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An optical matter (OM) system with metal nanoparticles constituents can self-organize into 
various specific spatial configurations (states) in a laser beam that generates a non-conservative 
optical force field. In this work, we study the dynamics of OM structural reconfiguration by 
building Markov state models (MSMs) for those states for different beam powers. To confront 
the permutational invariant nature of the OM nanoparticles, we employ permutation-invariant 
nonlinear dimensionality reduction and spectral clustering to perform data-driven identification 
of the metastable states corresponding to long-lived non-equilibrium OM configurations and the 
transition rates between them. By constructing MSMs for various powers of the incident laser 
beam we construct empirical models for the relative stability of the metastable configurations 
and use these models to discover new beam conditions designed to preferentially stabilize 
particular OM configurations of interest. Our methodology presents a transferable scheme that 
can be used to understand, design, and control the dynamics of permutation-invariant systems 
with conservative or non-conservative force fields prevalent in optical and active matter systems.
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Understanding and Design of Non-Conservative Optical Matter Sys-
tems Using Markov State Models†

Shiqi Chen,a,b John A. Parker,b,c Curtis W. Peterson,a,b Stuart A. Rice,a,b Norbert F.
Scherer,∗,a,b and Andrew L. Ferguson∗,d

Optical matter (OM) systems consist of nano-particle constituents in solution that, when illuminated
with a laser beam, can self-organize into ordered arrays bound by electrodynamic interactions. OM
systems are intrinsically non-equilibrium due to the incident electromagnetic flux and may manifest
non-conservative forces and interconversion among structural isomers. Rational design of desired
configurations and transitions requires quantitative understanding of the relation between the incident
beam and the emergent metastable states and isomerization dynamics. We report a data-driven
approach to build Markov state models appropriate to non-conservative and permutation-invariant
systems. We demonstrate the approach in electrodynamics-Langevin dynamics simulations of six
electrodynamically-bound nanoparticles. The Markov state models quantify the relative stability of
competing metastable states and the transition rates between them as a function of incident beam
power. This informs the design and testing of new beam conditions to stabilize desired nanoparticle
configurations. The technique can be generalized to understand and control non-conservative and
permutation-invariant systems prevalent in optical and active matter.

1 Introduction

The self-organization of nanoparticles (e.g., gold, silver, silicon,
etc.) to fabricate metamaterials is a promising approach to cre-
ate new functional materials1–11. Doing so requires knowledge
of and control over the interactions between constituent ele-
ments. Liquid crystals, a well-studied example where anisotropic
molecules can be manipulated to form ordered phases that can be
controlled by temperature and/or external fields, have become a
pillar of the information technology revolution by way of their
integration into displays and other devices.12 Given the tremen-
dous impact of these materials for specific applications, it is highly
desirable to create new classes of self-organizing materials with
engineered properties.

This goal requires using and expanding the principles of phys-
ical chemistry and condensed matter physics. If we envision ma-
terial formation as a kinetic assembly process, then the averaged
microscopic dynamics underlying macroscopic rate laws can be
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inferred from ensemble (e.g., spectroscopic or far-field flux) mea-
surements.13–17 However, such measurements cannot provide in-
formation about individual particle motions and the forces lead-
ing to them.

Optical matter (OM) is a class of materials formed by self-
organization of its particle constituents into ordered struc-
tures.18–20 OM structures form in focused optical beams (i.e., op-
tical traps or tweezers),21,22 without explicit external control of
particle positions. Once the nanoparticles (e.g., Au, Ag, Si, etc.)
and optical beam properties are chosen, the many body electrody-
namic interparticle interactions and forces established in the sys-
tem generate structures. The electrodynamic interactions, termed
optical binding, range from a few to many kBT units of thermal
energy, so the OM structures can undergo structural rearrange-
ments. Fig. 1 shows the transformation of the 6-particle OM sys-
tem among its three most stable structures resolved by dark-field
optical microscopy microscopy.

OM systems are fundamentally non-equilibrium due to a con-
tinuous flux of optical beam power through the material. The
electrodynamic interactions amongst the nanoparticles are com-
plex but controllable. Optical beam shape, the polarization of the
light, the spatial phase profile of the optical field,23–27 as well as
the nature (e.g., elemental makeup, dielectric, etc.) and shape
(e.g., spheres, ellipsoids, rods, wires, cubes, platelets, etc.)28–32

of the constituent particles can all be selected or tuned, allowing
one to explore a large space of pairwise and many-body interac-
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Fig. 1 Dark-field microscopy image of optical matter structures of 150
nm diameter silver particles. Six silver nanoparticles were drawn into a
focused Gaussian beam (i.e., optical trap). Most nearest neighbor inter-
particle spacings are around 600 nm while some are closer due to near-
field interactions. The chevron, triangle, and parallelogram are three
commonly observed stable structures, while the other three structures
correspond to transition states along the structural transformation coor-
dinates. The colored arrows in the dark-field images sketch the structure
change of the transition depicted by the arrows in the same color between
the dark-field images.

