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Solid-state cross-coupling reactions of insoluble aryl halides under 
polymer-assisted grinding conditions

Koji Kubota,*a,b Tamae Seo,a and Hajime Ito*a,b

In this study, polymer-assisted grinding (POLAG), a ball milling technique based on the use of polymer 
additives, was applied to mechanochemical solid-state Suzuki–Miyaura cross-coupling reactions of insoluble 
aryl halides. We found that the efficiency of this challenging solid-state cross-coupling was improved by the 
addition of polytetrafluoroethylene (PTFE) as a POLAG additive under high-temperature ball-milling 
conditions. Our results suggest that POLAG is a promising approach for controlling the reactivity of insoluble 
substrates that are barely reactive under conventional solution-based conditions.

Introduction
Mechanochemical organic synthesis has been attracting 

attention as a new, environmentally friendly synthetic 
technology for the preparation of valuable molecules in 
pharmaceuticals and material sciences as it eliminates the use 
of substantial amounts of potentially harmful organic 
solvents.1,2 In addition, ball-milling enables solid-state organic 
reactions, thereby providing exciting opportunities to explore 
novel synthetic strategies in a solid-state reaction 
environment.1-3 Importantly, solid-state conditions can enable 
various transformations of poorly soluble or insoluble organic 
compounds that are barely reactive in solution. However, the 
applicability of mechanochemical synthesis to such insoluble 
substrates remains poorly explored.3a,3d,3g,4 

Recently, we reported the solid-state Suzuki–Miyaura cross-
coupling of a wide variety of extremely unreactive and poorly 
soluble aryl halides, such as 6,6-dibromoisoindigo (1a), in the 
presence of a Pd(OAc)2/SPhos/1,5-cod catalytic system under 
high-temperature ball-milling conditions (Scheme 1).3d,3h,5 We 
used 1,5-cyclooctadiene (1,5-cod) as an additive for liquid-
assisted grinding (LAG)6,7, which acts as both a dispersant for 
palladium-based catalysts to suppress undesired aggregation of 
nanoparticles and a stabilizer for the monomeric Pd(0) active 
species.3b–3d That study illustrated the potential of solid-state 
mechanochemistry for accessing an uncharted area of chemical 
space through cross-coupling of insoluble organic compounds. 
However, as the yields of coupling products were low to 
moderate, the efficiency of the solid-state cross-coupling 
requires significant improvement.3d Attempts at solid-state 
cross-coupling under various LAG conditions did not result in 
improved efficiency.3d

Previously, ball-milling with polymers as additives, i.e., 
polymer-assisted grinding (POLAG), facilitated organic reactions 
and co-crystallization by improving the mixing efficiency of solid 
substrates.8,9 For example, Lamaty et al. reported that POLAG in 
the presence of polyethylene glycols (PEGs) improved the 
efficiency of mechanochemical Mizoroki–Heck reactions.9 
Furthermore, flexible polymers can form nanocarbon-based 
composites through polymer impregnation in the 
microstructures.10 Based on these studies, in this study, we 
investigated the Suzuki–Miyaura cross-coupling reactions of 
insoluble aryl halides using POLAG, through which the polymers 
could weaken the intermolecular interactions among the 
insoluble solid substrates, thereby enabling efficient cross-
coupling.3h 

Scheme 1. Previous work: solid-state cross-coupling reactions 
of insoluble aryl halides 
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Experimental section

Solid-state cross-coupling of insoluble aryl halides using 
polymer-assisted-grinding 

Reactions were conducted in a Retch MM400 ball mill in a 
stainless steel milling jar (1.5 mL) at 30 Hz using a stainless steel 
ball (diameter: 5 mm) for 90 min. We used a commercially 
available temperature-controllable heat gun, which was placed 
directly above the ball-milling jar to control the reaction 
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temperature (details in Supporting Information).3d Reactions 
were performed using a heat gun preset to 250 C, and the 
internal temperature of the reaction mixture (120 C) was 
assessed by thermography immediately after opening the 
milling jar (details in Supporting Information). First, we 
conducted polymer screening for the solid-state cross-coupling 
of 6,6-dibromoisoindigo (1a), which has a solubility of <4 × 10−6 
M in toluene at 23 C3d,11, in the presence of 
Pd(OAc)2/SPhos/1,5-cod3d,3h and 3,5-di-tert-butylphenyl 
boronic acid (2a) under high-temperature ball-milling 
conditions (Scheme 2). We added various commercially 
available polymers (0.5 mg/mg; 100 mg under the current 
conditions) to the reaction mixture to determine whether 
POLAG can improve reaction efficiency (Scheme 2). Reactions 
with poly(methyl methacrylate) (PMMA) or polystyrene (PS) 
afforded a lower yield of 3a than reactions without polymers 
(17% and <1% yield, respectively). The addition of PEG, which 
was previously used in the mechanochemical Mizoroki–Heck 
coupling,9 did not improve the yield (6%). Reaction with 
polyethylene (PE) produced only trace amounts of 3a (<1% 
yield). However, polytetrafluoroethylene (PTFE) with a particle 
size of ~1 μm improved the efficiency, affording a better yield 
of 3a than that previously reported (51% yield).3d The reaction 
with polyvinylidene fluoride (PVDF) furnished 3a in a moderate 
yield (35%). Notably, the reaction mixture obtained after ball 
milling without polymer additives appeared as a black solid 
(Figure 1a), whereas that obtained after POLAG with PTFE 
appeared as a dark pink paste-like solid (Figure 1b). 

