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Mixed Quantum/Classical Theory (MQCT) Approach to the 

Dynamics of Molecule-Molecule Collisions in Complex Systems 

Carolin Joy, Bikramaditya Mandal, Dulat Bostan, Marie-Lise Dubernet1 and Dmitri Babikov* 

 

Abstract: We developed a general theoretical approach and a user-ready computer code that 

permit to study the dynamics of collisional energy transfer and ro-vibrational energy exchange 

in complex molecule-molecule collisions. The method is a mixture of classical and quantum 

mechanics. The internal ro-vibrational motion of collision partners is treated quantum 

mechanically using time-dependent Schrodinger equation that captures many quantum phenomena 

including state quantization and zero-point energy, propensity and selection rules for state-to-state 

transitions, quantum symmetry and interference phenomena. A significant numerical speed up is 

obtained by describing the translational motion of collision partners classically, using the Ehrenfest 

mean-field trajectory approach. Within this framework a family of approximate methods for 

collision dynamics is developed. Several benchmark studies for diatomic and triatomic molecules, 

such as H2O and ND3 collided with He, H2 and D2, show that the results of MQCT are in good 

agreement with full-quantum calculations in a broad range of energies, especially at high collision 

energies where they become nearly identical to the full quantum results. Numerical efficiency of 

the method and massive parallelism of the MQCT code permit us to embrace some of the most 

complicated collisional systems ever studied, such as C6H6 + He, CH3COOH + He and H2O + 

H2O. Application of MQCT to the collisions of chiral molecules such as CH3CHCH2O + He, and 

to the molecule-surface collisions is also possible and will be pursued in the future.  
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I. INTRODUCTION 

The idea of simplifying the description of complex molecular systems by mixing classical 

and quantum theories in one hybrid method is not entirely new or unique. For example, the 

electronic structure calculations of complex molecular environments are greatly facilitated by the 

QM/MM method,1,2 that employs classical force-field (MM) for the description of a large part of 

the molecule, while the ab initio calculations (QM) are carried out for a small subsystem (where 

an accurate description of chemical transformations is more important). Another example can be 

drawn from statistical mechanics, where the translational and rotational partition functions are 

computed in the high-temperature (classical) limit, while the vibrational and electronic 

wavefunctions appeal to the quantization of states.3,4 Also, the calculations of chemical reaction 

rates by propagating classical trajectories on a global potential energy surface are carried out by 

neglecting quantum effects, but then a tunneling correction is applied a posterior 5–7 by treating 

quantum mechanically a small part of configuration space near the top of reaction barrier. Finally, 

the mean-field Ehrenfest approach to the modelling of electronically non-adiabatic processes is 

another directly relevant example.8–11 More examples of successful combination of classical and 

quantum mechanics can be found in recent literature.12–14  

It would be logical to assume that, in complex molecular systems, a similar strategy could 

be quite beneficial for the description of molecular dynamics in general, and for the calculations 

of inelastic molecular collisions in particular. It appears, however, that the quantum-classical 

methods for molecular dynamics were largely abandoned in early 2000s,15–20 in favor of full-

quantum and purely-classical methods. This happened, perhaps, due to an explosive development 

of computer clusters, which gave us hope that a brute force computer power may permit us to win 

the battle against quantum complexity. This did not happen. The development of full quantum 

calculations progresses, but they remain computationally challenging.21–26 Classical trajectory 

calculations, on the other side, are computationally affordable but their predictive power is limited 

to state-averaged observables and is not free of several deficiencies.27,28   

During the last decade we undertaken the development of a mixed quantum/classical theory 

(MQCT) for collisional energy transfer and ro-vibrational energy exchange between two molecular 

collision partners.29–31 In this approach the translational motion of two molecules (their scattering 

process) is described classically using the approximate mean-field trajectory method (Ehrenfest), 

which gives a considerable computational speed up.32,33 Quantum mechanics is employed for the 
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description of their rotational and vibrational states, within the time-dependent Schrodinger 

equation formalism, which permits us to retain in the model the quantization of the internal states 

of collision partners with their intrinsic symmetry properties, selection rules, propensities to certain 

types of state-to-state transitions and zero-point energy conservation. We found that MQCT 

approach is both numerically affordable and physically accurate. In particular, we carried out 

MQCT calculations for a number of simple systems, such as diatom + atom,34,35 triatomic + atom36 

and diatom + diatom,37,38 where the full quantum calculations are still affordable and can be used 

as a solid benchmark. We showed that in these cases MQCT method gives reliable predictions of 

integral cross sections for various individual state-to-state transitions in a broad range of energies 

and for various collision partners, including the elastic scattering channel, but also permits to 

obtain differential cross sections in good agreement with full quantum results.39 At high collision 

energies, where quantum calculations become challenging due to a large number of partial 

scattering waves, the MQCT calculations remain affordable and become quite accurate, often 

giving the results indistinguishable from those of the full quantum calculations. But even at low 

collision energies the results of MQCT remain reasonable, obeying threshold behavior for 

excitation of the individual quantum states and approximately satisfying the principle microscopic 

reversibility.40,41 In addition, MQCT calculations give a valuable and unique time-dependent 

insight into the process, by illuminating time-evolution of state populations during the collision 

event.41,42
 

    This recent successful work is very encouraging, still, one must remember that MQCT 

approach involves classical approximation for the translational motion of collision partners, and, 

like any approximate method, it has its limitations. In particular, at low collision energy, when the 

collision process is dominated by scattering resonances, MQCT trajectories become permanently 

trapped in the interaction region forming a collision complex (the analogue of Feshbach resonance) 

but the rigorous method for analysis of orbiting trajectories is yet to found.39 Due to the same 

classical approximation, MQCT cannot describe the so-called “shape-type” resonances populated 

by quantum tunneling through the barrier. It is also unknown how to apply MQCT to reactive 

collisions, when some bonds are broken, and others are formed. Therefore, it is advised to test 

MQCT calculations against the full-quantum calculations, whenever it is possible, which is one of 

the goals of this paper. 
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We also tried to push MQCT calculations to the limit, by applying this method to more 

complex systems where the quantum calculations are next to impossible and the accurate 

benchmark data either do not exist at all or are very limited (e.g., available only for low collision 

energies and/or small rotational basis set, or only an approximate quantum treatment is affordable). 

Among these systems are medium size polyatomic molecules such as methyl formate HCOOCH3, 

benzene C6H6 and polypropylene oxide CH3CHCH2O collided with an atom,40,42,43  and a collision 

of two general asymmetric-top-rotor molecules, such as H2O + H2O and their isotopic 

substitutions.44,45 Some of these calculations are still ongoing but the results are encouraging both 

in terms of MQCT accuracy and numerical affordability (or practicality).      