tions. This large parameter space makes accessible a wide range
of phenomena (e.g., dynamics of self-assembling and driven ac-
tive matter, negative torque, spectroscopy of collective excita-
tions, etc.).32–35 Recent work has shown that the dynamic behav-
ior of OM arrays is related to their shape and symmetry.30,36–43

Light scattering from nanoparticle arrays can bring about un-
usual phenomena such as non-reciprocal forces,40,43 negative
torque,44–46 and non-conservative forces.47

While understanding of how incident fields can affect the dy-
namics and structure of OM arrays is improving34,48,49, and ef-
ficient computer simulation techniques exist to model OM dy-
namics50–54, we still lack quantitative theoretical models of how
to modulate the properties of the particles and incident light
to stabilize particular desired OM states and transitions. This
presents an opportunity for the development of data-driven mod-
els to learn empirical mappings from the system properties to the
emergent dynamical behaviors and inform the design of steady-
state and dynamic control strategies to stabilize various OM (non-
ground state) structures or to drive OM isomerization.

The primary objective of the present work is to devise an analyt-
ical scheme with which we understand and control the dynamics
and metastable states in numerical simulations of 6-particle OM
systems. In order to achieve this, we build Markov state models
(MSMs) as a powerful approach to infer long-time kinetic mod-
els from simulation trajectories.55–59 In order to build a MSM,
we have to carry out featurization and clustering analysis on the
simulation trajectory and convert the configuration trajectories
to trajectories of cluster labels that are the direct input of MSM
construction. Due to the permutation symmetry resulting from
the fungible nature of identical particles, the featurization proce-

dure must take permutation invariance into account. Our anal-
ysis uses a permutation invariant pairwise metric that we supply
as the kernel to perform nonlinear dimensionality reduction us-
ing diffusion maps60. We use diffusion k-means61 to define the
microstate clustering, and Robust Perron Cluster Cluster Analy-
sis (PCCA+)62–66 to define the macrostate clustering and build
MSMs. We test the Markovianity of the macrostate MSMs us-
ing the Chapman-Kolmogorov (CK) test to verify that they are
valid kinetic models of the non-equilibrium OM system and pro-
vide post hoc support for the use of permutationally-invariant dif-
fusion map embeddings to identify and resolve microstates. By
constructing MSMs at a variety of beam powers we quantify how
the intensity of the incident light controls the relative stabilities of
and transition rates between the metastable OM configurations.
We then use these models to guide the design and testing of new
beam conditions to preferentially stabilize desired OM states.

2 Methods

2.1 Langevin dynamics simulations of optical matter
The dynamical evolution of the OM system can be modeled by
combining a finite-difference time-domain (FDTD) solution of the
electrodynamic forces with a Langevin dynamics equation of mo-
tion for the particle positions.50 However, this is insufficiently
efficient to access experimental timescales. Therefore, we de-
veloped an electrodynamics-Langevin dynamics (EDLD) approach
based on generalized multiparticle Mie theory (GMMT).51,52 The
resulting EDLD solver performs a numerical Verlet integration of
the following Langevin equation,

m
d2rrr
dt2 = FFF(rrr, t)−λv

rrr
dt

+ηηη , (1)

where m is the nanoparticle mass, rrr is its location, t is time,
λv = 6πνR is the friction coefficient specified by Stokes’ Law
where R is the nanoparticle radius and ν is the viscosity of the sur-
rounding fluid, ηηη is a stationary Gaussian random variable with
zero mean and a standard deviation that satisfies the fluctuation-
dissipation relation at the specified temperature, and FFF is the net
force experienced by the particle comprising electrodynamic con-
tributions computed from GMMT and electrostatic and interpar-
ticle interactions. The force field FFF computed is non-conservative
due to the input power from the optical beam. The steady states
reached by the system correspond to states in which the power
input from the optical beam is balanced by frictional dissipation
into the medium. Simulations are conducted using the MiePy
software developed in the Scherer group.53 Calculations on 28 ×
2.4 GHz Intel E5-2680 v4 CPUs execute 2.5 seconds of simulation
time per hour of wall clock time with a 5 µs simulation time step.

The simulation is carried out for six spherical silver nano-
particles with 150 nm diameter under several beam powers rang-
ing from 40 mW to 90 mW. For each beam power, we simulate
100 trajectories, each of which is 100 seconds in length. Data
is collected every 200 simulation time steps, so the frame-wise
time step is 1 ms. We assume that the solvent medium is water
(refraction index nb = 1.33, viscosity η = 8× 10−4 Pa·s), temper-
ature T = 300 K, the beam width w = 2.5 µm, the wavelength
λ = 800 nm. Based on our experience with previous EDLD simu-

2 | 1–11Journal Name, [year], [vol.],

Page 3 of 12 Molecular Systems Design & Engineering



lations using the MiePy package,53 we add a defocus equal to the
Rayleigh range, z= 0.5kw2 where k = 2πnb/λ , and an electrostatic
double layer potential with particle surface potential 77 mV and
Debye screening length 27.6 nm according to previous theoretical
work25.

