characteristics of 2D materials, resulting in biased predictions. 

Second, ML requires not only a large quantity of but also high quality data to produce accurate 

predictions. Since ML is a stochastic process, prediction accuracy depends heavily on how well 

the data is used to train ML algorithms. In the study of 2D materials, the data source is limited to 

databases, experiments, and computations. Moreover, such data related to the structural, electronic, 

chemical, and thermal characteristics are usually represented as floating numbers with an error 

range, and thus suitable data normalization and averaging techniques should be applied to such 

data for accurate predictions. Moreover, repeated experiments or computationally expensive 

simulations are required to acquire reliable data with low variances. 

Lastly, predictions from ML should be carefully interpreted and validated using experiments 

or computational simulations, because such predictions do not come from understanding the 

underlying physics of 2D materials. Instead, ML correlates the input features with target outputs 

and makes predictions based on those correlations. For example, NN generates complex 

interconnections between numerous nodes in hidden layers without considering any theoretical 

backgrounds in 2D materials, which could produce theoretically wrong correlations. However, 
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such challenges in ML for the study of 2D materials could be resolved in the near future, as 

researchers worldwide are collaborating to put together vast and accurate 2D materials libraries. 

Furthermore, state-of-the-art ML studies are incorporating physics-informed constraints into ML 

algorithms, thus enabling more theoretically reasonable predictions.

Leveraging ML can open new research opportunities. First, an automated system for producing 

an array of 2D materials and their heterostructures could be designed using ML and robotic 

technologies. For example, a recent study demonstrated that a robotic arm equipped with a 

Bernoulli gripper can successfully transfer individual 2D materials onto a target substrate, 

producing heterostructures.46 This robotic system could be synergistically integrated with ML 

algorithms that identify optimal materials (discussed in Section 4.1), resulting in an intelligent 

production system. Second, in sensing applications, ML can be used for optimizing various sensors 

made of 2D materials. For example, ML can be used to correct the drift of sensor signals. The drift 

is a natural process of changing sensor signals with time due to environmental change or aging 

sensors. Since ML specializes in predicting expected trends based on historical data, it can generate 

a predicted drift curve that could be subtracted from the original sensor signal to remove the drift. 

Furthermore, ML could be beneficial for calibrating sensors that exhibit a relatively high device-

to-device variation due to the lack of uniform manufacturing methods. By correlating the initial 

properties of 2D materials with sensor outputs, ML can accurately predict the concentration of 

target species at a given sensor output, which leads to calibration curves that compensate for 

device-to-device variations of sensors. Finally, ML could be adopted to design an all-in-one system 

that includes a series of “Discovery-Understanding-Screening-Synthesis-Application”. In this 

concept, ML first predicts new 2D materials and reveals the materials’ properties; among these, a 

few that have optimal properties for a specific application are screened, and, subsequently, the 
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synthesizability of them can be evaluated. Finally, applications using the synthesized 2D materials 

are optimized using ML.

In conclusion, ML has become an essential tool for supporting a series of studies in 2D 

materials from fundamentals to applications, which significantly accelerates the development of 

2D materials and their heterostructures and thus opens numerous opportunities for applying them 

to more practical and real-world applications.
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Figure 1. Common ML algorithms for the study of 2D materials. (a) Types of ML. (b-g) 

Representative ML algorithms including SVM, LASSO, RF, NN, K-Means, and PCA, respectively.
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Figure 2. Prediction errors and validation metrics for ML models. (a) Variance and bias errors. (b) 

Useful evaluation metrics for regression, classification, and clustering models.
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Figure 3. ML-enabled prediction of the mechanical properties of graphene and WS2. (a) A plot of 

input features (the intensities of green and red) from the OM of graphene, classified by the SVM. (b) 

The accuracy of ML-enabled classification of the size of graphene compared with manual inspection. 

(c) ML-enabled prediction of the strength of graphene as a function of layer size. (d) A schematic of 

the regression tree. (e) Pearson’s correlations between material features and target outputs of WS2. (f) 

A comparison plot of Young’s moduli obtained from ML prediction vs. the corresponding values 

from MD simulations. Panels (a), (b), and (c) are adapted from ref. 12 with permission from Elsevier, 

copyright 2020. Panels (e) and (f) are adapted from ref. 23 with permission from American Chemical 

Society, copyright 2019.
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Figure 4. Prediction of the nanoscopic friction of 2D materials. (a) A concept of Bayes’ theorem that 

is the foundation of the Bayesian algorithm. (b) Visualization of the correlation coefficients among 