 In this paper we push MQCT calculations to another limit, now in terms of the number of 

high-energy quantum states included in the model, and the range of collision energies covered, by 

applying this method to the rotationally inelastic scattering in H2O + H2 system. This process is 

one of the critical energy transfer steps in the evolution of interstellar media (molecular clouds), 

star forming environments (proto-stellar accretion discs and hot pre-stellar cores) and stellar 

atmospheres at the late stage of start evolution (red-giants). In the past, accurate full quantum 

calculations were carried out for quenching of 44 rotationally excited levels of both para-H2O and 

ortho-H2O (90 levels of water total) combined with two states of H2 projectile: 𝑗 = 0, 2, 4 of para-

hydrogen and 𝑗 = 1, 3 of ortho-hydrogen (5 states total), at the center-of-mass collision energy up 

to 8000 cm-1. It appears, however, that astrophysical modelers, the user of these data, want to 

significantly expand the range of temperature in their simulations, begging for broader range of 

collision energies and higher levels of rotational excitation of both collision partners.46 In this work 

we present the results of MQCT using a rotational basis set that includes 100 states of para-H2O 

and ortho-H2O (200 states total) and all rotational states of H2 projectile up to 𝑗 = 10, for collision 

energies up to 12000 cm-1, without invoking the coupled-states approximation,46 i.e., retaining in 

the model the effect of Coriolis coupling. 

 There are several goals that we target here. In Sec. II we summarize the equations of motion 

used in MQCT and derive the formulae for state-to-state transition matrix in H2O + H2 and any 

other similar system (asymmetric-top rotor + linear rotor). In Sec. III we give technical details of 

these calculations and conduct a comprehensive check of microscopic reversibility, using cross 

sections computed for the excitation and quenching directions of each individual state-to-state 

transition, for various collision energies. In Sec. IV we present a detailed comparison of the 

Page 4 of 33Faraday Discussions



5 
 

individual state-to-state transition rate coefficients computed by MQCT against the full-quantum 

results from literature,47 through the temperature range available there. In Sec. V, we analyze the 

results of MQCT calculations for those highly excited states that were not covered previously, to 

obtain insight into the overall trends of state-to-state energy transfer processes in H2O + H2 system 

including very high levels of rotational excitation and a broad range of collision energies. 

Conclusions are summarized in Sec. VI. More details are presented in Supplemental Information.    

II. THEORETICAL APPROACH 

The rotations of each colliding partner are treated quantum mechanically and the 

wavefunction depends on the angles needed to describe individual orientations of these molecules. 

In general, for an asymmetric-top molecule the rotations are described by a set of Euler angles 

Λ1 = (𝛼1, 𝛽1, 𝛾1). Following Parker,48 we use active rotations for each collision partner. The 

rotational states of the H2O molecule are quantized and are described by the following 

wavefunctions : 

𝜓𝑗1𝑚1𝜏1
(𝛼1, 𝛽1, 𝛾1) =  √

2𝑗1 + 1

8𝜋2
∑ 𝑏𝑘

𝜏1𝐷𝑚1,𝑘
𝑗1∗ (𝛼1, 𝛽1, 𝛾1)

+𝑗1

𝑘=−𝑗1

                           (1) 

where the set of expansion coefficients 𝑏𝑘
𝜏1 is obtained by diagonalization of an asymmetric-top 

rotor Hamiltonian matrix in a corresponding basis set of Wigner D-functions 𝐷𝑚1,𝑘1

𝑗1∗ (𝛼1, 𝛽1, 𝛾1). 

These states are labeled by quantum numbers {𝑗1𝑚1𝜏1} where 𝑗1 and 𝑚1 represent angular 

momentum of the first molecule and its projection onto the axis of quantization (defined below). 

The index 𝜏1 = 𝑘A− 𝑘𝐶  replaces 𝑘A and 𝑘𝐶 that represent projections of 𝑗1 onto the principal axis 

of inertia with smallest and largest values of rotational constants, respectively.  

The rotations of a linear rotor are described by polar angles (𝜃, 𝜑) and its rotational 

eigenstates are represented by spherical harmonics Y𝑚2

𝑗2 (𝜃, 𝜑). Or, for convenience, one can use 

two of the three Euler angles:  

𝜓𝑗2𝑚2
(Λ2) =  Y𝑚2

𝑗2 (𝛽2, 𝛼2)                                                           (2) 

where Λ2 = (𝛼2, 𝛽2, 𝛾2) with the last Euler angle fixed at zero (𝛾2 = 0), while 𝑗2 and 𝑚2 represent 

angular momentum of the second molecule and its projection onto the axis of quantization. Then, 
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the coupled states of asymmetric-top rotor + linear rotor can be expressed using Clebsch-Gordan 

(CG) coefficients C𝑗1𝑚1,𝑗2𝑚2

𝑗,𝑚
 as follows: 

Ψ𝑛𝑚(Λ1, Λ2) = √
2𝑗1 + 1

8𝜋2
∑ 𝐶𝑗1,𝑚1,𝑗2,𝑚−𝑚1

𝑗,𝑚

+𝑗1

𝑚1=−𝑗1

( ∑ 𝑏𝑘
𝜏1𝐷𝑚1,𝑘

𝑗1∗ (Λ1)

+𝑗1

𝑘=−𝑗1

) × Y𝑚−𝑚1

𝑗2 (Λ2)          (3) 

Here 𝑚 is projection of total angular momentum 𝑗 of the molecule-molecule system onto the axis 

of quantization while 𝑛 is used as a composite index to label the total set of quantum numbers for 

the system, 𝑛 = {𝑗,𝑚, 𝑗1, 𝜏1, 𝑗2}. The CG coefficients are nonzero only if 𝑚  = 𝑚1 + 𝑚2 and  |𝑗1 −

𝑗2| ≤ 𝑗 ≤ 𝑗1 + 𝑗2.  

 Time evolution of the rotational wavefunction of the system is described by expansion over 

a set of eigenstates: 

𝜓(Λ1, Λ2, 𝑡) = ∑𝑎𝑛𝑚(𝑡)Ψ𝑛𝑚(Λ1, Λ2)exp {−i𝐸𝑛𝑡} 

𝑛𝑚

                           (4) 

where 𝑎𝑛𝑚(𝑡) is a set of corresponding probability amplitudes that are time-dependent, and the 

exponential phase factors are included to simplify solution in the asymptotic range. Substitution 

of this expansion into the time-dependent Schrodinger equation and the transformation of 

wavefunctions into the rotating frame tied to the molecule-molecule vector �⃗�  (used as a 

quantization axis in this body-fixed reference frame49 leads to the following set of coupled 

equations for time-evolution of probability amplitudes:  

�̇�𝑚𝑛′′ = −𝑖 ∑𝑎𝑛′𝑚𝑀𝑛′
𝑛′′

(𝑅) 𝑒𝑖𝜀
𝑛′
𝑛′′

𝑡

𝑛′

                                                

   −Φ̇ [𝑎𝑛′′,𝑚−1√𝑗′′(𝑗′′ + 1) − 𝑚(𝑚 − 1)+𝑎𝑛′′,𝑚+1√𝑗′′(𝑗′′ + 1) − 𝑚(𝑚 + 1)] /2    (5) 

Here 𝜀𝑛′
𝑛′′

= 𝐸𝑛′′−𝐸𝑛′  is energy difference between the final and initial states of the system. The 

summation in the first term of this equation includes state-to-state transitions 𝑛′ → 𝑛′′ (within each 

𝑚) driven by real-valued, time-independent potential coupling matrix 𝑀𝑛′
𝑛′′

: 

𝑀𝑛′
𝑛′′

(𝑅) =  ⟨Ψ𝑛′′𝑚(Λ1, Λ2)|𝑉(𝑅, Λ1Λ2)|Ψ𝑛′𝑚(Λ1, Λ2)⟩                               (6) 

