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Abstract

Carbon dioxide (CO2) emissions from fossil fuel combustion are a significant cause of greenhouse 

gas, contributing in a major way to global warming and climate change. Carbon dioxide capture 

and sequestration is gaining much attention as a potential method for controlling these greenhouse 

gas emissions. Among the environmentally friendly solvents, deep eutectic solvents (DESs) have 

demonstrated the potential capability for carbon capture. To establish a theoretical framework for 

DES activity, thermodynamics modeling and solubility predictions are significant factors to 

anticipate and understand the system behavior. Here, we combine the COSMO-RS model with 

machine learning techniques to predict the solubility of CO2 in various deep eutectic solvents. A 

comprehensive data set was established comprising 1973 CO2 solubility data points in 132 

different DESs at a variety of temperatures, pressures, and DES molar ratios. This data set was 

then utilized for the further verification and development of the COSMO-RS model. The CO2 

solubility (ln(xCO2)) in DESs calculated with the COSMO-RS model differs significantly from the 

experiment with an average absolute relative deviation (AARD) of 23.4%. A multilinear 

regression model was developed using the COSMO-RS predicted solubility and a temperature-

pressure dependent parameter, which improved the AARD to 12%. Finally, a machine learning 

model using COSMO-RS-derived features was developed based on an artificial neural network 

algorithm. The results are in excellent agreement with the experimental CO2 solubilities, with an 

AARD of only 2.72%. The ML model will be a potentially useful tool for the design and selection 

of DESs for CO2 capture and utilization.
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1. Introduction

Carbon dioxide (CO2) emissions are a major source of the global greenhouse gas and 

therefore a cause of global warming, spurring the scientific community to focus on CO2 capture.1 

Recent atypical changes in the global climate are most likely the result of an increase in 

anthropogenic greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2), which began 

in the preindustrial era. As a result of global warming, we are witnessing an increase in the 

frequency and severity of extreme weather events (global temperature, sea levels, floods, droughts, 

rainfall pattern changes) and the spread of infectious diseases.2 An increase of up to 5 °C in surface 

temperature is predicted as a result of continuous GHG emissions together with long-lasting 

climate change, posing a severe and irreversible risk to humanity and ecosystems.3-5 The 

Intergovernmental Panel on Climate Change (IPCC) estimates that nearly 80% of all CO2 

emissions are caused by fossil fuels and minerals used in the production of electricity.6 According 

to Earth's CO2 observatory, the average atmospheric CO2 concentration has increased 

dramatically, from 172 to 300 parts per million (ppm) before the most recent industrial era to 

416.47 ppm on May 30, 2020.7 The International Energy Agency (IEA) reported that in 2021, 

global CO2 emissions reached an all-time high of 36.3 gigatons (Gt), an increase of 6% from 2020.8 

The Paris Accord of 2015, which was signed by 195 nations, declared "carbon-neutrality" as a 

global goal for a sustainable future, and the dominant nations and regions (such as the United 

States of America, China, Japan, and Europe) have proposed their targets and plans. To date, 

numerous techniques (such as sequestration, utilization, and capture) have been developed to lower 

CO2 emissions.7, 9 

There are several different technologies that are being investigated for the capture of CO2, 

for example, pressure swing adsorption and physical or chemical solvent scrubbing.7, 10 However, 

most technologies still suffer from high energy requirements, increased costs, and significant 

secondary pollution as a result of the complexity of the gas components.7, 11 There is therefore a 

pressing need for the development of new capture technologies, which may include the design of 

new solvents and novel processes. Ionic liquids (ILs) are among the potential solvents for CO2 

capture12, 13 and have been extensively studied due to their unique and attractive properties.13-15 

However, due to the extensive procedures and multiple steps involved in the synthesis and 

purification process, ILs are expensive solvents. For this reason, deep eutectic solvents (DESs) 

have emerged as promising alternatives to ILs in a wide variety of research areas and industries, 
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including CO2 capture, biomass processing, nanotechnology, extraction processes, 

electrochemistry, catalysts, etc.16, 17 

DESs are unique solvents with many desirable characteristics, including low vapor 

pressure, high conductivity, high thermal and chemical stability, non-flammability, non-toxicity 

and a large chemical window.18, 19 When compared to ILs, DESs offer a few primary advantages, 

the most notable of which is that the preparation of DESs is simple and economical, and there is 

no additional purification step required.18, 20 The most fascinating property of DESs is their 

structural diversity. DESs are prepared by mixing a hydrogen bond acceptor (HBA) and hydrogen 

bond donor (HBD) at a specific molar ratio, and the resulting mixture turns into a liquid that is 

driven by strong interactions between HBA and HBD.20, 21 A large number of cheap and renewable 

compounds can serve as the HBA (e.g., [Ch]Cl) and HBD (e.g., urea, sugars, acids, etc.), making 

DESs more affordable and sustainable than ILs.17 

In recent years, DESs have been demonstrated as a potential solvent for CO2 absorption.5, 

22, 23 However, to date the majority of the research into CO2 absorption using DESs has relied on 

experimental methods, which have only been able to address a small fraction of potential DES 

candidates.24, 25 Because of structural diversity, there are approximately 1018 DES combinations 

that can be used to design a solvent with potentially improved CO2 absorption capabilities.26 The 

experimental screening of such a large number of combinations for their capacity to solubilize CO2 

is intractable. Therefore, in this context, it is highly desirable and emerging to have a reliable 

computational model for predicting CO2 solubilities in DESs. This would reduce both the cost and 

the time required to develop effective solvent systems for carbon capture and utilization. 

In recent years, a variety of thermodynamic models such as NRTL (non-random two-

liquid), UNIQUAC (UNIversal QUAsiChemical), and UNIFAC (UNIQUAC Functional-group 

Activity Coefficients)27 and equation of state methods (i.e., PC-SAFT (perturbed chain- statistical 

associating fluid theory)28, soft-SAFT29, CPA (Cubic-Plus Association)30, and PR-EoS (Peng-

Robinson equation of state 30, 31) have been successfully implemented in DES-containing systems 

for the purpose of predicting gas solubility. However, these methods require experimental input 

data to fit molecule-specific binary interaction and mixing parameters, which limits the 

applicability space for novel solvent systems such as ILs and DESs. Recently, Biswas (2022)32 

performed molecular dynamics (MD) simulations of CO2 in ionic liquids (ILs). Also using MD, 
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Wang et al. (2019)33 studied the interaction of phosphonium-based DESs with CO2. However, 

performing MD simulations for large numbers of new ionic combinations and DESs is challenging 

due to the difficulty in generating force field parameters. Moreover, MD, MC (Monte Carlo), and 

explicit quantum chemical (QC) calculations of molecular complexes that explicitly take into 

account DES-DES and DES-CO2 interactions require prohibitive computational resources. 