15 different 2D materials. (c) Predicted MEB from 15 2D materials compared with previously 

reported and MD-calculated values. Panels (b) and (c) are adapted from ref. 24 with permission from 

Springer, copyright 2020.
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Figure 5. Prediction of the band gaps of 2D MXenes and 2D heterostructures. (a) A schematic of the 

working flow for ML processes. (b) A feature correlation plot of material features (i.e., input features) 

extracted from the bagging method. (c) Comparison of the predicted gap (from ML) with the true gap 

(GW). (d) A diagram showing the advantage of the ML approach over DFT simulation for predicting 

the band gaps of 2D materials. (e) Comparison between the lattice parameter predicted using the 

Tkatchenko–Scheffler (TS) vdW functional and experimental values. (f) Schematics of the adjacency 

matrix for extracting input features and neural networks for predicting the band gaps from 2D 

heterostructures. (g) A correlation plot between the predicted band gaps (from ML) and the calculated 

band gaps (from DFT) of 2D heterostructures. Panels (a) - (d) are reproduced from ref. 26 with 

permission from American Chemical Society, copyright 2018. Panels (e) and (g) are adapted from 

ref. 18 with permission from Wiley-VCH, copyright 2019.
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Figure 6. Prediction of the exciton valley polarization of monolayer WSe2. (a) A schematic of the 

training process for the RF algorithm. Input features and labels (i.e., target outputs) were obtained 

from PL spectra performed under 300K and 15K, respectively. (b) Comparison of the RF-predicted 

exciton valley polarization of WSe2 with the one directly measured under a low-temperature PL 

experiment. Panels (a) and (b) are reproduced from ref. 28 with permission from American Chemical 

Society, copyright 2019.
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Figure 7. Designing point defects in 2D materials using ML predictions. (a) A schematic of the work 

flow for the ML process. (b) Comparison of the DFT-calculated true formation energy of 2D host 

materials with the predicted formation energy obtained by deep transfer learning. (c) A schematic of 

the dataset generation for ML models. (d) Comparison of the DFT-calculated true formation energy 

of point defects versus the predicted formation energy. (e) Feature importance for predicting the 

formation energy. (f) A plot of defect scores sorted in high order for 100 defects. (g) Defects with the 

highest and lowest maximum binding energy for resistive switching. (h) Predicted vs. DFT-calculated 

adsorption energies for Li, Na, K, and Rb adsorbed on the TMDs. Panels (a) – (g) are reproduced 

from ref. 29 with permission from American Chemical Society, copyright 2020. A panel (h) is adapted 

from ref. 35 with permission from Royal Society of Chemistry, copyright 2020. 

Page 59 of 74 Chemical Society Reviews



60

Figure 8. Identification and thickness analysis of 2D materials. (a) Thickness profile of graphene 

using an OM image and the K-mean clustering algorithm. (b) Identified thickness of MoS2 flakes 

using an OM image and the SVM algorithm. (c) Neural network for predicting the thickness of MoS2 

flakes. (d) OM image of MoS2 flakes and recognized thickness through NN. (e) K-means clustering 

using brightfield and quantitative polarized optical microscope (qPOM) images for quantifying 

each type of GO sheets in a dispersion (f) Quantified uGtO, GO, and pGtO in the dispersion. Panels 

(a) and (b) are adapted from ref. 7 with permission from Elsevier, copyright 2019 and ref. 8 with 

permission from Springer, copyright 2018, respectively. Panels (c) – (f) are adapted from open-
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access articles ref. 11 with permission from Nature Publishing Group, copyright 2019 and ref. 37 

with permission from Wiley-VCH, copyright 2020.

Figure 9. Prediction of the synthesizability of 2D MXenes. (a) Schematics of material search space 

(792 MAX and 66 MX) and the positive and unlabeled (PU) learning algorithm. (b) Extracted 

synthesis probability of MAX and MX with respect to composing atomic species. (c) A workflow for 

finding synthesizable (MAX, MX) pairs. (d) K-means clustering of (MAX, MX) pairs as a function 

of synthesizability and etching energy. Panels (a), (b), and (d) are reproduced from ref. 13 with 

permission from American Chemical Society, copyright 2019.
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Figure 10. Identification of amino acids with a sensitive nanoporous MoS2 and ML classifications. 

(a) A schematic illustration of nanoporous MoS2 and a chain of amino acids. (b) Ionic currents and 

residence times obtained from 20 standard amino acids traveling through an MoS2 nanopore. (c-d) 

Classified amino acids with respect to current and residence time using KNN and RF, respectively. 