The potential energy hypersurface 𝑉(𝑅, Λ1, Λ2) depends on the intermolecular distance 𝑅 and 

orientation of each molecule, Λ1 and Λ2. Here Ψ𝑛′′𝑚(Λ1, Λ2) and Ψ𝑛′𝑚(Λ1, Λ2) represents 

wavefunctions of final and initial states of the molecule.  
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The second term in Eq. (5) describes 𝑚 ± 1 → 𝑚 transitions (within each 𝑛) due to the 

Coriolis coupling effect, driven by rotation of the molecule-molecule vector �⃗� = (𝑅,Φ, Θ) relative 

to the laboratory-fixed reference frame during the course of collision. A set of spherical polar 

coordinates (𝑅,Φ, Θ) represents classical degrees of freedom in the system. They describe 

scattering of two collision partners relative to the laboratory-fixed reference frame and the 

equations for their time-evolution are obtained using the Ehrenfest theorem:49   

                         �̇� =
𝑃𝑅

𝜇
 (7) 

                         Φ̇ =
𝑃Φ

𝜇𝑅2
 (8) 

�̇�𝑅 = −∑∑𝑒𝑖𝜀
𝑛′
𝑛′′

𝑡 ∑
𝜕𝑀𝑛′

𝑛′′

𝜕𝑅
𝑎𝑛′′𝑚

∗ 𝑎𝑛′𝑚 +
𝑃Φ

2

𝜇𝑅3

𝑚𝑛′′𝑛′

 (9) 

         �̇�Φ = −𝑖 ∑∑𝑒𝑖𝜀
𝑛′
𝑛′′

𝑡 ∑𝑀𝑛′
𝑛′′

𝑚𝑛′′𝑛′

× [𝑎𝑛′′𝑚−1
∗ 𝑎𝑛′𝑚√𝑗′′(𝑗′′ + 1) − 𝑚(𝑚 − 1)

+ 𝑎𝑛′′𝑚+1
∗ 𝑎𝑛′𝑚√𝑗′′(𝑗′′ + 1) − 𝑚(𝑚 + 1)

− 𝑎𝑛′′𝑚
∗ 𝑎𝑛′𝑚−1√𝑗′(𝑗′ + 1) − 𝑚(𝑚 − 1)

− 𝑎𝑛′′𝑚
∗ 𝑎𝑛′𝑚+1√𝑗′(𝑗′ + 1) − 𝑚(𝑚 + 1)] /2  

(10) 

It appears that only the equations for 𝑅, Φ and their conjugate momenta 𝑃𝑅, 𝑃Φ are needed. 

Since the trajectory is planar, one can restrict consideration to the equatorial plane Θ = 𝜋/2 with  

Θ̇ = 0.49 Note that classical orbital angular momentum Φ̇(𝑡) drives Coriolis transitions in the 

quantum equations of motion, Eq. (5), while the quantum probability amplitudes 𝑎𝑛𝑚(𝑡) create a 

mean-field potential in the classical equations of motion, Eqs. (9-10), providing a link between 

quantum and classical degrees of freedom. It was demonstrated that the total energy, which is the 

sum of rotational (quantum) and translational (classical), is conserved along these mixed 

quantum/classical trajectories.49,50 The trajectories are propagated for various initial values of the 

orbital angular momentum of two collision partners ℓ, and the values of probability amplitudes 

𝑎𝑛𝑚(𝑡) at the final moment of time are used to determine state-to-state transition probabilities. 

Those are summed over final and averaged over initial degenerate states to obtain cross sections 

𝜎𝑛′→𝑛′′ for transitions between non-degenerate states of the system. 
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  In principle, matrix elements of Eq. (6) can be computed by a four-dimensional numerical 

quadrature: 

𝑀𝑛′
𝑛′′

(𝑅) = 2𝜋 ∫ sin 𝛽1 𝑑𝛽1 ∫ 𝑑𝛾1

2𝜋

0

𝜋

0

                                                       

× ∫ 𝑑𝛼2

2𝜋

0

∫ sin𝛽2 𝑑𝛽2

𝜋

0

𝑉(𝑅, 𝛽1, 𝛾1, 𝛼2, 𝛽2)Ψ𝑛′′
∗ (Λ1Λ2)Ψ𝑛′(Λ1Λ2)             (11) 

The factor of 2𝜋 come from the analytical integration over 𝛼1. This can be done because potential 

energy of the system depends only on the relative orientations of two molecules, given by the 

difference 𝛼2 − 𝛼1. One can set 𝛼1 = 0, which makes 𝑉(𝑅, 𝛽1, 𝛾1, 𝛼2, 𝛽2) independent of 𝛼1. In 

practice, the multi-dimensional quadrature is numerically expensive. It is better to expand 

𝑉(𝑅, 𝛽1, 𝛾1, 𝛼2, 𝛽2) over a set of suitable angular functions 𝜏𝜆1𝜇1𝜆2𝜆(𝛽1, 𝛾1, 𝛼2, 𝛽2) with 𝑅-

dependent expansion coefficients 𝜐𝜆1𝜇1𝜆2𝜆
(𝑅) obtained by projecting 𝑉 onto these expansion 

functions at each value of 𝑅 within a predefined grid. These projections are also computed by 

numerical quadrature, but the number of expansion functions is much smaller than the number of 

individual matrix elements. At each value of 𝑅, the potential can be represented analytically:  

𝑉(𝑅, 𝛽1, 𝛾1, 𝛼2, 𝛽2) = ∑ 𝜐𝜆1𝜇1𝜆2𝜆(𝑅)𝜏𝜆1𝜇1𝜆2𝜆(𝛽1, 𝛾1, 𝛼2, 𝛽2)

𝜆1𝜇1𝜆2𝜆

                          (12) 

For an asymmetric-top rotor + linear rotor system a suitable set of functions is given by: 

𝜏𝜆1𝜇1𝜆2𝜆(𝛽1, 𝛾1, 𝛼2, 𝛽2)  = √
2𝜆1 + 1

4𝜋
∑ C𝜆1,𝜂,𝜆2,−𝜂

𝜆,0

+min(𝜆1,𝜆2)

𝜂=−min(𝜆1,𝜆2)

                 

× [D𝜂,𝜇1

𝜆1∗ (Λ1) + (−1)𝜆1+𝜇1+𝜆2+𝜆D𝜂,−𝜇1

𝜆1∗ (Λ1)]Y−𝜂
𝜆2 (Λ2)        (13) 

which uses spherical harmonics Y𝜂
𝜆(𝛽2, 𝛼2) with the last Euler angle fixed at zero (𝛾2 = 0), Wigner 

D-functions 𝐷𝑚1,𝑘
𝑗1∗ (𝛼1, 𝛽1, 𝛾1) and CG coefficients (see above). The meaning of indexes 𝜆1 (𝜇1), 

𝜆2 and 𝜆 are analogues to angular momenta for the molecule one (its projection onto symmetry 

axis), the molecule two, and the entire system, respectively. Substitution of Eq. (13) into Eq. (12), 

and then into Eq. (6) will give us the following expression:  
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𝑀𝑛′
𝑛′′

(𝑅)

=   √
2𝑗1

′′ + 1

8𝜋2
 √

2𝑗1
′ + 1

8𝜋2
∑ C

𝑗1
′ ,𝑚1

′ ,𝑗2
′ ,𝑚−𝑚1

′
𝑗′,𝑚

+𝑗1
′

𝑚1
′ =−𝑗1

′

∑ C
𝑗1
′′,𝑚1

′′,𝑗2
′′,𝑚−𝑚1

′′
𝑗′′,𝑚

+𝑗1
′′

𝑚1
′′=−𝑗1

′′

∑ 𝜐𝜆1𝜇1𝜆2𝜆
(𝑅)