Scheme 2. Screening of polymeric materials as additives for 
polymer-assisted-grindinga
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aConditions: 1a (0.10 mmol), 2a (0.24 mmol), Pd(OAc)2 (0.01 mmol), 
SPhos (0.015 mmol), CsF (0.6 mmol), polymer (0.5 mg/mg), H2O (14 μL), 
and 1,5-cod (0.20 μL) in a stainless steel ball-milling jar (1.5 mL).

Figure 1. Reaction mixture after the cross-coupling of 1a (a) without 
polymer additives and (b) with PTFE.

Next, we tested other mechanochemical conditions in the 
presence of the POLAG additive, PTFE (Table 1). Decreasing the 
amount of PTFE led to a lower yield of 3a (entries 1 and 2). The 
reaction with 50 μL of water slightly improved the yield of 3a 
(56%, entry 3). However, the use of 20 mol% Pd(OAc)2 and 40 
mol% SPhos significantly decreased the reaction efficiency (5%, 
entry 4). We then used PTFE with different particle sizes (entries 
5 and 6). Interestingly, using larger PTFE particles (particle size: 
<12 μm and >40 μm) resulted in poor yields (16% and 3%, 
respectively).

Table 1. Optimization study for POLAGa

Pd(OAc)2 (10 mol %)
SPhos (15 mol %)
CsF (6.0 equiv)

PTFE, H2O
1,5-cod (0.2 μL/mg)
milling (30 Hz)
120 °C (internal)
90 min
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0.1 mmol

entry PTFE 
(mg/mg)

PTFE
(size, μm)

H2O
(μL)

yield (%)

1 0.5 ca. 1 14 51
2 0.25 ca. 1 14 41
3 0.5 ca. 1 50 56
4b 0.5 ca. 1 50 5
5 0.5 <12 50 16
6 0.5 >40 50 3

aConditions: 1a (0.10 mmol), 2a (0.24 mmol), Pd(OAc)2 (0.01 mmol), 
SPhos (0.015 mmol), CsF (0.6 mmol), PTFE, H2O, and 1,5-cod (0.20 
μL/mg) in a stainless steel ball-milling jar (1.5 mL). bPd(OAc)2 (20 mol%) 
and SPhos (40 mol%).
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Moreover, we investigated solid-state cross-coupling 
reactions of other insoluble aryl halides using the optimized 
POLAG conditions (Scheme 3). First, we selected Vat Orange 3 
(1b), which is a pigment with an extremely low solubility in 
common organic solvents (e.g., solubility in toluene = <3 × 10-5 
M at 23 C).3d,11 Such poorly soluble aryl halides react with 
significantly low efficiencies in conventional solution-based 
cross-coupling reactions.12,13 Although our previously 
developed solid-state Pd(OAc)2/SPhos/1,5-cod catalytic system 
allowed efficient Suzuki–Miyaura cross-coupling of 1b to form 
the coupling product 3b in 74% yield (Scheme 3a),3d the newly 
developed POLAG conditions afforded 3b in a higher yield (85% 
yield, Scheme 3a).14 Furthermore, the reaction of 3,6,11,14-
tetrabromodibenzo[g,p]chrysene (1c), another insoluble 
substrate (solubility in toluene = <4 × 10-5 M at 23 C)11,15, 
proceeded smoothly to produce 3c in excellent yield (92%) 
under POLAG conditions (Scheme 3b). Without PTFE, 3c was 
obtained in a lower yield (77%), thus demonstrating the 
effectiveness of the POLAG approach (Scheme 3b). Finally, we 
performed the reaction of Pigment Violet 23 (1d), which has an 
extremely low solubility (solubility in toluene = <2 × 10-5 M at 23 
C)3d,11; moreover, the intrinsic inertness of the carbon-chlorine 
bond in 1d is a significant barrier to cross-coupling and notably, 
there are no reported cross-coupling reactions of 1d under 
conventional solution-based conditions. However, our 
previously developed ball-milling conditions allowed efficient 
coupling of 1d to afford 3d in 47% yield.3d Moreover, our 
POLAG-PTFE approach further improved the reaction efficiency 
and the yield of 3d (55%, Scheme 3c). 