2.2 Nonlinear manifold learning

Before building the MSM and computing the transition rates be-
tween the structural states, we need to perform featurization and
clustering analysis on the data set of configuration trajectories.
The first step in the MSM construction pipeline is to project the
simulation trajectories into their leading slow modes to define
a low-dimensional embedding conducive to identification of the
metastable states of the system using clustering algorithms.56.
This is typically achieved using time lagged independent com-
ponents (tICA) analysis67 or its kernel68 or deep69–71 variants.
However, there are technical challenges in applying these meth-
ods to systems exhibiting full permutation symmetry, such as the
OM system, where all particles are identical. Therefore, in the
featurization procedure, we instead use diffusion maps60,72–74,
a nonlinear manifold learning method that can generate permu-
tation invariant coordinates for clustering. At first glance, this is
possibly problematic since diffusion maps are designed to identify
high-variance as opposed to slow collective modes and thus may
not provide optimal embeddings for clustering into metastable
states. However, the diffusion map is dynamically meaningful
and the eigenfunctions are known to be identical to those of the
Langevin equation for conservative systems equipped with the
common Euclidean distance without permutation invariance.75

There is no known proof that this eigenvector correspondence
continues to hold for non-conservative systems with permutation
symmetry, but we conjecture that the leading diffusion map eigen-
vectors may nevertheless provide approximations for the slow
modes of the Langevin equation governing the OM dynamical
evolution and may therefore offer a useful embedding for clus-
tering the metastable states. We provide post hoc support for this
conjecture by validating that the MSMs generated using diffusion
map embeddings are valid kinetic models that pass all the numer-
ical tests of Markov properties and convergence of implied time
scales.

2.2.1 Pairwise distance calculation

Let (x(i)p ,y(i)p ) denote the 2D Cartesian coordinates of particle p in
configuration i. We can calculate the distance matrix MMM(i) for each
configuration i with matrix elements,

M(i)
pq =

√(
x(i)p − x(i)q

)2
+
(

y(i)p − y(i)q

)2
. (2)

Let eeek denote the unit column vector with the kth component unity
and others zero. Then the permutation-invariant distance defined
between a pair of configurations i and j is,

di j = min
PPP∈Sn

√√√√ N

∑
k=1

min
QQQk∈Sn

∥∥∥QQQkMMM(i)eeek−MMM( j)PPPeeek

∥∥∥2

2
, (3)

where N is the number of particles, and Sn is the set of all permu-
tation matrices so that PPP and QQQk are the optimal permutation ma-
trices that minimize di j. Here, PPP and QQQk are (N +1) independent
permutation matrices to be optimized, in which PPP corresponds to
the inter-column permutation while QQQk corresponds to the intra-
column permutations for all the columns so that the norm of the
difference of M(i) and M( j) is optimized over all inter-column and
intra-column permutations. Then di j is a permutation-invariant
pairwise distance for the configurations that serves as a kernel for
the diffusion map calculations.

2.2.2 Diffusion maps

Diffusion maps are a type of non-linear manifold learning method
that take the input of pairwise distances of the configurations and
generate a low-dimensional non-linear subspace of the configura-
tion space.60,73 A brief introduction to diffusion map methodol-
ogy is provided below, while full details of this method applied to
colloidal self-assembly are discussed in previous work.76–78

First, the kernel matrix KKK is calculated with elements,

Ki j = exp

(
−

d2
i j

2ε2

)
, (4)

where di j is the permutation-invariant pairwise distance defined
previously and ε is the kernel bandwidth parameter that char-
acterizes the adjacency among the configurations. Next, KKK is
normalized to K̃KK to gain correspondence to the Langevin dynam-
ics75,79,

K̃i j =
Ki j√

(∑k Kik)
(
∑k Kk j

) . (5)

K̃KK is then used to calculate the right-stochastic Markov transition
matrix (RSMTM) TTT ,

Ti j =
K̃i j

∑ j′ K̃i j′
, (6)

with eigenvalues {λk} and right eigenvectors {ψk}. Since the
components of ψ1 are all unity, {ψk}m+1

k=2 is taken as the basis of
the low-dimensional nonlinear configuration subspace. An ap-
propriate value of m is identified based on a gap in the eigenvalue
spectrum. Finally, we obtain,{(

x(i)p ,y(i)p

)}N

p=1
−→ {ψk(i)}m+1

k=2 , (7)

which maps the Euclidean coordinates of each configuration to its
corresponding diffusion map embedding. After obtaining this m-
dimensional permutation-invariant reduction, configurations are
clustered into microstates.