𝜆1𝜇1𝜆2𝜆

√
2𝜆1 + 1

4𝜋

× ∑ C𝜆1,𝜂,𝜆2,−𝜂
𝜆,0

+min(𝜆1,𝜆2)

𝜂=−min(𝜆1,𝜆2)

∑ ∑ 𝑏
𝑘1

′′
𝜏1
′′

𝑏
𝑘1

′
𝜏1
′

+𝑗1
′

𝑘1
′=−𝑗1

′

+𝑗1
′′

𝑘1
′′=−𝑗1

′′

⟨Y
𝑚−𝑚1

′′
𝑗2
′′

(Λ2)|Y−𝜂
𝜆2(Λ2)|Y𝑚−𝑚1

′
𝑗2
′

(Λ2)⟩

× [  ⟨D
𝑚1

′′,𝑘1
′′

𝑗1
′′∗

(Λ1)|D𝜂,𝜇1

𝜆1∗ (Λ1)|D𝑚1
′ ,𝑘1

′
𝑗1
′∗

(Λ1)⟩ + (−1)𝜆1+𝜇1+𝜆2+𝜆 ⟨D
𝑚1

′′,𝑘1
′′

𝑗1
′′∗

(Λ1)|D𝜂,−𝜇1

𝜆1∗ (Λ1)|D𝑚1
′ ,𝑘1

′
𝑗1
′∗

(Λ1)⟩]        (14) 

 

For the integrals of spherical harmonics and Wigner D-functions, the following properties can be 

employed:51 

⟨Y𝑚3

𝑙3 |Y𝑚2

𝑙2  |Y𝑚1

𝑙1 ⟩ =  √
(2𝑙1 + 1)(2𝑙2 + 1)

4𝜋(2𝑙3 + 1)
C𝑙1,0 ,𝑙20

𝑙3,0 C𝑙1,𝑚1,𝑙2,𝑚2

𝑙3,𝑚3                                      (15) 

⟨D
𝑚3𝑚3

′
𝑙3∗ |D

𝑚2𝑚2
′

𝑙2∗ |D
𝑚1𝑚1

′
𝑙1∗ ⟩ =  

8𝜋2

2𝑙3 + 1
 C𝑙1,𝑚1,𝑙2,𝑚2

𝑙3,𝑚3 C
𝑙1,𝑚1

′ ,𝑙2,𝑚2
′

𝑙3,𝑚3
′

                                     (16) 

By substituting the integrals in Eq. (14) with the expressions Eq. (15) and Eq. (16) we obtain the 

following expression:51 

𝑀𝑛′
𝑛′′

(𝑅) = √
2𝑗1

′′ + 1

8𝜋2
 √

2𝑗1
′ + 1

8𝜋2
∑ C

𝑗1
′ ,𝑚1

′ ,𝑗2
′ ,𝑚−𝑚1

′
𝑗′,𝑚

+𝑗1
′

𝑚1
′=−𝑗1

′

∑ C
𝑗1
′′,𝑚1

′′, 𝑗2
′′,𝑚−𝑚1

′′
𝑗′′,𝑚

+𝑗1
′′

𝑚1
′′=−𝑗1

′′

 

× ∑ 𝜐𝜆1𝜇1𝜆2𝜆
(𝑅)

𝜆1𝜇1𝜆2𝜆

√
2𝜆1 + 1

4𝜋
∑ ∑ 𝑏

𝑘1
′′

𝜏1
′′

𝑏
𝑘1

′
𝜏1
′

+𝑗1
′

𝑘1
′=−𝑗1

′

+𝑗1
′′

𝑘1
′′=−𝑗1

′′

∑ C𝜆1,𝜂, 𝜆2,−𝜂
𝜆,0

+min(𝜆1,𝜆2)

𝜂=−min(𝜆1,𝜆2)

√
(2𝑗2

′ + 1)(2𝜆2 + 1)

4𝜋(2𝑗2
′′ + 1)

    

× C
𝑗2
′ ,0,𝜆20

𝑗2
′′,0

C
𝑗2
′ ,𝑚−𝑚1

′ ,𝜆2−𝜂

𝑗2
′′,𝑚−𝑚1

′′ 8𝜋2

2𝑗1
′′ + 1 

C
𝑗1
′ ,𝑚1

′ ,𝜆1,𝜂

𝑗1
′′,𝑚1

′′

[𝐶
𝑗1
′ ,𝑘1

′ ,𝜆1,𝜇1

𝑗1
′′,𝑘1

′′

+ (−1)𝜆1+𝜇1+𝜆2+𝜆 𝐶
𝑗1
′ ,𝑘1

′ ,𝜆1,−𝜇1

𝑗1
′′,𝑘1

′′

 ]                      (17) 

In general, Clebsch-Gordan coefficients are non-zero only if 𝑚  = 𝑚1 + 𝑚2 and  |𝑗1 −

𝑗2| ≤ 𝑗 ≤ 𝑗1 + 𝑗2. Incorporating these properties of CG coefficients51 we obtain the final state-to-

state transition matrix element as follows:  

𝑀𝑛′
𝑛′′

(𝑅) = √
2𝑗1

′ + 1

2𝑗1
′′ + 1

√
2𝑗2

′ + 1

2𝑗2
′′ + 1

∑ 𝜐𝜆1𝜇1𝜆2𝜆
(𝑅)√

2𝜆1 + 1

4𝜋
√

2𝜆2 + 1

4𝜋
𝜆1𝜇1𝜆2𝜆

𝐶
𝑗2
′ ,0,𝜆2,0

𝑗2
′′,0

 

× ∑ C
𝑗1
′ ,𝑚1

′ ,𝑗2
′ ,𝑚−𝑚1

′
𝑗′,𝑚

∑ C
𝑗1
′′,𝑚1

′−𝜂,𝑗2
′′,𝑚−(𝑚1

′ −𝜂)

𝑗′′,𝑚

+min(𝜆1,𝜆2)

𝜂=−min(𝜆1,𝜆2)

+𝑗1
′

𝑚1
′=−𝑗1

′

𝐶𝜆1,𝜂,𝜆2,−𝜂
𝜆,0 C

𝑗1
′ ,𝑚1

′−𝜂,𝜆1,𝜂

𝑗1
′′,𝑚1

′
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× C
𝑗2
′ ,𝑚−(𝑚1

′−𝜂),𝜆2,−𝜂

𝑗2
′′,𝑚−𝑚1

′

∑ ∑ 𝑏
𝑘1

′′
𝜏1
′′

𝑏
𝑘1

′
𝜏1
′

+𝑗1
′

𝑘1
′=−𝑗1

′

+𝑗1
′′

𝑘1
′′=−𝑗1

′′

 [𝐶
𝑗1
′ ,𝑘1

′ ,𝜆1,𝜇1

𝑗1
′′,𝑘1

′′

  +   (−1)𝜆1+𝜇1+𝜆2+𝜆 𝐶
𝑗1
′ ,𝑘1

′ ,𝜆1,−𝜇1

𝑗1
′′,𝑘1

′′

]                (18) 