(e) A plot of ionic current as a function of time, obtained from a chain of amino acids. (f) A series of 

ML screening steps for discovering optimal 2D materials for Hg sensing. (g) Representative phase 

diagrams obtained from Pymatgen and Factsage, predicting the stability and synthesizability of WS2. 

Panels (a) – (e) are adapted from an open-access article ref. 14 with permission from Nature 

Publishing Group, copyright 2018. A panel (g) is reproduced from ref. 15 with permission from 

Elsevier, copyright 2019.
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Figure 11. ML-assisted screening of 2D MBenes to find an optimal hydrogen evolution catalyst. (a) 

The structures of MBenes and MXenes. (b) Comparison of descriptor-predicted and DFT-calculated 

hydrogen adsorption ΔGH* for bare MBenes and MXenes. (c) A workflow for the ML screening 

process. (d) Comparison of predicted Gibbs free energy of ΔGH* with DFT-calculated ΔGH* for bare 

and single-atom doped MBenes. (e) Additional comparison plot of ΔGH* by using 25 new MBenes to 

evaluate the trained ML model. (f) DFT-calculated substitution and cohesive energy plot of 28 

promising HER catalysts screened by using ML. Panels (a), (b), (d), (e), and (f) are adapted from ref. 

17 with permission from Elsevier, copyright 2020.
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Figure 12. (a) The relationship between the descriptor and the catalytic performance for OER. (b, 

c) Relationships of the rotational angle with overpotential ηHER and ηOER. (d) Structures of B-doped 

graphene with single-metal atoms. (e) Deep neural network (10 neurons in each hidden layer) 

architecture. (f) Prediction performance plot between DFT-calculations and machine-learning 

outputs. Panels (a) – (c) are adapted from ref. 16 with permission from American Chemical Society, 

copyright 2020. Panels (d) – (f) are adapted from ref. 38 with permission from Royal Society of 

Chemistry, copyright 2020.

Page 64 of 74Chemical Society Reviews



65

Table 1. ML types and description.

ML Class Task Method Description

Support Vector Machine 
(SVM)

It optimizes the process to 
determine the hyperplane that 
bisects the maximized margin 
and separates the datasets into 
different classes by choosing the 
appropriate support vectors. 

Least Absolute Shrinkage 
and Selection Operator 
(LASSO)

A linear regression that uses 
regularization to reduce the 
number of fitted coefficients, 
with advantage of avoiding 
overfitting. 

Random Forest (RF)

An ensemble of decision trees. It 
helps to rank the importance of 
variables by the order of nodes 
and correct overfitting in one 
decision tree. 

Neural Network (NN) 

NN learns complex non-linear 
relationships between the 
features and target with the 
advantages of (1) automatic 
extraction of features from inputs 
without human intervention, (2) 
ability to handle non-linear and 
complex problems, and (3) high 
predictive accuracy by increasing 
learning epochs, neurons, and 
hidden layers. 

Regression

Kernel Ridge Regression 
(KRR)

It combines ridge regression with 
the kernel trick which learns a 
function in the space induced by 
the respective kernel. It simply 
computes the inner products 
between the images of all pairs of 
data in the feature space.

Supervised

Classification Support Vector Machine 
(SVM) See above.
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Random Forest (RF) See above.

K-Nearest Neighbor (KNN)
A non-linear classifier that finds 
decision boundaries and sorts 
data into various categories.

Linear Discriminant 
Analysis (LDA)

It classifies the data by creating 
an axis that maximizes the 
distance between the means of 
categories while minimizing the 
scatter.
Like PCA, it can reduce the 
dimension of the data.

Neural Network (NN) See above.

Naive Bayes

It is a probabilistic classifier 
considering all input features 
independently. Thus, each 
feature equally contributes to 
drawing the estimation. It runs 
well with only a small number of 
training data.

K-Means Clustering Clusters samples into K groups 
based on distances. 

Clustering

Hierarchical Clustering

Starts from merging two most 
similar objects, and proceeds 
through an iterative process that 
identifies and merges the two 
most similar clusters until the 
final state, in which each cluster 
is distinct from other clusters.

Unsupervised

Dimensionality 
Reduction

Principal Component 
Analysis (PCA)

Widely employed to reduce the 
dimension of a large data set by 
computing the principal 
components that constitute a set 
of orthonormal bases on the data. 
Typically the first few to few 
dozen principal components, 
which explain most of the 
variance in the data, are taken as 
input and the rest is ignored. 