Fortunately, a first-principles quantum chemical-based thermodynamic model, COSMO-RS 

(COnductor like Screening MOdel for Real Solvents), has been extensively used for screening 

solvents and predicting gas solubilities with acceptable accuracy.25, 26 Only information on the 

structure of the molecule is typically required for the COSMO-RS calculations to predict the 

solubility and other thermodynamic properties. However, recent studies show that the COSMO-

RS model overpredicts or underpredicts the gas solubilities in DESs. For instance, Liu et al. (2020) 

predicted the solubility of CO2 in 35 DESs using the COSMO-RS model and found 59–78% 

average absolute relative deviation (AARD) from experiment.25 A similar result was also reported 

by Wang et al. (2021) during their study on CO2 solubility in DES.26 However, these studies 

completely ignored the conformers of HBA and HBDs during the COSMO-RS predictions. As 

alternatives, molecular dynamics and Monte-Carlo simulations have been demonstrated to be 

reliable computational techniques for predicting the thermodynamic and phase equilibria 

properties, including gas solubility in solvents33, 34; however, these methods are computationally 

expensive, making them impractical for addressing the wide range of solvent space diversity of 

gasses in DES. 

A potentially useful approach is to develop machine learning models based on quantitative 

structure-property relationships (QSPR). This could provide an accurate and cost-effective tool for 

evaluating CO2 solubility and DES properties while also offering useful insights into the 

relationships between molecular-level interactions and their macroscopic properties. As a 

prerequisite for QSPR models, COSMO-RS-based descriptors, such as the probability distribution 

of a molecular surface segment having a specific charge density, i.e., the sigma profile charge 

distribution area (Sσ-profile), have been demonstrated to be reliable molecular-specific input features 

for predicting solvent properties (e.g., for ILs and DESs). For example, recently, Abranches et 

al.(2022)35 developed a machine learning model for predicting density, refractive index, and 

aqueous solubility using the COSMO-RS-derived sigma profile features as input. Lemaoui et al. 

extensively used the COSMO-RS calculated sigma profile areas as an input parameter for 
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developing QSPR models for predicting the thermodynamic properties (density, viscosity, surface 

tension, electrical conductivity, and pH) of DESs.36-38 In addition, Nordness et al. (2021) have 

developed a machine learning model for predicting thermophysical properties of ionic liquids 

using the sigma profiles.39 Therefore, the COSMO-RS derived sigma profile parameters might 

also be explored for establishing a machine learning model for CO2 solubility prediction in DESs.

Given the limitations of linear and multilinear models in describing many thermophysical 

properties, machine learning (ML) algorithms have become increasingly popular for developing 

and building more complex non-linear QSPR models for predicting physiochemical and phase 

equilibrium properties. Among these, as a highly effective tool for simulating a wide range of 

phenomena, artificial neural networks (ANNs) have emerged as a promising tool for modeling 

complex processes.40 Numerous studies in the literature report that ANN models have a high level 

of accuracy for predicting thermodynamic properties based on molecular descriptors. For example, 

Adeyemi et al. (2018)41 developed an ANN bagging model to predict the density and conductivity 

of DESs and reported an R2 of 0.999. Atashrouz et al. (2015) predicted the surface tension of ILs 

using the ANN model and achieved a remarkable performance with an AARD of 4.5%.42 Further, 

Lemaoui et al. (2022)37 reported the prediction of surface tension of DESs using an ANN model 

with an AARD of 1.43% and 3.04% for training and testing sets, respectively. Therefore, the 

performance of ANN-based models appears to be remarkable for predicting thermodynamic 

properties. However, the development of an ANN model for CO2 solubility prediction has not been 

previously described. Therefore, a systematic screening of structurally diverse DESs is highly 

desirable for developing a comprehensive ANN model for CO2 solubility prediction. 

In the present study, an ANN-based machine learning model was developed to predict CO2 

solubility in various DESs over wide ranges of temperature and pressure. It is important to mention 

that the present study aims to focus on the solubility of CO2 in physical-based DESs. For the 

physical-based DES, CO2 absorption capacity is in accordance with Henry's constant and 

selectivity, and directly related to the structure of HBA and HBD. According to the literature, 

physical-based DES does not form covalent bonds with CO2.4, 33 A comprehensive survey of the 

published experimental results of CO2 solubility was carried out for different types of physical-

based DESs at different experimental conditions. The COSMO-RS model was used to calculate 

the solubility of CO2 in DESs, and the results were then compared with experimental CO2 
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solubilities. Further, the sigma profile descriptors of HBA and HBD of DESs were derived from 

the COSMO-RS calculations. Based on the literature database and COSMO-RS-derived input 

features of DESs, a machine learning model was developed and validated. Using the model, novel 

HBA and HBD combinations are proposed for improving CO2 solubility in DES. 

2. Computational Details
2.1. COSMO-RS Model

The COSMO-RS calculations were carried out to calculate the solubility of carbon dioxide 

(CO2) in deep eutectic solvents. The geometries of all the investigated molecules i.e., carbon 

dioxide CO2, anions, and cations of salts (HBAs), and HBDs were drawn in the Avogadro 

software.43 The geometries of investigated molecules were fully optimized using the Gaussian09 

package at the B3LYP level of theory and the 6-311++G(d, p) basis set.21, 44, 45 In addition, QC 

calculations for triethylene glycol has been performed at B3LYP with Grimme empirical 

dispersion GD3BJ level of theory and the 6-311++G(d, p) basis set to compare the single point 

energies that was calculated with B3LYP/6-311++G(d,p), and the results are provided in 

supporting information. No substantial energy difference was observed between B3LYP-D3 and 

B3LYP theories. The optimized geometry coordinates for all the investigated molecules (CO2, 