In order to check the correctness of Eq. (18), and to assess the accuracy of PES expansion, 

we computed matrix elements at two values of the molecule-molecule distance in the interaction 

region, 𝑅 = 7.0 and 8.0 Bohr, for 14 states in the basis that include combinations of ground and 

excited states of both collisions partners: (𝑗1𝑘𝐴𝑘𝐶
𝑗2) = (0000), (1110), (2020), (2110), (2200), 

(3130), (3220), (0002), (1112), (2022), (2112), (2202), (3132), (3222). Note that this list includes 

all symmetries of H2O + H2 system, namely, p-H2O + p-H2, p-H2O + o-H2, o-H2O + p-H2, and o-

H2O + o-H2. Analytical representation of the PES included 83 expansion terms with  𝜆1 and 𝜇1 up 

to 9 and 6, respectively, 𝜆2 up to 6 and the overall 𝜆 up to 11, respectively. We employed numerical 

quadrature to obtain the expansion coefficients 𝜐𝜆1𝜇1𝜆2𝜆(𝑅) as required in Eq. (12), and to calculate 

the same matrix elements through direct integration using Eq. (11). Equidistant grids with 40 

points were used for 𝛼 and  𝛾, and a Gauss-Legendre method with 20 points was used for 𝛽. The 

values of computed matrix elements in this test ranged from 10-4 to 102 cm-1, while the difference 

between the two methods of calculations (direct integration vs PES expansion) was found to be on 

the order of 10-10 cm-1, from which we conclude that both methods work as expected. Also, this 

test permitted us to compare numerical costs of the two methods and showed that the PES 

expansion method gives a significant computational advantage. For the specified subset of 

rotational states, its CPU cost is eleven times lower (the method is faster) compared to the direct 

integration method.  

III. DETAILS OF CALCULATIONS  

In the calculations presented below the rotational basis set of water includes states up to 

𝑗1 = 28 for both p-H2O and o-H2O with energies reaching 7907 and 7996 cm-1, respectively.  

These are combined with the states of p-H2 and o-H2 up to 𝑗2 = 10, that have energies up to 6694 

cm-1. Combinations of these states give 1032 energetically non-degenerate channels for o/p-target 

+ p-projectile and 897 channels for o/p-target + o-projectile, with total rotational energy below 

8000 cm-1. All possible combinations of angular momenta of two collision partners 𝑗1 and 𝑗2 were 

included up to the total 𝑗 = 38 for o/p-target + p-projectile and 𝑗 = 37 for o/p-target + o-projectile, 

with all possible values of quantum number 𝑚 for its projection onto the axis of quantization (−𝑗 ≤
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𝑚 ≤ +𝑗) which resulted in 206350 states in the p-p case, 205649 states in the p-o case, 206812 

states in the o-p case, and 205211 states in the o-o case. This choice of the rotational basis set led 

to the state-to-state transition matrix amounting to approximately half a billion non-zero matrix 

elements in total. This entire matrix was computed and analyzed at two values of the molecule-

molecule distance in the interaction region, R = 6.03 and 7.11 Bohr. Subsequently, based on this 

analysis, the matrix was truncated, retaining only the elements with magnitudes above 1 cm-1, 

which resulted in 14580217, 14610968, 14628390 and 14575564 matrix elements (transitions) 

retained for p-p, p-o, o-p and o-o symmetries of H2O + H2 system, respectively. Next, the values 

of these retained matrix elements (the truncated matrix) were computed on a grid of 63 points 

along 𝑅 that cover the range 3.0 ≤  𝑅 ≤  30 Bohr using logarithmic spacings to make the grid 

denser at short range and progressively sparser as the molecule-molecule separation approaches 

the asymptotic region. Finally, these data were interpolated using cubic spline. The calculations of 

state-to-state transition matrix elements were carried out in parallel using 5 nodes of HPC Raj at 

Marquette University (AMD Rome 2 GHz processors, 512 GB memory) where each node has 128 

processors, leading to overall 640 processors per job. Four different matrices were computed for 

the combinations involving para- and ortho-states of target and projectile, as described above. 

Each of these matrix computations took about 96 hours (4 wall-clock days), with the total cost 

close to 250,000 CPU hours.  

The calculations of collision dynamics were conducted using AT-MQCT version of 

theory52, in which the propagation of Eqs. (5) for quantum degrees of freedom is decoupled from 

the propagation of Eqs. (7-10) for classical degrees of freedom. This approach is known to give 

accurate results for H2O + H2.
52 An adaptive-step-size predictor method ADAPTOL was employed 

for time-propagation52, with the tolerance parameter 𝜖 = 10-3 determined by convergence studies. 

This method uses larger time steps in the asymptotic region of the PES, and then reduces the time 

step in the interaction region, down to 10 a.u. Initial conditions for MQCT trajectories were 

sampled randomly using a Monte-Carlo approach with maximum value of impact parameter 

𝑏𝑚𝑎𝑥 = 25 Bohr for the lowest collision energy and 𝑏𝑚𝑎𝑥 = 15 Bohr for all higher energies, that 

correspond to orbital angular momentum quantum number ℓ𝑚𝑎𝑥 = 27 and 285, respectively. 

Overall, we conducted MQCT calculations for ten collision energies: U = 20.00, 41.28, 84.00, 

170.47, 346.41, 703.89, 1430.0, 2906.3, 5906.0 and 12000 cm-1. For each energy, 200 randomly 

sampled MQCT trajectories were propagated using 64 processors per trajectory. These randomly 
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sampled trajectories were used to compute state-to-state transition cross sections as described in 

our earlier papers.31,40 We found that 200 trajectories were sufficient to obtain cross sections 

converged to within ~ 1% percent of their values for most transitions. However, for transitions 

with larger values of 𝑗₁ and 𝑗₂ the convergence was estimated to be within 10%. Calculations were 

carried out for the initial states that combine 100 states of water (of each symmetry) with eleven 

considered states of H2 (both symmetries). On average, calculations for 100 initial states of water 

combined with one initial state of H2, took about 480 minutes at one collision energy, which 

translates to around 1600 hours of wall clock time, or 102400 CPU hours dedicated to the 

calculations. The overall numerical cost of MQCT trajectories for ten collision energies, four 

symmetries of the system, and all the initial states of H2O + H2 was about 22 million CPU hours 

on Raj cluster at Marquette (see above). This computational cost is a factor of four higher than that 

of our recent calculations for H2O + H2O system,45 which is partially due to more collision energies 

(ten here vs six in that work) and partially due to technical issues that decreased the performance 

of our cluster. 