2.2.3 Nyström extension

The time and memory complexity of diffusion maps scale quadrat-
ically80 with the number of data points n. The Nyström extension
is an out-of-sample extension technique that scales linearly with
n and can be used to embed a new point to a pre-existing diffu-
sion map embedding.81–84 In this case, we can choose n′ (n′ < n)
representative data points (termed "pivots") from the trajectory,
calculate the diffusion map on these n′ points, and then use Nys-
tröm extension to embed the remaining (n−n′) points. The pivot
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points must cover the configuration space of the entire data set
so that all points to be embedded are within ε (the kernel band-
width) of at least one pivot point to assure that the new points are
accurately interpolated85,86. This approach is known as pivot dif-
fusion maps85. Given a new point and the n′-point diffusion map
previously constructed, pivot diffusion maps compute the dis-
tance between the new point and the n′ existing points {d0, j}n′

j=1
where subscript 0 denotes the new point. Next, we compute and
append a new row to the kernel matrix KKK corresponding to the
new point, apply the Langevin normalization, and then calculate
the corresponding RSMTM row vector,

K0 j = exp

(
−

d2
0 j

2ε2

)
, K̃0 j =

K0 j√
(∑k K0k)

(
∑k Kk j

) , T0 j =
K̃0 j

∑ j′ K̃0 j′
,

(8)
and the embedding of the new point is given by,

ψk(0) =
1
λk

n′

∑
j=1

T0 jψk( j), k = 2,3, ...,m+1. (9)

The representative set of the n′ pivot points is generated to as-
sure good coverage of the configurational phase space. First, we
perform EDLD simulations for 70 mW beam power using a peri-
odic temperature profile with a period of 7000 simulation time
steps: 2000 steps at 300 K and 5000 steps at 100 K. The pairwise
distances among the particles of the last configuration of every
1000-step segment are computed. The total number of degrees
of freedom is (2N−3), where we have N particles moving in the
plane subject to two translational constraints and one rotational
constraint. We impose a condition in order not to get too far away
from the relevant portion of configurational space: if the num-
ber of the pairwise distances less than 1.5 optical wavelengths in
the medium (i.e., 900 nm) is less than (2N− 4), the simulation
is restarted. This is because the number of pairwise distances
that are less than 1.5 optical wavelengths can be regarded as the
number of particles pairs that are at the first optical binding sites
of each other. Since the total number of degrees of freedom is
(2N − 3), at most (2N − 3) first optical bindings can be formed.
Just as formation of bonds lowers the potential energy of molec-
ular systems, the more first optical bindings the more stable the
OM structure is. If the number of first optical bindings is less than
(2N − 4), the structure is not stable. We apply 13 temperature
cycling periods in a single simulation and 100 single simulations
are carried out in parallel. Next, we iterate through all the con-
figurations in the trajectories and add them one by one to a pivot
set in which all pairwise distances among the configurations are
larger than 470 nm. Then, we repeat the simulation and addition
of points to the pivot set 15 times before the number of points in
the pivot set converges to include 545 configurations. We enrich
these pivots with 19,500 configurations randomly selected from
the simulation trajectories to form the terminal pivot set. We have
verified that the pivot set constructed according to this procedure
provides complete coverage of this space such that all remaining
data points lie within ε of at least one pivot point.

2.2.4 Density-adaptive diffusion maps

Diffusion maps may not simultaneously resolve the region of con-
figuration space with high density of points and the sparse con-
nectivity region with low density of points. The density adap-
tive variant of diffusion maps was developed to address this chal-
lenge.87 Instead of using the distance directly in the Gaussian
kernel in eq. 4, this method parameterizes the kernel matrix ele-
ments as,

Ki j(α) = exp

(
−

d2α
i j

2ε2

)
= exp

− d2
i j

2
[
εd(1−α)

i j

]2

. (10)

In effect, the kernel bandwidth ε is scaled according to the pair-
wise distance by a factor d1−α

i j . When α = 1, we recover the origi-
nal diffusion map with a constant kernel bandwidth. When α = 0,
the kernel bandwidth is proportional to the pairwise distance be-
tween any pair of points and Ki j becomes a constant value for
any pair of configurations (i, j). Clearly, α should be chosen from
(0,1] to make the diffusion map adapt to the density of the con-
figuration space. In this work, we choose α = 0.1 and ε = 2 nm0.1,
which is motivated by the guidelines based on the work of Wang
and co-workers87. We provide post hoc validation that this choice
of α and ε generates diffusion map embedding and clustering
leading to MSMs that pass all of our numerical validations. The
embedding plot of the density-adaptive diffusion map for the 50
mW beam power simulation data is shown in Fig. S1 in the ESI†.
As discussed in Section 3, the diffusion map embedding provides
good discrimination between the metastable macrostates.