HBAs, and HBDs) are provided in the supporting information. The COSMO files were generated 

at the BVP86/TZVP/DGA1 level of theory and basis set using the keyword "scrf=COSMORS".46, 

47 Further, we performed a search for conformations of HBAs and HBDs using Turbomole48, 49 

and BIOVIA COSMOconfX2022 programs (version 22.0.0, COSMOlogic, Leverkusen, 

Germany), which automatically identify conformers relevant for subsequent COSMO-RS 

calculations. The COSMO calculations within COSMOConf were performed using the BP-TZVP 

method and basis set and generated stable COSMO conformers. The generated COSMO 

conformers were then used as an input to the COSMOtherm (version 19.0.1, COSMOlogic, 

Leverkusen, Germany) package with the BP_TZVP_19 parametrization, which was used to 

calculate the sigma profiles of HBA and HBDs, the activity coefficient (γ), and solubility of CO2 

in DESs.50, 51 The solubility of the gas is calculated as following equation:51, 52

                                                                      (1)0
j j j jp p x   

where pj and pj
0 are the partial pressure of compound ‘j’ and the vapor pressure of the pure 

compound, respectively. xj and γj are the mole fraction (i.e., solubility) and activity coefficient of 
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CO2 in liquid phase, respectively. The activity coefficient (γ) of component j is related to the 

chemical potential μj and is given as the following equation53, 54:

                                                                              (2)
0-

  exp j j
j RT

 


 
   

 

where μj
0 is the chemical potential of the pure component j, R and T are the real gas constant and 

absolute temperature. The chemical structures of HBAs and HBDs of the deep eutectic solvents 

employed in this work can be seen in Figures 1 and 2, respectively. The COSMO files for all the 

molecules were generated based on the procedure outlined in the first paragraph of this section 

2.1.

2.2. CO2 Solubility in DES Database

In this work, 1973 data points were collected from the literature on the solubility of CO2 in 

132 different physical based DESs (molar ratios are varying from 1:1 to 1:16) covering a wide 

range of temperatures (293.15 K to 348.15 K) and pressures (26.3 kPa to 7620 kPa). All the DES 

constituents involved (23 HBAs and 25 HBDs) are summarized in Figures 1 and 2. The detailed 

information of the CO2 solubility data, DES compositions (HBA, HBD, and molar ratios), 

temperatures, and pressures are provided in the supporting information Table S1 along with their 

corresponding references. 

2.3. Calculation of COSMO-RS-derived Molecular Descriptors for Machine Learning 

Model 

The COSMO-RS theory predicts thermodynamic properties by creating a virtual conductor 

around each molecule, where the surface area and screening charge density of each formed surface 

segment are calculated and based on this the σ-profiles are determined.55 As outlined in section 

2.1, the COSMO files of investigated molecules were generated and used for thermodynamic 

property calculations. Examples of the 3D structures and COSMO cavities of modeled HBA and 

HBD molecules are presented in Figure 3. Using the generated molecular surfaces shown in Figure 

3, the polarity distributions (σ-profiles) of the HBAs and HBDs were calculated using 

COSMOthermX.52 The σ-profile of a molecule is a probability distribution that quantifies the 

relative probability of a molecular surface segment having a certain screening charge density.56 As 

a result, the integrated area under the σ-profile curve may be used to obtain a description of the 
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surface of a molecule, which is designated as Sσ-profiles. The Sσ-profiles molecular parameter is an a 

priori quantum chemistry parameter that characterizes the concentration and type of atoms within 

a certain σ-range. For more information on the Sσ-profiles molecular descriptor, details can be found 

in the work of Torrecilla et al. (2010)57. 

Figure 3(a,b) displays the σ-profiles of HBAs and HBDs of DESs. It has been seen that the 

σ-profile distributions in hydrogen bond donor and acceptor regions as well as the σ-profile areas 

of the molecules vary widely, revealing a unique σ-profile property for each molecule.35 The σ-

profiles are divided into three regions: H-bond acceptor (σ > 1 e/nm2), H-bond donor (σ < -1 

e/nm2), and non-polar (-1 e/nm2 < σ > +1 e/nm2) regions. To determine the σ-profile input 

descriptors for the machine learning model, the σ-profiles of DES constituents were divided into 

10 fractions (i.e., S1-S10) by integrating σ-profile px(σ) curves over the screening charge density, 

σ. As exemplified by HBA and HBD in Figures 1a and 1b, the fractions of the Sσ-profiles are classified 

into five classes depending on the screening charge densities: (1) The strong donor region [S1 and 

S2], (2) the weak donor region [S3], (3) non-polar region [S4, S5, S6, and S7], (4) the weak 

acceptor region [S8], and (5) the strong acceptor region [S9 and S10]. 

The Sσ-profiles of the modeled DESs are defined as the molar-weighted average of the constituents, 

which is the standard approach used to define the DES in the literature.36, 37 The equation is 

expressed as follows:

        (3)
   

,

10
, , , ,1

,1 1, ,1 1, ,2 2, ,2 2,

. .

           = . . . . ......
i profile

DES HBA HBD
HBA i i profile HBD i i profilei

HBA HBD HBA HBD
HBA profile HBD profile HBA profile HBD profile

S x S x S

x S x S x S x S
  

   

  

   

   

   



where xHBA and xHBD are the mole fractions of HBA and HBD, respectively, while Si,σ-profile is the 

descriptor in the σ-profile region ‘i’ i.e., from S1 to S10. 

2.4. Development of the Machine Learning Model

The concept of neural network models in the context of machine learning is inspired by the 

architecture of the cerebral cortex, which consists of neurons organized in layers and synapses 

between neurons of different layers. In an artificial neural network (ANN) model, the “neurons” 

are mathematical functions typically referred to as perceptrons whose output is binary, either 0 or 

1, according to an activation function that toggles between these two outputs, based on input from 
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other perceptrons. Similar to the biological counterpart, the perceptrons are organized in layers, 

with perceptrons of one layer receiving input from those of the preceding layer. The activated and 

deactivated perceptrons are collected in the last layer to create the necessary output response.58 

ANNs have been successfully implemented across industries to solve a wide range of engineering 

problems, demonstrated exceptional performance in areas such as nonlinear function fitting and 

machine learning, and are well known for their high accuracy and robustness in solving complex 

problems.