For each individual transition in o/p-H2O + o/p-H2 we computed state-to-state transition 

cross sections for both quenching and excitation directions of each process. These cross sections 

satisfy the principle of microscopic reversibility if the following conditions is fulfilled: 

(2𝑗1
′ + 1)(2𝑗2

′ + 1)𝜎𝑛′→𝑛′′ = (2𝑗1
′′ + 1)(2𝑗2

′′ + 1)𝜎𝑛′′→𝑛′                            (19) 

Here and below 𝑛 = (𝑗1𝑘𝐴𝑘𝐶
𝑗2) labels non-degenerate states of the molecule-molecule system, 

while prime and double prime indexes define the initial and final states, say 𝑛′′ → 𝑛′ is for 

quenching and 𝑛′ → 𝑛′′ for excitation. It should be noted that the mean-field Ehrenfest method 

does not automatically satisfy the principle of microscopic reversibility. To overcome this 

drawback a so-called Billing correction is applied to computed cross sections,44,53–55 which permits 

to satisfy Eq (19) approximately. One can also check for possible deviations by doing calculations 

of both excitation and quenching cross sections. In Fig. 1 we present a comparison of the left- vs 

right-hand side of Eq. (19) with Billing correction applied, at three collision energies for 14388 

transitions in H2O + H2 system, which includes 100 initial states of p-H2O combined with three 

initial states for p-H2 (𝑗2
′ = 0, 2, 4). The other three symmetries of H2O + H2 system were analyzed 

in a similar way and all the results are presented in Supplementary Information, Fig. S1. Large 

differences between the left- and right-hand sides of Eq. (19) would indicate possible flaws in the 
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physical assumptions of the method and/or in numerical aspect of calculations. However, the data 

presented in Fig. 1 and Fig. S1 demonstrate that, in general, the microscopic reversibility is 

approximately satisfied with deviations remaining relatively small (within a factor of 2) for most 

transitions across several orders of magnitude range of cross section values. Larger deviations are 

found for smaller cross sections and at lower collision energies, which is expected because an 

approximate trajectory-based method may indeed become somewhat less accurate at lower 

energies. Moreover, we looked separately at the data that corresponds to the initial H2 (𝑗2
′ = 0), 

H2 (𝑗2
′ =  2) and H2 (𝑗2

′ = 4) and found that the deviations from the diagonal line are similar and 

does not get worse as the initial rotational excitation of H2 is raised.  

 

In order to understand the origin of these differences, we selected fifteen transitions 

characterized by some of the largest differences between quenching and excitation cross sections 

in Fig. 2, at the lowest collision energy U = 170 cm-1. The selected transitions were: 9910 → 7712, 

12932 → 12842,  12932 → 11842,  134102 → 122100, 8442 → 6602,  6062 → 2022, 134102 →

122102, 12750 → 13590, 134102 → 11840, 134102 → 10822, 10372 → 6512, 8082 → 4402, 

 

 

 

Figure 1: The comparison of MQCT state-to-state transition cross sections (in Å2) for quenching 

and excitation directions of 14388 individual transitions in p-H2O + p-H2 system at three values of 

collision energy U. The deviation of datapoints from the diagonal line indicates the departure from 

the principle of microscopic reversibility. The factor of 2 difference is shown by red dashed lines. 
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152142 → 141132, 134102 → 121112 and 160162 → 171170. These 15 datapoints, highlighted in 

red in Fig. 2, were then recalculated using a regular sampling of initial conditions (without random 

sampling, with trajectories initiated for all initial values of quantum numbers 𝑗, 𝑚 and ℓ varied 

through the following ranges: |𝑗1 − 𝑗2| ≤ 𝑗 ≤ 𝑗1 + 𝑗2, −𝑗 ≤ 𝑚 ≤ +𝑗 and 0 ≤ ℓ ≤ ℓ𝑚𝑎𝑥). The 

results were re-plotted as yellow symbols in Fig. 2.   

From Fig. 2 we see that yellow symbols are found much closer to the diagonal line, 

compared to red symbols, which means that larger deviations of the datapoints from the principle 

of microscopic reversibility originate mostly in the random sampling of initial conditions for the 

calculations of excitation and quenching cross sections. This also means that, in principle, one can 

improve the results of MQCT calculations if needed, for an extra cost, by either running more 

randomly sampled trajectories for transitions with larger values of 𝑗1
′ , or by refraining from the 

random sampling at all (and propagating all possible trajectories as we did in this example), which 

would be practical only for small values of 𝑗1
′  or for a small number of transitions. 

Here we decided not to do more calculations, simply because the agreement between the 

excitation and quenching is already within the desired range and remains consistent for all 

 

Figure 2: The effect of initial sampling on excitation and quenching cross sections for fifteen 

individual transitions in in p-H2O + p-H2 system at U = 170 cm-1, as explained in the text. The 

datapoints obtained by random sampling of initial conditions (red symbols) show larger 

deviations from the principle of microscopic reversibility.  Regular sampling for the same 

fifteen transitions (yellow symbols) reduces the deviation significantly.  
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symmetries of H2O + H2 system through a broad range of collision energies and for all transitions 

we studied (close to 118 thousand transitions in total, see Fig. S1). In order to obtain rate 

coefficients (that must satisfy the principle microscopic reversibility) we computed the weighted 

average of cross sections for excitation and quenching:  

�̃�𝑛′𝑛′′ = 
(2𝑗1

′ + 1)(2𝑗2
′ + 1)𝜎𝑛′→𝑛′′ + (2𝑗1

′′ + 1)(2𝑗2
′′ + 1)𝜎𝑛′′→𝑛′

2
                   (20)  

and used these values to calculate state-to-state transition rate coefficients for both quenching and 

excitation processes, 𝑘𝑛′′→𝑛′(𝑇) and 𝑘𝑛′→𝑛′′(𝑇), respectively, by integrating �̃�𝑛′𝑛′′ over the 

Boltzmann-Maxwell distribution of collision energies as described elsewhere.44 For this 

integration we constructed a cubic spline through ten energy points where these cross sections 

were computed (see above) and extrapolated these data towards the excitation threshold at low 

collision energy where cross section goes to zero, and towards high collision energies, as described 

elsewhere.44 

IV. COMPARISON WITH FULL QUANTUM RESULTS 

The rate coefficients for collisions between H2O and H2 molecules were determined by 

full-quantum calculations in several earlier studies.56–59 The most comprehensive work reported 

by Daniel et al.59 employed an accurate coupled-channel method of MOLSCAT package60 and 

covered all four symmetries of the H2O + H2 system. Those data are available from BASECOL 

database.61 For p-H2O + p-H2 symmetry they include rate coefficients for quenching of 44 

rotationally excited states of water with rotational levels up to 𝑗1 = 11, collided with hydrogen in 

its ground rotational state, 𝑗2 = 0. Additionally, for collisions of p-H2O with p-H2 in its excited 

rotational state 𝑗2 = 2 the rate coefficients are available for quenching of 19 excited states of water, 

up to 𝑗1 =  7. For p-H2O + o-H2 symmetry, rate coefficients were computed for quenching of the 

19 excited states of water up to 𝑗1 =  7 collided with the ground state 𝑗2 = 1 of hydrogen, and for 

9 excited states of water up to 𝑗1 =  4 collided with the excited state 𝑗2 = 3 of hydrogen. Likewise, 

for o-H2O + p-H2 symmetry, they have provided quenching rate coefficients for the excited 44 

levels of water collided with both 𝑗2 = 0 and 2 of hydrogen, and additionally for the 9 excited 

states of ortho-water collided with hydrogen in 𝑗2 = 4 state. Finally, regarding the o-H2O + o-H2 

symmetry, quenching rate coefficients were reported for the excited 44 levels of water collided 

with hydrogen in 𝑗2 = 1 and for the excited 4 states of water collided with 𝑗2 = 3 state of hydrogen. 
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Overall, 8925 individual state-to-state transition rate coefficients are available from the work of 

Daniel et al.59 All details are given in the Supplemental Information (please see Table S1). In our 

pursuit to check the accuracy of new rate coefficients computed here using MQCT, we conducted 

a rigorous assessment by comparing our results with those of Daniel et al.59 for all the 8925 

transitions reported in their work. Here we used the same PES as employed in the full quantum 

calculations.62 

Figure 3 illustrates the comparison of MQCT rate coefficients for 2360 individual state-to-

state transitions in the case of p-H2O + p-H2, at four temperatures, with the full quantum data of 

Daniel et al.59 A similar comparison for three other symmetries of H2O + H2 system is presented 

in Figs. S2-S4 of the Supplementary Information. The quenching of excited water states happens 

simultaneously with quenching, excitation, or elastic scattering of the projectile, namely: 0→0, 

0→2, 2→0 and 2→2 transitions in H2. Datapoints that correspond to these processes are shown in 

Fig. 2 by four different colors, as indicated in the figure legend. The upper row of frames in Fig. 3 

gives one-to-one comparison of the rate coefficients (in the units of cm3/s) giving a large picture 

of qualitative agreement between the two methods, while the lower row of frames reports 

differences (in %, relative to the full quantum results) giving a more quantitative measure of 

differences.  