Semisupervised Classification Support Vector Machine 
(SVM)

It can first classify only the 
labeled data, and then predict the 
probability for unlabeled data.
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Positive and Unlabeled (PU) 
Learning

A binary classifier that deals with 
two sets of data, the positive set P 
(labeled) and a mixed set U 
(unlabeled). 

Table 2. List of open-source materials databases and software libraries.

Name Description URL 

C2DB Computational database of 2D materials https://cmr.fysik.dtu.dk/c2db/c2db.html

ICSD Experimental and computational database of inorganic materials http://www2.fiz-karlsruhe.de/icsd_home.html

MaterialsCloud Computational database of materials https://materialscloud.org/discover

AFLOWlib Computational database of materials http://aflowlib.org

MaterialsProject Computational database of materials https://materialsproject.org

1D and 2D Materials 
Database

599 1D vdW and 1755 2D vdW solids https://reedgroup.stanford.edu/databases.html

CMR Computational database of materials https://cmr.fysik.dtu.dk

MaterialsWeb Computational database of materials https://materialsweb.org

COD
Database of organic and inorganic materials searched from 
previous journal publications

http://crystallography.net

Pymatgen Python library for materials analysis https://pymatgen.org

Matminer Python library for data mining the properties of materials https://hackingmaterials.lbl.gov/matminer

aNANt A functional materials database http://anant.mrc.iisc.ac.in
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Table 3. Summary of machine-learning-assisted studies of 2D materials.

Research Area 2D Materials Source of 
Descriptors/Targets

Predicted Features ML Algorithms Ref

 Mechanical

Graphene OM image (R, G, B) Material strength SVM 12

WS2 Molecular dynamics (MD) 
simulation

Fracture strain, strength
Young’s modulus

RF 23

MX2

M (Mo, Nb, W, Ti)
X (S, Se, Te)

Previous literature
(Structural, electrical 
properties)

Nanoscale friction Bayesian model 24

 Electronic

MXenes DFT, Chemical structures Band gap KRR, SVR, GPR 26

Many 2D materials Computational 2D materials 
database (C2DB)

Band gap, 
Exciton binding energy

LASSO 47

 Optoelectronic

1L-WSe2 Polarization resolved PL 
mapping image

Exciton valley 
polarization landscape

RF 28

 Thermodynamic

Prediction of 
materials’ 
properties
 

Many 2D materials C2DB Thermodynamic stability XGBoost, SISSO 48

 Top-down approaches (Mechanical printing, Liquid exfoliation)

Graphene, MoS2 Optical microscope image Thickness of materials K-means clustering 7

Graphene, hBN, WTe2, 
MoS2

Optical microscope image Thickness and Position of 
materials

Convolution neural 
network (CNN)

10

Graphene, MoS2 Optical microscope image Layer number (Mono-, 
Bi-layer)

CNN
 

11

Graphene, MoS2 Optical microscope image 
(RGB)

Layer numbers SVM 8

Graphene Optical microscope image Layer numbers (Mono-, 
Bi-, Tri-layer)

Bayesian gaussian 
mixture model 
(BGMM)

9

Graphene Optical microscope image (R-
G plane)

Layer number, Flake size SVM 12

Graphene dispersions Optical microscope image 
(Brightfield)
Quantitative polarized optical 
microscope (qPOM)

Layer number, Flake size K-means clustering 37

 Synthesizability

Production of 
2D materials
 
 
 

MXenes DFT, Elemental features Synthesizability PU learning 13
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 Materials discovery

2D topological 
insulator

DFT, 2DMatPedia database Discover 12 new 2D 
topological insulators

SISSO, XGBoost 49

 Sensor

2D TMDs pymatgen, FactSage, 
AFLOW material database

Good TMDs for Hg0 
sensing

Material screening 
based on material 
databases

15

Nanoporous MoS2 MD simulation (Residence 
time, Ionic current)

Distinguish sensor 
readings of amino acids

Logistic regression 
(LR), KNN, RF

14

 Catalyst

MBenes DFT, Elemental features Predict good MBenes for 
HER

LASSO, RFR, KRR, 
SVR

17

2D TMD 
Heterostructures

DFT Predict a good TMD 
heterostructure for HER 
and OER

LASSO 16

 Photovoltaic (not discussed)

 Applications

Many 2D materials DFT, Inorganic crystal 
structure database (ICSD)

Predict good 2D 
photovoltaic materials

Gradient Boosting 
Classifier (GBC), LR, 
SVM, RF etc.

50
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