Each perceptron has an associated weight that reflects how strongly it contributes to the 

ANN model’s output.  The following is a definition of the hidden neurons that are contained within 

the neural network (Hn,p):31

                        (4)    , , , ,( ) ( )DES
n p n p i profile n pH f W S T K P kPa b 

     

where Wn,p is the weight of the link between the input and the hidden layers, n is the hidden layer 

(1), and p is the number of hidden neurons (9 neurons used in this work). bn,p represents the 

intercept bias of the hidden neuron ‘n’ of the hidden layer, and ‘f’ is the activation or transfer 

function of the neuron.  

In this work, an ANN-based machine learning model was developed using the JMP Pro 

statistical software (JMP SAS 14.3.0)59 by utilizing the temperature, pressure, and the 10 Sσ-profiles 

molecular descriptors as input features to predict the solubility of CO2 in DESs as an output 

variable. The predictive correlation is defined as follows:

                                    (5) 
2 1, 2, 10,, , , ,....DES DES DES DES

CO profile profile profilex f T P S S S    

where xCO2
DES is the solubility of CO2 in DES, T and P are the temperature (K) and pressure (kPa). 

The neural network toolbox of John’s Macintosh Project statistical software (JMP Pro SAS 14.3.0) 

was used to design the fully connected multi-activation function neural network with a single layer. 

For ANN, 55% of the data was used for training, and 45% of the data was used for testing and the 

data were randomly split using the validation column maker in JMP Pro SAS 14.3.0. The 

network’s learning rate was fixed to 0.1, the number of tours was set to 1000, and a squared penalty 

method was used for optimization. All other options in the JMP SAS 14.3.0 software were kept as 

default. 
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2.5. Model Validation and Performance

To assess the predictive capability of the developed machine learning model, different 

statistical parameters such as the determination coefficient (R2), average absolute relative deviation 

(AARD), mean absolute error (MAE), and root mean square error (RMSE) were calculated. R2 

measures how accurately the model fits; the higher the R2 value, the better the model fits. The 

AARD, MAE, and RMSE values along with the following statistical parameter expressions, can 

be used to characterize the deviation between experimental and predicted CO2 solubility in DES.26, 

46

                                                (6) 
   

 

2 2

2 1 1
2

1

N N
cal

i m i i
i i

N

i m
i

y y y y
R

y y

 



  




 



                                              (7) 

 
1

% 100

calN
i i

i i

y y
y

AARD
N





 


                                                           (8)1

N
cal

i i
i

y y
MAE

N







                                                        (9)
 2

1

N
cal
i i

i
y y

RMSE
N








where N is the total number of data points, yi and ȳm are the experimental CO2 solubility in DES 

and the average of the experimental data. yi
cal is the CO2 solubility computed by either the machine 

learning model or the COSMO-RS model. 

3. Results and Discussions

3.1. Solubility of CO2 in DES using the COSMO-RS Model

The COSMO-RS model is an effective computational method for calculating 

thermodynamic properties and for screening solvents for gas solubilities. In many cases, only 

structural information of the solvent (i.e., here DES) and solute (i.e., here CO2) is typically required 

for COSMO-RS to calculate the solubility and other thermodynamic properties. In our earlier work 

on the dissolution of cellulose, hemicellulose, lignin, and plastic polymers, we demonstrated the 
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usefulness of COSMO-RS and the results were validated against experimental data.54, 56, 60-62 In 

the literature, the COSMO-RS model has been extensively utilized for gas solubility predictions 

in a variety of solvents.25, 63 Therefore, in the present study, we use the COSMO-RS model to 

calculate the solubility of CO2 in a variety of DESs. 

To run COSMO-RS model for CO2 solubility, a large number of experimental data points 

were collected from the literature for CO2 solubility in 132 DESs over a wide range of temperatures 

(T = 293.15 K to 348.15 K), pressures (P = 26.3 kPa to 7620 kPa), and DES molar ratios (1:1 to 

1:16). Similar experimental conditions (T, P, DESs, and molar ratios), were used as input to 

calculate the solubility of CO2 using COSMO-RS. The COSMO-RS predicted and experimental 

CO2 solubility data are compared and summarized in Figure 4 and Table S1. The COMSO-RS 

model calculates the solubility of CO2 in DESs with an AARD of 23.4% and R2 of 0.85. Table S1 

shows that the calculated solubility of CO2 increases with pressure and decreases with increasing 

temperature, which is in agreement with experimental observations. However, because of the 

relatively high AARD values, COSMO-RS agreement with experiment is only qualitative, not 

quantitative. For example, the experimental solubility of CO2 (ln(xCO2)) in [Ch]Cl-phenol DES at 

1:2 molar ratio is -4.87 at T = 293.15 K and P = 197.2 kPa, and -4.95 at T = 303.15 K and P = 

198.2 kPa. The corresponding COSMO-RS predicted ln(xCO2) are -3.46 and -3.71, respectively, 

results within ~25-28% of AARD, indicating that COSMO-RS correctly predicts the CO2 

solubility qualitatively (as the T increases, ln(xCO2) decreases). It is worth noting that the AARD 

between experimental and COSMO-RS predictions decreases with increasing temperature. For 

instance, the AARD of [TBA]Cl-LA at 1:2 decreases with increasing temperatures (AARD at 93 

kPa for 308 K and 318 K are 11.3% and 6.8%, respectively). In contrast, the AARD increases with 

pressure (e.g., [TBA]Cl-LA (1:2) DES, AARD is 11.3% to 19.5% for 93 kPa to 1992 kPa at 308 

K). The higher AARD at lower temperatures may be because the COSMO-RS model underpredicts 

the CO2 solubility in DESs, and also might be a possibility for higher viscosity of DESs which 

limits the solubility. 

A closer look at Figure 4 shows that the COSMO-RS-calculated CO2 solubility values are 

lower than the experimental results. Interestingly, at higher temperatures, the AARD values are 

lower than at lower temperatures and the DESs with longer alkyl chain length HBAs (e.g., [TBA]+) 
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or larger size (e.g., [ATPP]+ cations/salts) with phenols as HBD show AARDs less than 10%, 

which is in excellent agreement with experimental solubility. 

We also compared our COSMO-RS-calculated results with related works in the literature. 