From Fig. 3 and Figs. S2-S4 one can see that, overall, the results of MQCT are in good 

systematic agreement with results of the full quantum coupled-channel calculations, for all 

transitions considered, through two orders of magnitude range of rate coefficient values, and for a 

broad range of temperatures. For the most intense transitions with large cross sections the 

differences between the two methods are within 20%, which is great. As the values of cross 

sections decrease by an order of magnitude, the differences between the two methods increase but 

remain within 50%. For the weakest transitions (with cross sections that are two orders of 

magnitude smaller than those of the strongest transitions), the differences between MQCT and 

MOLSCAT results remain within 80%. There are only a few data points in Fig. 3 and Figs. S2-4 

that indicate differences above 60%, but those correspond to very small cross sections. Green 

dashed line in the lower row of frames in Fig. 3 and Figs. S2-4 serves as a reference and one can 

notice that, on average, the values of cross sections computed by MQCT are somewhat smaller 

than those obtained from full quantum calculations (MOLSCAT).  
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Figure 3: Comparison of 2360 state-to-state transition rate coefficients for p-H2O + p-H2 collision computed using MQCT (this work) vs 

those predicted by full quantum MOLSCAT calculations.59 Columns correspond to four values of temperature as indicated in the figure. 

The upper row of frames gives a one-to-one comparison of rate coefficients, while the lower row of frames presents deviations (in %) of 

MQCT data relative to MOLSCAT.  Color is used to differentiate transitions in the projectile, namely, 0→0, 0→2, 2→0 and 2→2 transitions 

in H2 are represented by blue, orange, grey and maroon, respectively. Red dashed lines in the upper row represent a factor of 2 difference.  
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These differences are further quantified in Table 1 that reports average difference and RMS 

deviation (in %) for p-H2O + p-H2, and in Table S2 of Supplemental Information for three other 

symmetries of the system. From these tables one can clearly see that the results of MQCT 

calculations are somewhat smaller than those of the full quantum calculations with MOLSCAT. 

Interestingly, the differences are notably smaller for transitions where H2 was in the excited 

rotational state initially. In these cases, the differences tend to increase with temperature. In the 

cases when o/p-H2 was in its ground rotational state the differences tend to decrease at high 

temperature. For example, for the ground state H2, averaged over all transitions, temperatures, and 

symmetries the average difference between MQCT and MOLSCAT rate coefficients is −11%, 

Table 1: Average difference and RMS deviation (in %) for the data presented 

in Fig. 1 for p-H2O + p-H2 system, of various transitions in the projectile 

(0→0, 0→2, 2→0 and 2→2) at four different temperatures. 

Transitions 

in H2 
T (K) 

Average 

difference 

(%) 

RMS of % 

deviation 

0 → 0 

100 -14 33 

500 -15 31 

1000 -10 27 

1500 -9 24 

0 → 2 

100 -21 24 

500 -12 21 

1000 -6 17 

1500 -3 10 

2 → 0 

100 -0.4 15 

500 -4 14 

1000 -2 12 

1500 -6 20 

2 → 2 

100 -2 12 

500 -10 14 

1000 -11 15 

1500 -9 14 
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while this difference is only −5% in collisions with initially excited o/p-H2. The RMS deviations 

show the same trend, 21% and 11% in these two cases, respectively. Note that for many cells in 

Table 1 and Table S2 the differences between MQCT and the full quantum MOLSCAT results are 

within 10%.  

These differences can be partially attributed to different sizes of rotational basis sets in two 

calculations. Namly, in our MQCT calculations the basis set is much larger than in the full quantum 

study, enabling more pathways for the rotational excitation, which is particularly important for the 

high energy states of water and high energy collisions (higher temperature). As more high-energy 

states are populated, the populations of low-energy states tend to decrease (due to norm 

conservation) leading to smaller cross sections, and we think that this effect explains our 

observations. To examine the influence of basis set size, we selected from Fig. 2 twenty transitions 

characterized by some of the largest differences between MQCT and MOLSCAT, at the lowest 

and highest temperatures, namely: 6600 → 5510, 7620 → 6510,  8440 → 7530, 8530 → 7620, 

 8530 → 9370, 6060 → 5150, 9280 → 8350, 7530 → 6420, 6510 → 5420, 4310 → 4130 for 𝑇 =

 100 K, and 5330 → 2110, 100100 → 6660, 8350 → 8260,  6600 → 5240, 2110 → 2020,  3310 →

2220, 4310 → 3130, 2220 → 0000, 8530 → 6240, 9280 → 7170 for 𝑇 = 1500 K. These 20 

datapoints, highlighted in red in Fig. 4, were then recalculated using a reduced basis set, 

comparable to that used in the full quantum calculations. Namely, only 45 rotational states of H2O 

up to 862 combined with two states of hydrogen (𝑗2 =  0, 2) resulting in the total energy up to 

1810 cm−1 for H2O + H2 system, were included in the basis in this numerical experiment. These 

recalculated rate coefficients are shown as yellow symbols in Fig. 4. We see that, at low 

temperatures, reducing the basis set size improved the agreement between MQCT and MOLSCAT 

for most of the transitions. At high temperature also, the reduction of basis set size made a similar 

improvement: The agreement between MQCT and MOLSCAT has improved for all ten examined 

transitions. In particular, for the transitions where the differences on the order of 60% were 

observed initially, they decreased to about 40% upon the basis set reduction (see Fig. 4). From this 

we conclude that the differences between the past MOLSCAT and present MQCT calculations 

seen in Fig. 2 (and Figs. S2-S4) are partially explained by different sizes of rotational basis sets. 