2.3 Diffusion k-means clustering into microstates
The k-means clustering algorithm is a widely-used unsupervised
clustering method.88 Chen and Yang introduced diffusion k-
means, which maximizes the within-cluster connectedness based
on the diffusion distance.61 The diffusion distance is defined as
the Euclidean distance in the eigenvector space of diffusion map
embedding.60,72,73 In other words, diffusion k-means is k-means
clustering applied to diffusion map embeddings. In the present
work, diffusion k-means is used as the microstate clustering algo-
rithm so the clusters generated by diffusion k-means are termed
"microstates" while the clusters generated by Robust Perron Clus-
ter Cluster Analysis (PCCA+)64–66 are called "macrostates". The
eigenvectors of a diffusion map correspond to different eigen-
values that characterize the time scale of transition between
macrostates. Therefore, instead of executing k-means cluster-
ing directly on the basis set {ψk}m+1

k=2 , we execute it on the ba-
sis set {λ t̃

kψk}m+1
k=2 , where λk is the eigenvalue corresponding to

ψk and t̃ is a parameter that characterizes the time scale of dif-
fusion distances encountered in the k-means clustering73. As t̃
becomes larger, the eigenvectors with large eigenvalues become
more important in the clustering, leading to merging of regions
discriminated by higher order eigenvectors and discriminating
microstates largely on the basis of the leading eigenvectors. (On
the other hand, when t̃ is small or even negative, the eigenvectors
with small eigenvalues become important, leading to microstates
as well as macrostates connected by fast transitions and merg-
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ing the regions connected by slow modes.) Here, we employ an
empirical procedure to select t̃ such that our k-means clustering
identifies the long-lived macrostates and that the results are not
sensitive to the precise value of this parameter.

2.4 Clustering into macrostates and Markov state model

Each MSM is built upon a data set containing 100 trajectories that
are 100 seconds long and contain 100,000 configurations for a
specific optical beam power. The MSM is built using the PyEMMA
software (http://www.emma-project.org/latest/).89 We use dif-
fusion k-means with k = 1000 and maximum iteration number of
200 in the microstate clustering. The microstates are clustered
into macrostates using the Robust Perron Cluster Cluster Analy-
sis (PCCA+) algorithm64–66 that determines the stable states of
the OM system. Mathematically, we construct the elements of
the microstate transition matrix ΓΓΓ as Γi j = ci j(τ)/∑k cik(τ), where
ci j(τ) are the counts of transition events between microstates i
and j at a lag time of τ.90 Due to the non-conservative nature
of OM systems, ΓΓΓ is not guaranteed to obey detailed balance and
therefore may not possess strictly real eigenvalues and eigenvec-
tors as required by the PCCA+ clustering algorithm employed
to cluster microstates into macrostates.90 As such, we adopt the
conventional pragmatic solution of symmetrizing the count ma-
trices under the operation ci j(τ)← 1

2
(
ci j(τ)+ c ji(τ)

)
to enforce

detailed balance within ΓΓΓ.90 Physically, this corresponds to col-
lating counts over the forward and reverse trajectories, although
we observe more sophisticated techniques based on likelihood
maximization and Koopman reweighting also exist.90 We per-
form this “reversibilization” to furnish real eigenvectors as re-
quired by PCCA+, but since the OM systems are non-equilibrium
and therefore not constrained to obey detailed balance, there is
a concern that the reversibilized eigenvectors may substantially
deviate from, and therefore not be representative of, those of
the original non-reversibilized system. We test this by comput-
ing the cosine similarity between the first 10 eigenvectors of the
reversibilized and original microstate transition matrices for the
50 mW beam power and illustrate in Fig. S2 in the ESI† that they
are very similar. The reversibilization procedure is justified since
a PCCA+ clustering into (nM +1) macrostates uses only the lead-
ing nM (nM = 6 in the current case) right eigenvectors. Finally,
we estimate our macrostate MSM by computing count matrices
and (non-reversibilized) transition matrices from our simulation
trajectory data over the macrostates. Importantly, since we do
not enforce detailed balance within the macrostate MSM, the mi-
crostate reversibilization procedure may be viewed purely as a
means to aid in the definition of the macrostates and which has
no bearing on the subsequent specification of the macrostate tran-
sition kinetics. We observe that the macrostate count matrix is
naturally very close to a symmetric matrix whereas the microstate
count matrix is substantially asymmetric. An analysis of the count
matrix symmetry is discussed in the ESI† below Fig. S2.

There are three key hyperparameters within this protocol that
must be manually selected: the parameter t̃ within the diffu-
sion k-means clustering; the number of macrostates nM within
the PCCA+ clustering; and the lag time τ of the MSM. We self-

consistently specify these hyperparameters by analyzing the as-
signment matrices and implied time scales as described below.