Recently, Liu et al. (2020)25 used the COSMO-RS model to calculate the solubility of CO2 in 35 

DESs with 502 data points. They reported that the average ARD between experimental and 

COSMO-RS predictions was 59.2-78.2%, which is a much higher deviation than current study 

predictions. This may be due to not using the energetically optimal DESs (HBA and HBD) 

conformers in their COSMO-RS calculations, resulting in higher CO2 solubility deviations. 

However, with increasing pressure and decreasing temperature, the discrepancies in the present 

work become larger, and this is consistent with the observations by Liu et al. (2020)25 and Kamgar 

et al. (2017)64. Therefore, using optimal molecular conformers of DESs provides a significant 

benefit to COSMO-RS calculations, which in turn leads to better predictions of CO2 solubility.

3.2. Development of Multilinear Regression Model

Since a large deviation was observed between the COSMO-RS predicted and experimental 

CO2 solubilities, we searched for a systematic correction of COSMO-RS predictions to boost the 

model performance for predicting CO2 solubility in DESs. In recent studies, Liu et al. (2018)65 

corrected the COSMO-RS-based predictions for CO2 solubility in ionic liquids and obtained a 

good agreement between experimental and predicted results after model correction. Another study 

by Liu et al. (2020)25 reported corrected COSMO-RS predictions for CO2 solubility in DESs and 

observed a better correlation between experimental and predicted results after correction. We used 

a multilinear regression (MLR) model developed by Liu et al. (2020) to calculate the CO2 

solubility; however, the average deviation was significantly higher (59%) than our original 

COSMO-RS predicted results. Therefore, we developed a separate multilinear regression (MLR) 

model by incorporating the original COSMO-RS calculated CO2 solubilities, DES molar ratios, 

temperature, and pressure-dependent parameters. The following multilinear regression model was 

devised:

            (10)   
2 2 1 2 3 4 5 6

1ln ln ( )MLR COSMO RS
CO COx x k r k k r k P k r k

T
                 

Here, r, T, and P are the molar ratio of DES, temperature (K), and pressure (kPa). k1-k6 are the 

fitting parameters. To obtain the k1-k6 parameters, the experimental results of CO2 solubilities in 
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DESs at different molar ratios, temperatures, and pressures were used as fitting targets. In total 

1973 experimental data points were included in fitting with a multilinear regression model. The 

values of the fitting parameters are listed in Table 1. 

The CO2 solubilities obtained with the MLR model were compared with the corresponding 

experimental solubilities (Figure 5). The MLR model results are much closer to the experimental 

CO2 solubilities (ln(xCO2
MLR)) than the original COSMO-RS model, with an AARD of 12%, and 

R2 of 0.87. Further, the results of the MLR model developed in the present study were compared 

with those of the MLR model of Liu et al. (2020)25, and we found that the MLR model in the 

present study yields lower AARD values (12%) than that of Liu et al. (2020) (59%). A higher 

deviation was also reported by Liu et al. (2021)63 during their study on the evaluation of MLR 

model proposed by Liu et al. (2020)24 in predicting the CO2 solubility in a new set of DESs and 

molar ratios. It is important to mention that Liu et al. (2020)25 proposed model. It is important to 

mention that Liu et al. (2020)25 developed a model that has certain limitations, such as not being 

applicable to situations with higher molar ratios of HBA to HBD (≥ 1:7), new DESs, and higher 

pressures (≥ 3000 kPa). Moreover, the model was developed with a smaller set of data points (502) 

and a smaller number of DESs (35); thus, it cannot be considered as a universal model for CO2 

solubility prediction in all situations.  In contrast, the MLR model of the present study was 

developed by considering a wider range of HBA to HBD molar ratios (1:1 to 1:16), temperatures 

(293.15 K to 348.15 K), and pressures (26.3 kPa to 7620 kPa) than that of the study by Liu et al. 

(2020), as well as a larger set of experimental data points (i.e., 1973), and a greater diversity of 

different DESs (132).

3.3. Development of Machine Learning Model for CO2 Solubility

As well as the MLR, a machine learning model that is based on an artificial neural network 

(ANN) that has been developed and built for better performance in order to establish a model that 

is even more accurate and reliable for predicting CO2 solubility. The input features for the machine 

learning model are COSMO-RS-calculated sigma profile descriptors (Sσ-profiles-1 to Sσ-profiles-10), 

temperature, and pressures. We calculate a binned probability of polarized charge at the molecular 

surface (i.e., the COSMO-RS-derived sigma profile), that we hypothesized is likely to implicitly 

capture the propensity for certain intermolecular interactions, either among DES molecules or 

between DES molecules and CO2. This hypothesis will be validated through the ML model’s 
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performance as well as the post hoc interrogation of the ML model to ascertain the relative 

importance of features used to train the model. 

For ML, 55% (1084 data points) of the data was used for training and the remaining 45% 

(889 data points) of the data was used for testing. Figure 6 illustrates the correlation of 

experimental and ML predicted CO2 solubilities in the training and testing sets. Figure 6 also lists 

the statistical parameters for the ML model including R2, AARD, MAE, and RMSE. As depicted 

in the parity plot in Figure 6, the predictions for the training and testing sets are in excellent 

agreement with experimental data. For the total set of data points, R2, AARD, MAE, and RMSE 

values are 0.99, 2.72%, 0.087, and 0.1287, respectively, which are all at a very desirable level of 

accuracy. Furthermore, statistical residual analysis was also performed for the ML model and 

confirmed the goodness-of-fit through a normal probability plot of the relative deviations, relative 

deviations vs. predicted values plot, and histogram of the relative deviations. Figure S1 and S2 

depict the statistical analysis plots and show that the CO2 solubility relative deviations are within 

10% with an AARD of 2.72% and RMSE of 0.1287. Moreover, the distribution of the relative 

deviations in different ARD ranges is also shown in Figure 7; the majority of CO2 solubility 

prediction data (87%) lies within 5% of AARD and 94.5% of data within 10% of AARD. Only 

1.7% of the data lies beyond 15% of AARD. These results clearly demonstrate the accuracy of the 

developed ML model for CO2 solubility predictions. However, the ML model has certain 

limitations, the model predictions are more accurate for physical-based DES systems, but not 

reliable for chemical-based DESs.