Powder X-ray diffraction (PXRD) analysis was used to 
determine whether the phase and crystallinity of the aryl 
halides changed during the reaction under POLAG conditions 
(Figure 2). The results of the PXRD analysis of 1b, PTFE, and their 
ball-milled mixture showed that the diffraction patterns did not 
change in the mixture, confirming that the crystallites of 1b 
remain the same under the ball-milling conditions. Furthermore, 
we used scanning electron microscopy (SEM) to confirm the 
changes in the microstructures of the solid-state reaction 
mixtures under POLAG conditions (Figure 3). The SEM image of 
the reaction mixture of 1a and 2a without PTFE shows the 
formation of powders, in which the particle sizes are in the 
order of several hundred micrometers (Figure 3a). Interestingly, 
the SEM image of the reaction mixture with PTFE clearly shows 
a uniformity in the larger microstructures compared to that in 
the reaction mixture without PTFE (Figure 3b). This result 
suggests that PTFE and solid substrates were inextricably mixed 
at the micrometer scale under the ball-milling conditions. 
Although further mechanistic studies are required, we 
speculate that PTFE could weaken the intermolecular 
interactions among the solid substrates to afford a partially 
amorphous-like phase at the interface of the polymeric domain 
and crystalline substrates, thereby facilitating efficient cross-
coupling reactions.3h 

Scheme 3. Solid-state cross-coupling reactions of aryl halides 
insoluble in organic solvents under polymer-assisted-grinding 
conditions using PTFE at high temperature
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aConditions: 1b (0.05 mmol), 2a (0.12 mmol), Pd(OAc)2 (0.005 mmol), 
SPhos (0.0075 mmol), CsF (0.3 mmol), PTFE (0.5 mg/mg), H2O (50 μL), 
and 1,5-cod (0.20 μL/mg) in a stainless steel ball-milling jar (1.5 mL). 
bConditions: 1c (0.05 mmol), 2b (0.24 mmol), Pd(OAc)2 (0.005 mmol), 
SPhos (0.0075 mmol), CsF (0.6 mmol), PTFE (0.5 mg/mg), H2O (25 μL), 
and 1,5-cod (0.20 μL) in a stainless steel ball-milling jar (1.5 mL). 

cConditions: 1d (0.10 mmol), 2a (0.24 mmol), Pd(OAc)2 (0.01 mmol), 
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SPhos (0.015 mmol), CsF (0.6 mmol), PTFE (0.5 mg/mg), H2O (50 μL), and 
1,5-cod (0.20 μL/mg) in a stainless steel ball-milling jar (1.5 mL).

Figure 2. PXRD analysis of the ball-milled mixture of 1b and PTFE.

Figure 3. SEM analysis of the crude reaction mixture of 1a and 
2a obtained under ball-milling conditions (a) without PTFE and 
(b) with PTFE. 

Furthermore, we investigated the solid-state cross-coupling 
of solid aryl bromides soluble in organic solvents at room 
temperature (Scheme 4). Considering that these substrates 
(1e−g) were rapidly converted into the corresponding coupling 
products (3e−g) under high-temperature ball-milling conditions 
with or without PTFE,3h we conducted the same solid-state 
coupling reactions under POLAG conditions at room 
temperature to determine its effectiveness for this class of 
substrates. The cross-coupling of 2-bromo-9,9-spirobi[9H-
fluorene] (1e) was greatly accelerated by the addition of PTFE 
to form 3e in quantitative yield. However, the reactions of the 
other solid substrates 1f and 1g did not demonstrate such 
acceleration in the presence of PTFE. These results suggest that 
the acceleration effect of PTFE addition could be attributed to 
higher temperatures. We then investigated reactions of 6,6-
dibromoisoindigo (1a) under POLAG conditions using PTFE at 
temperatures higher (135 °C) or lower (80 °C) than 120 °C 

(details in Supporting Information). Both conditions were found 
to reduce the yields (20% and 8% yields, respectively), 
suggesting that the acceleration effect is very sensitive to 
reaction temperature and seems to be more pronounced at 
temperatures of 120°C.

Scheme 4. Solid-state cross-coupling reactions of aryl bromides 
soluble in organic solvents under polymer-assisted-grinding 
conditions using PTFE at room temperaturea
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awithout PTFE: 45% (NMR)
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aConditions: 1 (0.20 mmol), 2c (0.24 mmol), Pd(OAc)2 (0.006 mmol), 
SPhos (0.009 mmol), CsF (0.6 mmol), PTFE (0.5 mg/mg), H2O (50 μL), and 
1,5-cod (0.20 μL/mg) in a stainless steel ball-milling jar (1.5 mL).

Conclusions
We discovered that POLAG conditions using PTFE improved 

the solid-state Suzuki–Miyaura cross-coupling reaction 
efficiency of aryl halides that are insoluble in organic solvents 
and barely reactive under conventional solution-based 
conditions. Although the improvement by POLAG is not so 
significant in the present study, this is an important advance in 
solid-state coupling chemistry considering the tremendous 
difficulty of reactions with poorly soluble compounds. We 
expect that the POLAG approach will inspire the development 
of powerful mechanochemical cross-coupling strategies to 
expand the chemistry of insoluble starting materials. 
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