3 Results and Discussion
We now proceed to construct MSMs for our 6-particle OM sys-
tem as a function of beam power. These MSMs represent data-
driven models that we can use to predictively link beam power
to the identity and stability of emergent macrostates of the OM
system and can be used to guide the design of beam powers to
preferentially stabilize desired microstates and transitions. We il-
lustrate the hyperparameter tuning procedure for the MSM fitted
to 6-particle OM system for a 50 mW beam power. Analogous
protocols are followed for other beam powers considered.

3.1 MSM hyperparameter optimization

To execute our analysis, we must first tune the hyperparameters
(t̃,nM ,τ). Fig. 2(a) shows the implied time scale (ITS) plot for
the MSM constructed for the 50 mW 6-particle OM system with
t̃ = 8.3. According to this implied time scale plot, when t̃ = 8.3,
five implied time scales can be resolved at a lag time τ = 10 ms,
meaning that nM = 6 macrostates are identified for that lag time.
Fig. 2(b) shows the silhouette score91 plotted against the number
of clusters nM , in which nM = 4 has the largest score and nM =

6 the second largerst. However, according to Fig. 2(a), at least
four time scales are resolved at 10 ms lag time, so the number of
macrostates should be greater than or equal to five. Therefore,
we select nM = 6.

In order to evaluate the clustering results, we compare the pre-
dictions of the MSM metastable states with physical intuition. We
know that OM structures with particles on hexagonal lattice sites
typically form when the incident optical trapping beam is circu-
larly polarized.28 Therefore, given a certain OM structure with
N particles we seek the best set of N sites on a 2D hexagonal
lattice (i.e., a lattice pattern such as triangle, chevron, parallel-
ogram, etc.) that is closest to the given configuration. We then
categorize the particle configurations using the corresponding lat-
tice patterns. The details of this lattice fitting method have been
reported elsewhere.54

We plot the Frobenius norm (F-norm) of the row-normalized
assignment matrix (RNAM) for τ = 10 ms with nM and t̃ varying;
the results are shown in Fig. S3 in the ESI†. The (i, j) entry of the
assignment matrix is the number of frames that is put into the ith

macrostate by the clustering method while classified into the jth

lattice pattern by lattice fitting. This matrix displays the matching
relation between the clustering result and the lattice fitting result.
Then, the RNAM can be generated by dividing each row by its
row sum. (Analogously, the column-normalized assignment ma-
trix (CNAM) can be generated by dividing each column by its col-
umn sum.) We can see from Fig. S3 in the ESI† that the F-norm of
the RNAMs converges as t̃ increases, indicating the stable identifi-
cation of metastable clusters by diffusion k-means for sufficiently
large t̃. It is clear that t̃ = 8.3 lies within the converged region.
The F-norm of the RNAM increases when nM increases since there
are more entries in RNAM, but this trend exhibits a knee at nM =
6 and begins to fail to stably resolve a sufficient number of modes
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Fig. 2 Analysis used for determination of number of macrostates at
t̃ = 8.3 and τ = 10 ms for the 6-particle OM system under 50 mW beam
power. (a) Implied time scale plot. The shaded grey area demarcates
the region where the lag time exceeds the implied time scale. Implied
time scales falling into this region cannot be distinguished within the
time resolution of the resulting MSM. (b) Silhouette score plot against
number of clusters nM .

for nM > 6, leading us to select nM = 6 for the number of clus-
ters. From this analysis, we identify (t̃,nM ,τ) = (8.3, 6, 10 ms)
is a reasonable and robust tuning of the three hyperparameters
for 50 mW beam power. As a final post hoc validation, we return
to Fig. S1 to observe that the diffusion map embedding nicely
distinguishes and separates the various macrostates and that the
macrostates are in good agreement with the lattice pattern labels.
We follow an analogous procedure to tune the hyperparameters
for the other beam powers.

3.2 Analysis of MSM macrostate clustering
Fig. 3(a) shows the plot of 2-norms of the rows of the RNAM
against the parameter t̃ for 10 ms lag time for 50 mW beam
power for each of the MSM macrostates C1-6. The closer the
norm is to 1, the better the clustering agrees with lattice fitting.
We see that from the 2-norms of the RNAM rows for C2-6 con-
verge to values in excess of 0.7 as t̃ increases, whereas that for
C1 remains at a low value of only 0.4. This indicates that five
of the six clusters well agree with lattice fitting and are quite in-
sensitive to t̃. Fig. 3(c) presents the RNAM indicating the assign-

Fig. 3 Details and interpretation of the clustering result for the MSM
constructed at 50 mW beam power. (a) Plot of 2-norms of rows of
the row-normalized assignment matrix (RNAM) against the diffusion k-
means parameter t̃ for nM = 6 and τ = 10 ms. (b) The lattice patterns of
some important lattice labels. The asterisk on X16 means that it corre-
sponds to more than two lattice patterns where one particle is separated
from the other five particles that are gathered together. (c) Illustration
of the RNAM illustrating the assignment probabilities of each hexagonal
lattice pattern (columns, X1-36) to each of the six macrostates within
the learned MSM (rows, C1-6). The pattern of matrix elements indicates
that C2-6 are high-purity macrostates comprising of largely a single lattice
label, whereas C1 contains a mixture of lattice labels.