3.4. Applicability Domain and Covariance Matrix

High uncertainty in experimental data leads to less accurate ML model, particularly if there 

are systematic --as opposed to random-- errors in the data. Nevertheless, accurate experimental 

data with explicitly low uncertainty (and data where uncertainties in the measurements, such as 

error bars, are reported) is scarce, and to some extent, investigators seeking to develop predictive 

models using supervised ML must contend with this. To mitigate this problem and assess for the 

presence of outliers that might confound our model accuracy, we performed the applicability 

domain (AD) analysis. The applicability domain (AD) is a key concept in ML as it enables the 

evaluation of the uncertainty in a prediction for a given target based on its similarity to the data 

points used in the training set. AD has been extensively utilized in ML models to identify structural 
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outliers and establish a prediction accuracy range for a given set of molecules.66 The AD can be 

calculated using a variety of methods; however, the most prevalent is the leverage approach, in 

which the model is tested based on the leverage value (hi) for each chemical. Lower hi values (hi 

< h*) indicate higher similarity to the training set. In contrast, molecules with higher hi values than 

the critical leverage (hi > h*) represent molecules that are “different” from the molecules in the 

training set, and their prediction may be less reliable owing to the higher degree of extrapolation. 

The leverage value is defined as follows.66 

                                                               (11)  1T T
i i ih V V 


 

where νi is a matrix with dimensions 1 × d* containing input parameters, d* denotes the 

number of input variables in machine learning model, V is a p × d* matrix where p denotes the 

number of experimental data points in training sets, and the superscript T represents the transpose 

of the matrices. The crucial leverage value (h*) is determined using the formula below:66

                                                                    (12)
 *

*
3 1d

h
p




A William plot illustrates a model’s domain of applicability by plotting the standardized 

residuals (SDR) versus the leverage values (hi) of each data point. The SDR boundaries in the 

William plot are between −3 < SDR < +3 and 0 < hi < h*.67 

Figure 8 shows the Williams plot for each data point, where the AD boundaries consist of 

a critical leverage h* = 0.036 (vertical green dashed line) and the SDR, which are ±3 (two 

horizontal green dashed lines). The boundary lines divide the Williams plot into four major regions 

(I, II, III, and IV). Predictions of the chemical substances in region I are biased, which is maybe 

due to the large uncertainty in the experimental data rather than wrong model predictions. The data 

points in region II are within the application domain of the model and these predictions are 

considered reliable. Interpolation among the corresponding data points can be done with reduced 

uncertainty. The chemical substances in region III are both response outliers (high SDR) and high 

leverage (>h*) values. If the data points are slightly higher than critical leverage h* and SDR, the 

impact on the model is negligible. However, if the data points are far away from critical leverage 

h* and SDR, the outlier should be removed from the model’s scope of application. Finally, the data 

points in region IV are both response outliers and high leverage values (i.e., >h*), indicate that the 

predictions have a certain deviation. 
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From Figure 8, the ANN model exhibits no structural outliers in region IV as all the data 

points have leverage values lower than the critical value (hi < h*; region II). However, the 

predictions of CO2 solubility in a few DESs in both the training and testing sets are considered 

structural outliers as they exhibit SDR values greater than three limits (±3; region I), which brings 

down the AD coverage to 98.22%. 35 data points are outside of the AD limit (region I and IV), 

accounting for 1.78% of the total (1973), and the double extraterritorial region is blank (region 

III). The response outliers in the ANN model include [Ch]Cl-EA (1:7), [TPA]Cl-EA (1:7), 

[BHDE]Cl-LA (1:2), [ATPP]Br-DEG (1:4 and 1:10), [ATPP]Br-TEG (1:4), and [MTPP]Br-GLY 

(1:4). The response outliers above the SDR ±3 boundaries may arise from large deviations in 

experimental measurements, and are mostly at lower temperatures and pressures (<400 kPa) in 

both the training and testing sets. Based on the obtained AD analysis, it can be concluded that the 

prediction of a new combination of DES that (i) are within the model’s applicability domain and 

(ii) contain similar constituents to the ones utilized in the training set could be considered reliable. 

However, the development of new DESs that are not within the model’s applicability domain 

should be treated with more caution. In addition, it may be worthwhile to perform experiments 

carefully and precisely at lower temperatures and pressures. Overall, the AD results indicate that 

the developed ML model possesses ample robustness and generalizability due to its large AD and 

structural coverage.  

In addition, the covariance matrix plot between ML input features was investigated and 

depicted in Figure 9. From Figure 9, there is no significant linear connection between input features 

of ML except Sσ-profiles‒5 (S5) and Sσ-profiles‒6 (S6) of sigma profile descriptors. The lack of linear 

correlation between input features indicates that the features are nonredundant and may result in a 

more robust ML model that more accurately predicts CO2 solubility. Figure 9 also illustrates the 

correlation between ML input features and predicted CO2 solubility. The positive influence of the 

input features on the CO2 solubility prediction is indicated by the positive covariance matrix value, 

while the negative covariance matrix value indicates negative influence. It is worth mentioning 

that pressure, S5, S6, S2, S1, and S9 show a positive influence on the CO2 solubility predictions, 

implying that as the value of these parameters increases, the solubility of CO2 is seen to increase. 

On the other hand, the temperature has shown a negative correlation with CO2 solubility, which 

implies that CO2 solubility decreases with an increase in temperature; this result is in accordance 

with the experimental observations. 
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3.5. Reliability and Rationality of Developed ML Model and Comparison with Literature 

Reported Models

To further evaluate the reliability of the ML model developed in this work, the effect of 

input variables such as temperature, pressure, molar ratio, and HBA/HBD on the CO2 solubility 

predictions was investigated and compared to experimental measurements. Figures 10a and S3a 

show the predicted solubility of CO2 in DESs over a wide range of temperatures (290.15 K to 

330.15 K) for [Ch]Cl-Guaiacol (1:4) and [ATPP]Br-TEG (1:10) as an example DES. The solubility 

of CO2 decreases significantly with increasing temperature. Figure 10(a, b, and c) shows the effect 

of pressure on the solubility of CO2 in different DESs at constant temperature. The solubility of 

CO2 increases linearly with pressure and agrees well with the experimental observations. Further, 

the effects of molar ratios and HBA/HBD were also examined, and the results are depicted in 

Figure 10(c,d) and Figure S3b. It has been observed that for DESs with the same HBA at a similar 

molar ratio, the longer the alkyl chain length of the HBD, the higher the solubility of CO2. For 

example, for the DES [ATPP]Br with TEG (triethylene glycol) or DEG (diethylene glycol) at 1:10 

or 1:16 molar ratio, [ATPP]Br:TEG shows higher solubility of CO2 than [ATPP]Br:DEG. This is 

due to the larger free volume and stronger van der Waal (vdW) interactions of TEG with CO2.33 

The same trend was also noticed for the HBAs, where if alkyl chain length of HBA increases, the 

solubility of CO2 tends to increase. For instance, the predicted CO2 solubility in [TBA]Br:hexanoic 

acid (1:4) and [TEA]Br:hexanoic acid (1:4) can be compared under similar conditions (T = 303.15 

K and P = ~1030 kPa). [TBA]Br:hexanoic acid (1:4) achieves higher CO2 solubility than 

[TEA]Br:hexanoic acid (1:4), due to its stronger intermolecular interactions with CO2. Moreover, 

as the molar ratio of HBA to HBD increases from 1:10 to 1:16 for [ATPP]Br: TEG/DEG DESs, 

the solubility of CO2 decreases, which is again in line with the experimental measurements.68 

Figure 10 demonstrates the rationality and reliability of ML model to predict these aforementioned 

trends.

The developed ML model shows an excellent performance and rationality in predicting 

CO2 solubility and reproducing experimentally observed trends in the solubility that vary 

systematically with physicochemical characteristics of the solvent. It is also of interest to compare 

the model performance with that of other computational models reported in the literature. Table 2 

shows the comparison of the results of the different models along with their AARD values. From 
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Table 2, traditional thermodynamic models such as PR-EoS (Peng-Robinson Equation of State) 

and PC-SAFT show good performance with low AARDs. However, a caveat is that a very small 

set of data points and DESs were used in validating these models. Also, these models require 

experimental input data to fit molecular-specific binary interaction and mixing parameters, which 

restricts their applicability to new solvent systems such as ILs and DESs. Considering the 

inapplicability of the traditional models for novel solvent systems (i.e., DES-CO2), the 

development of machine learning or QSPR models are emerging. Recently, Wang et al. (2021)26 

proposed a QSPR model based on the random forest regression for CO2 solubilities in DESs and 

reported an AARD of 7.76%, which is three times higher than that of the model in the present 

study (AARD is 2.74%). On the other hand, it is important to note that a greater number of DESs 

and data points were used to develop our model than that of Wang et al. (2021)26.

On the other hand, the COSMO-RS model is widely used to predict the solubility of CO2 

in a variety of solvent systems (molecular solvents, ionic liquids, and DESs), so it is instructive to 

compare the accuracies of that model reported in the literature with those of our ML model derived 

from COSMO-RS features that is presented here, as well as the corresponding accuracies of our 

in-house prediction using just the COSMO-RS model itself without ML. As summarized in Table 

2, the AARD of COSMO-RS-predicted CO2 solubilities reported in the literature are in the range 

of 65-78.2%, while in our case, it is 23.4%. The lower AARD yielded by the COSMO-RS model 

in the present study is due to the consideration of molecular conformers of HBA and HBD, leading 

to more reliable predictions of CO2 solubility. Further, Liu et al. (2020)25 have developed an MLR 

model for CO2 solubility and reported 10.8% of AARD, which is consistent with our COSMO-

RS-based MLR model predictions. However, the ML model is more reliable and accurate for CO2 

solubility prediction than the COSMO-RS model, but nonetheless the COSMO-RS-derived 

descriptors are useful for developing ML models.

3.6. Development of New DESs for Improving CO2 Solubility

After the successful development of a ML model and the careful evaluation of CO2 

solubility prediction in 132 different DESs, the ML model can now be used to predict the solubility 

of CO2 in new combinations of DESs whose CO2 solubilities have not been reported in the 

literature. The importance of input features was calculated using the Shapley additive explanations 

(SHAP) method, which provides a unified approach for interpreting output of machine learning 
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methods and provide a guide to design of novel DES for carbon capture from a structural 

perspective. Lundberg and Lee (2017)69 developed SHAP to elucidate the ML predictions in terms 

of the training features based on game theory. An advantage of the SHAP method is that it can be 

used to interpret the feature importance for models that have traditionally been deemed to be 

uninterpretable, or ‘black-box’, including models such as neural networks.70 As shown in Figure 

11, the SHAP analysis ranks the features in terms of their importance, while the SHAP value 

indicates how varying a certain feature is likely to affect the CO2 solubility. A positive SHAP 

value for a feature suggests an increase in CO2 solubility with increasing value of the feature, while 

a negative SHAP value implies the reverse. Pressure, S5, S9, S8, and S7 are thus found to be 

particularly important in the prediction of CO2 solubility. From a structural perspective, the DESs 

with higher values of S4, S5, and S6 (non-polar region), indicating that a molecule possessing 

larger free volumes and stronger van der Waal (vdW) interactions, result in higher solubilities of 

CO2. This is supported by previous work that suggested that molecules with these attributes show 

higher CO2 solubility. In addition, the lower values of the DESs polar regions (S1, S2, S3, S8, S9, 

and S10), implies that the cross interaction between DES molecules will be weaker and leads to 

stronger interaction with CO2. The SHAP feature importance analysis also correctly captures the 

temperature and pressure effect on the CO2 solubility (Figure 11), as the temperature increases 

CO2 solubility decreases, and CO2 solubility increases with pressure. 