ment probabilities of each lattice pattern (X1-36) to each of the
six MSM macrostates (C1-6). The important idealized nanopar-
ticle structures on a lattice and their lattice labels are shown in
Fig. 3(b), where X4, X6, and X11 correspond to two lattice pat-
terns while X16 corresponds to many lattice patterns with one
particle separated from the other five particles that are gathered
compactly. The other lattice patterns are shown Fig. S4(a) in the
ESI†. Macrostates C2-6 are composed largely of a single lattice
pattern, whereas C1 contains a mixture of patterns. This rational-
izes the trends observed in Fig. 3(a) and leads us to expect that
our MSM will contain five configurationally “pure” macrostates
containing structures with a single long-lived OM lattice label,
and a mixed macrostate containing structures with a mixture of
lattice labels that rapidly interconvert on time scales shorter than
the MSM lag time. Fig. S4(b) in the ESI† displays the entries of
the CNAM, showing that the five lattice patterns corresponding to
the five stable macrostates are indeed not contaminated by other
macrostates.

The Chapman-Kolmogorov (CK) test assesses the Markovian-
ity of a fitted MSM and therefore determines whether or not
it is a valid kinetic model89. The (t̃,nM ,τ) = (8.3, 6, 10 ms)
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Fig. 4 The state map of the Markov state model (MSM) built for the
6-particle OM system with τ = 10 ms, nM = 6 and (beam power, t̃)=(50
mW, 8.3). The sizes of the orange circles are proportional to the prob-
ability distributions of the macrostates. The thickness of the connecting
curves is in accord with the magnitude of the transition rates. Represen-
tative lattice patterns are shown next to each macrostate; C1 contains a
mixture of lattice patterns too numerous to display.

macrostate MSM for a beam power of 50 mW satisfactorily passes
the CK test as illustrated in Fig. S5 in the ESI†. Passing the CK
test also provides post hoc validation of our non-canonical use
of permutationally-invariant diffusion map embeddings and re-
versibilization of the microstate transition matrix within our MSM
pipeline, demonstrating that our approach provides a satisfactory
means to construct valid macrostate MSMs for non-conservative
and permutational-invariant systems.

The macrostate MSM shown in Fig. 4 is the primary result of
our analysis for the 50 mW beam power, and provides a wealth
of interpretable and quantitative information on the metastable
states and isomerization dynamics of the OM system. The sizes of
the orange circles are proportional to the stationary distributions
of the macrostates and the thickness of the connecting curves re-
flects the rate constants for transitions between macrostates. We
illustrate next to each macrostate a schematic representation of
the representative lattice patterns corresponding to the long-lived
lattice labels contained within each macrostate. C3-6 essentially
contain a single lattice pattern. C2 contains two lattice patterns
that interconvert on time scales below the MSM lag time. C1 con-
tains a mixture of lattice patterns too numerous to display. We
identify the chevron (C6), triangle (C5), and parallelogram (C4)
states that have been previously observed and reported in exper-
imental studies of this 6-particle OM system (cf., Fig. 1).

3.3 Beam power dependence of the dynamics of optical mat-
ter systems

In addition to the MSM constructed for the 6-particle OM system
for 50 mW beam power, we employed an analogous approach to
construct MSMs for beam powers of 40, 60, 70, 80, and 90 mW.
The complete set of macrostate MSMs is presented in Fig. S6 in
the ESI†. By constructing MSMs over a range of beam powers we

can analyze the ensemble of MSMs to extract trends in the relative
stabilities of and transition rates between the various macrostates
as a function of beam power.

Fig. 5 displays the changes with beam power of the station-
ary distribution probabilities of the six macrostates C1-6 and the
rate constants of three selected macrostate-to-macrostate transi-
tions (C4 → C3, C6 → C5, C5 → C6). Analogous plots for all
30 possible transitions are presented in Fig. S7 in the ESI†. Fo-
cusing on the five configurationally pure macrostates we see that
the abundances of macrostates C2 and C3 – each corresponding
to states with a single unstable (i.e., “dangling”) particle – de-
crease as the beam power increases. Similar trends are observed
for macrostate C4 corresponding to the parallelogram state. On
the other hand, the abundance of the triangle macrostate C5 in-
creases as the beam power increases, and that of the chevron,
macrostate C6, first increases and then decreases with increas-
ing beam power achieving a maximum at around 60 mW. These
quantitative trends inform us that we need to further increase the
beam power to stabilize triangle structure, whereas we need to
decrease the beam power to further stabilize the parallelogram
macrostate. We can make the chevron macrostate maximally im-
portant by tuning the beam power close to 60 mW.

The rates of the macrostate-to-macrostate transitions generally
decrease when the beam power increases because the constraint
exerted on the particles by the laser beam becomes larger with
increasing beam power, leading to less freedom in the particle
movement and thus smaller transition rate constants. There are
exceptions when the beam power drops to less than or equal to 40
mW, because the constraint exerted on the particles by the laser
beam is then not large enough to stabilize the OM structures for
sufficiently long periods of time.

3.4 Beam power design to achieve the maximum population
for the chevron state

From Fig. 5(f), we can see that the stability of the chevron pattern
within macrostate C6 exhibits a non-monotonic behavior with re-
spect to beam power. As an illustration of the value of our data-
driven MSMs to inform control of the OM system, we adopt as
our design goal maximal stabilization of the chevron pattern as a
function of beam power. To do so, we carry out polynomial fitting
of the chevron stationary distribution data for beam powers over
the range 40 mW to 90 mW. Next, the Akaike information crite-
rion (AIC)92 is calculated for each fit, shown in the inset of Fig. 6,
from which we can see that a 4th order polynomial corresponds
to the smallest AIC, and is therefore the fit most supported by the
data. (The maximum degree of the polynomial fit used for AIC
calculation is four because AIC cannot be calculated for higher
order polynomials given only six data points.) The analysis of
the 4th order fit identifies a global maximum at a beam power
of 62.94 mW, which represents our estimate of the beam power
that maximally promotes stability of the chevron pattern within
macrostate C6. To test this prediction, we carry out a simula-
tion for a beam power of 62.94 mW, construct the corresponding
macrostate MSM, and extract the stationary distribution of the
C6 macrostate, which we plot as the red dot on Fig. 6. We can
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Fig. 5 Plot of (a-f) the stationary distribution probabilities for the six macrostates C1-6 and (g-i) the rate constants of 3 selected macrostate-to-
macrostate transitions (C4 → C3, C6 → C5, C5 → C6) as a function of beam power for the 6-particle OM system. Error bars represent standard
errors in the mean estimated by five-fold block averaging.

see that the predicted beam power indeed corresponds to a larger
chevron population compared to other beam powers ranging from
40 mW to 90 mW. We could, of course, use the new 62.94 mW
data point to further refine our beam power predictions by re-
peating this fitting and analysis approach. However, a fourth or-
der polynomial fit to the new data predicts the maximum to lie at
62.93 mW, which is within 0.01 mW of our existing estimate of
the optimal beam power. Our ensemble of MSM models enables
analogous optimizations to be performed to maximally promote
macrostates or transitions of interest.

4 Conclusions

We have developed a MSM construction method for non-
conservative systems with permutational invariance using
permutationally-symmetrized diffusion maps and reversibilized
microstate transition matrix construction. We applied this ap-
proach to non-conservative OM systems to understand how the
stability of the various macrostates and transition rates depend on
beam power. We found that as beam power increases, the stability
of most macrostates decreases while the stability of the triangle
state increases and that of the chevron state first increases then
decreases. A meta-analysis of our MSM models at various beam

powers enables the rational control of the system via the design
of beam powers to maximally promote particular self-assembled
OM states or transitions. We found that the chevron macrostate
reaches its maximum stability at a beam power of 62.94 mW.

The present paper represents a first proof of principle for this
MSM construction method for the understanding and control of
OM systems. In future work we plan to extend our analysis to
additional controllable aspects of the incident beam including its
phase profile and beam width in order to explore stabilization of
additional self-assembled OM structures. We can also apply our
analyses to more complex OM systems including those containing
more particles, non-spherical particles, particles made of various
other materials, or particle mixtures that have richer landscapes
of self-assembled configurations. It is anticipated that this ap-
proach can help optimize the performance of optical matter ma-
chines.53 We also anticipate that the approach may be extended
to the analysis of molecular self-assembly where issues of permu-
tational invariance and breaking of detailed balance must often
be engaged in the construction of kinetic models.93

Future improvement of the method can include determination
of dynamic, as opposed to static, control policies that can wield
tighter control on the stable state and transitions through sim-
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Fig. 6 Dependence of the stationary distribution of the C6 (chevron)
macrostate as a function of beam power. Blue points correspond to
the stationary probabilities extracted from the corresponding macrostate
MSMs constructed at beam powers of 40, 50, 60, 70, 80, and 90 mW.
The blue line represents the best 4th order polynomial fit to these data.
The red point is the stationary distribution calculated from a MSM con-
structed at a beam power of 62.94 mW residing at the peak of the 4th

order polynomial fit. (Inset) Scatter plot of Akaike information criterion
(AIC) against polynomial degree for fits to the six initial beam powers.

ple feedback controllers that respond to the instantaneous state
of the system and take the appropriate corrective action. These
approaches can then be applied to construct MSMs directly from
experimental as opposed to simulation data and use these mod-
els to guide experimental control strategies such as creating new
stable OM structures and directing the transition of one structure
to the other by on-the-fly adjustment of the beam parameters.
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