Based on the SHAP analysis, HBAs such as [TBA]Br, [TBP]Br, [TOA]Br, [ATPP]Br, 

menthol, and thymol, and HBDs such as TEG, DEG, decanoic acid (DecA), methyldiethanolamine 

(MDEA), ethanolamine (EA), ethylenecyanohydrin (ECH), and EG are potential candidates for 

high CO2 solubility due to the higher values of S4, S5, and S6 and lower values of polar regions 

(S1-S3 and S8-S10). It has also been reported that longer alkyl chain lengths of DESs, or 

hydrophobic moieties in general, are better solvents for CO2.23, 33 Bearing this in mind, novel DES 

combinations were chosen based on our ML predictions and the following DESs combinations are 

proposed at different molar ratios and a wide range of pressures: menthol-decanoic acid (1:2), 

menthol-dodecanoic acid (1:2), [TBP]Br-TEG, [TOA]Br-TEG, [TOMA][Br-TEG, [ATPP]Br-

DECA, [ATPP]Br-EA, [ATPP]Br-MDEA, and [ATPP]Br-ECH. Figure 12 shows the calculated 

solubility of CO2 in the newly proposed DESs at 298.15 K and different pressures. As the pressure 

increases, the solubility of CO2 predicted by the ML model also increases, in accord with Henry’s 

Law. More importantly from the perspective of solvents for CO2 capture, menthol-DecA, 
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[TBA]Br-TEG, [TOMA]Br-TEG, and [ATPP]Br-DecA appear to be promising solvents for 

improving CO2 solubilities. The higher solubility in menthol- and phosphonium-based DESs is 

due to larger free volumes of HBA and HBD and strong interactions with CO2 through vdW 

interactions.23, 68 Furthermore, to confirm the molar ratios of newly developed DES combinations, 

we performed COSMO-RS for menthol and decanoic acid/dodecanoic acid as an example of 

calculating the eutectic point composition. The eutectic point compositions for [ATPP]Br-based 

DES were not calculated and validated due to the lack of phase transition properties (i.e., melting 

point and heat fusion values) in the literature. The detailed procedure for the calculation of the 

eutectic point composition is discussed in our previous study.19 Figure S4 shows the COSMO-RS-

calculated eutectic point composition of both DESs (menthol: DECA and menthol: DoDECA). 

Menthol forms a eutectic point with decanoic acid and dodecanoic acids, and the calculated 

eutectic point is in liquid state at room temperature. Moreover, menthol-decanoic acid DES has a 

lower eutectic temperature (TE = 265.8 K) than menthol-dodecanoic acid (TE = 279 K), which 

indicates that menthol-DECA has a lower viscosity than menthol-DoDECA due to the larger liquid 

window.

4. Conclusions

In the present work, an accurate method for predicting CO2 solubility in DES has been 

developed. We established a database containing 1973 experimental data points for CO2 solubility 

in 132 DESs at different temperatures and pressures. The database was used for verification and 

development of COSMO-RS models and ML models. The AARD between COSMO-RS 

calculated and experimental CO2 solubilities was relatively high i.e., 23.4%. However, the 

COSMO-RS predicted CO2 solubility data was corrected using a multilinear regression (MLR) 

model with six adjustable universal parameters that reduced the AARD to 12%. Further 

improvement of performance was obtained with a machine learning model using the COSMO-RS-

derived molecular descriptors such as the sigma profile as input features for the prediction of CO2 

solubility in 132 different DESs at various temperatures, pressures, and molar ratios. The 

developed ML model has excellent predictive performance with high R2 (0.99) and low AARD 

(2.72%) and MAE (0.087) values and also can be used to interpret the influences of input variables. 

The presented results suggest that the σ-profiles are useful molecular descriptors of DES, given 

that our model trained on those features gave excellent performance. In comparison with models 
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reported in the literature, the ML model developed here more accurately predicts CO2 solubilities 

in DESs and can therefore be a useful tool for designing and selecting a DESs for CO2 capture.
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Table 1: Adjustable parameters of equation 10

Adjustable parameters

k1 k2 k3 k4 k5 k6

332.37 -1799.04 7.1×10-5 -4.13×10-5 -1.116 4.92
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Table 2: Comparison of developed CO2 solubility predicted models (QSPR and traditional thermodynamic models as well as equations 
of state methods)

Model No. of DESs (molar 
ratio HBA:HBD) Data Points T (K) P (kPa) AARD (%) Reference

PC-SAFT 4 (2:1 to 3:1) 180 298.15 – 318.15 10 ‒ 2000 3.97% Zubeir et al. (2016)28

PR-EoS 3 (1:2) 57 309 – 329 K 40 ‒ 160 0.80% Mirza et al. (2015)71

COSMO-RS 35 (1:2 to 1:6) 502 293.15 – 333.15 71.5 ‒ 2068 78.2% Liu et. al. (2020)25

COSMO-RS-based 
MLR 35 (1:2 to 1:6) 502 293.15 – 333.15 71.5 ‒ 2068 10.8% Liu et. al. (2020)25

COSMO-RS 59 (1:1.5 to 1:16) 1011 293.15 – 343.15 36 ‒ 12730 64.81% Wang et al. (2021)26

QSPR (random forest 
regression) 59 (1:1.5 to 1:16) 1011 293.15 – 343.15 36 ‒ 12730 7.76% Wang et al. (2021)26

CPA 13 (1:2 to 1:6) 353 293.15 – 343.15 63 – 11820 7.02% Pelaquim et al. 
(2022)30

PR-EoS 13 (1:2 to 1:6) 353 293.15 – 343.15 63 – 11820 5.50% Pelaquim et al. 
(2022)30

COSMO-RS 132 (1:1 to 1:16) 1973 293.15 – 343.15 26.3 ‒ 7620 23.4% Present study
COSMO-RS-based 
MLR 132 (1:1 to 1:16) 1973 293.15 – 343.15 26.3 ‒ 7620 12% Present study

Machine learning 
(ANN) 132 (1:1 to 1:16) 1973 293.15 – 343.15 26.3 ‒ 7620 2.72% Present study
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Figure 6: Experimental and predicted CO2 solubility in DESs using an ANN-based machine learning model (a) training set and (b) 
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Figure 10: ANN-based machine learning predicted CO2 solubilities in (a) [Ch]Cl-Guaiacol (1:4) 

at different temperatures, (b) [Ch]Cl and [ATTP]Br-based DES at different pressures, and (c,d) 

effect of molar ratio, HBDs and HBAs on CO2 solubility.
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Figure 11: SHAP feature importance for the testing data set of CO2 solubility in deep eutectic 

solvents.
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Figure 12: Development of new DESs combination for improving CO2 solubilities using the 

machine learning model, DES composed of (a) menthol as HBA and decanoic acid and dodecanoic 

acid as HBDs, (b) [ATTP]Br HBA and EA, DECA, MDEA, and ECH are HBDs, and (c) [TBP]Br, 

[TOA]Br, and [TOMA]Br are HBAs with TEG HBD.
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