Therefore, the larger basis set used in MQCT calculations in this work represents an improvement 

over the past work.  
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V. ROTATIONAL ENERGY TRANSFER IN H2O + H2 COLLISIONS 

 Collisional energy transfer is often characterized by a so-called energy transfer kernel,63–65 

or energy transfer function 𝑝(𝐸′, 𝐸′′)66,67 that gives probability for the molecule to have internal 

energy 𝐸′′ after the collision, if before the collision it had the internal energy 𝐸′. These energy 

transfer functions are determined from quantum scattering theory68–71 or classical trajectory 

simulations72,73 and are usually described parametrically by an exponential dependence 𝑝 =

exp {−∆𝐸/𝜀}, where ∆𝐸 = 𝐸′′ − 𝐸′ while 𝜀 is a fitting coefficient, positive for excitation and 

negative for quenching, which can also be made energy- or temperature-dependent. In some 

systems, in order to describe a more complicated profile of collisional energy transfer,74,75 a 

double-exponential model may need to be employed, e.g.: 𝑝 = 𝑎 exp {−∆𝐸/𝜀1} + (1 −

𝑎) exp{−∆𝐸/𝜀2}. Even more detailed models exist,76 that build a multi-parameter energy transfer 

function, in which the transition probability depends not only on the initial and final values of 

energy, but also on the initial 𝑗′ and final 𝑗′′ values of the angular momentum of the molecule, e.g., 

𝑝 = exp {−∆𝐸/𝜀} exp {−∆𝑗/𝛾}, where ∆𝑗 = 𝑗′′ − 𝑗′. In what follows, we present a detailed 

analysis of collisional energy transfer through the dependencies of state-to-state transition cross 

sections 𝜎𝑛′→𝑛′′ in H2O + H2 system computed by MQCT and plotted versus three major 

 

Figure 4: The effect of rotational basis set reduction on state-to-state transition rate 

coefficients in p-H2O + p-H2 at low and high temperatures, as indicated in the figure. 

The datapoints for twenty-two examined transitions with large differences between the 

past MOLSCAT (smaller basis set) and present MQCT (large basis set) calculations are 

shown in red. Yellow symbols show results recomputed for the same transitions using 

MQCT with a reduced basis set.  
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characteristics of the energy transfer process: the change ∆𝐸 of the internal rotational energy of 

collision partners, the change ∆𝑗1 of rotational angular momentum quantum number of H2O, and 

the change ∆𝜏1 of the pseudo-quantum number of H2O, which is defined as 𝜏1 = 𝑘𝑎 − 𝑘𝑐 and 

varies between −𝑗1 and +𝑗1 for every value 𝑗1 of water. These dependencies are plotted separately 

for four symmetries of H2O + H2 system (100 initial rotational states of water are included in each 

case), for five different initial states of the projectile H2, and for all possible state-to-state 

transitions in H2. In Figs. 5, 6 and 7 of the main text these data are presented only for p-H2O + p-

H2 at collision energy U ~ 704 cm-1. All other symmetries of H2O + H2 and one more value of 

collision energy U = 12000 cm-1 are analyzed in Figs. S5-S25 of Supplemental Information. To 

the best of our knowledge this information has never been presented before. It permits us to 

understand the transfer of energy between the rotational states of two collisional partners, and from 

the internal rotational states of the molecule-molecule system (as a whole) to the relative 

translational motion of two collisional partners.  

     In Fig. 5 we present the correlation between state-to-state transition cross sections 𝜎𝑛′→𝑛′′ 

and the rotational energy transfer ∆𝐸 in the range −3000 < ∆𝐸 < +3000 cm-1 for p-H2O + p-H2 

system. Overall, 0.3 million transitions in H2O + H2  are included in Fig. 5. The upper row of 

frames corresponds to excitation of H2 starting from various initial states 𝑗2
′ , while the bottom row 

corresponds to quenching of H2. Different colors are used for transitions with different values of 

∆𝑗2 in H2, namely ∆𝑗2 = ±2, ±4,±6,±8 are shown by orange, grey, yellow, and maroon symbols, 

respectively. Transitions with elastic H2 (∆𝑗2 = 0) are shown in blue in all the plots.  

Qualitatively, the dependencies presented in Fig. 5 (and other figures for collision energy 

U ~ 704 cm-1, see SI) indicate a single-exponential behavior of collisional energy transfer. For 

transitions where the projectile H2 remains elastic (∆𝑗2 = 0, blue datapoints) the energy transfer 

profile remains nearly symmetric around the elastic peak at ∆𝐸 = 0, with quenching “wing” (∆𝐸 <

0) looking like a reflection of the excitation “wing” (∆𝐸 > 0) through at least three orders of 

magnitudes of cross section values. Only for very large energy transfer (∆𝐸~ ± 3000 cm-1) that 

correspond to very small cross sections, the deviations from this symmetry can be noticed, with 

excitation wing being somewhat higher compared to quenching. Overall, both wings are 

continuous and have a relatively well-defined upper boundary. The “peak” of blue dataset (∆𝑗2 =

0) remains near ∆𝐸 = 0 through all the frames of Fig. 5 and in all relevant figures of Supplemental 

Information (see Figs. S5, S8, S11, S14, S17, S20, S23). 
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Figure 5: Correlation between the values of individual state-to-state transition cross sections 𝜎𝑛′→𝑛′′ and the overall transfer of internal rotational energy 

∆𝐸 in p-H2O + p-H2 system at collision energy U ~ 704 cm-1. Here 100 initial states of water are considered. The initial state of H2 molecule is given in the 

upper left corner of each frame. Top and bottom rows of frames correspond to excitation and quenching of H2. Colors represent different transitions in H2: 

Δ𝑗2 = 0,±2,±4,±6, ±8 are shown by blue, orange, grey, yellow, and maroon symbols, respectively.  
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However, the state-to-state transitions with ∆𝑗2 ≠ 0 in which the energy transfer process 

not only involves the states of target H2O molecule, but also extends onto the states of projectile 

H2 (all colors other than blue in Fig. 5) behave differently. As we examine the progression of 

frames going from left to right through Fig. 5, the following trend becomes apparent: the values 

of cross sections progressively drop as the energy transfer to/from the projectile increases 

(measured by the extend of inelasticity ∆𝑗2 ≠ 0 of H2) and, simultaneously, the datapoints move 

significantly towards more positive values of ∆𝐸 when H2 undergoes excitation (∆𝑗2 > 0, upper 

row of frames in Fig. 1), and they move (although less) towards more negative values of ∆𝐸 when 

H2 undergoes quenching (∆𝑗2 < 0, lower row of frames in Fig. 1). This behavior means that the 

energy transfer processes to/from H2, and to/from H2O happen differently. Consider the upper 

leftmost frame of Fig. 5. If H2 would only absorb the rotational energy released by excited H2O, 

then the datasets of all colors would remain centered around the total ∆𝐸 = 0, but this does not 

happen. The fact that gray, yellow and maroon datapoints for the excitations of H2 with ∆𝑗2 = 4, 6 

and 8 move towards large positive ∆𝐸 means that the rotational excitation of H2 solely by the 

transfer of rotational energy from H2O is less likely than a process in which H2 takes the rotational 

energy released by H2O, plus some energy of the relative translational motion of collision partners. 

Now consider the lower rightmost frame of Fig. 5. Again, if H2O would be able to absorb 

efficiently all rotational energy released by H2, then the datasets of all colors would remain 

centered around the ∆𝐸 = 0, but this does not happen either. The fact that gray, yellow and maroon 

datapoints for the quenching of H2 with ∆𝑗2 = −4, −6 and −8 move towards negative ∆𝐸 means 

that the rotational quenching of H2 solely by the transfer of its rotational energy to H2O is less 

likely than a process in which H2 releases some rotational energy to H2O, but some energy goes to 

the relative translational motion of collision partners. The fact that these shifts off-center are 

smaller in the lower frames of Fig. 5 than in its upper frames (for yellow and maroon datasets in 

particular), means that the transfer of energy from the rotationally excited states of H2 to the 

rotational states of H2O is more direct (includes less rotational-to-translational energy transfer) 

compared to the reverse process. Same trends are seen in the relevant figures in Supplemental 

Information: Fig. S5, S8, S11, S14, S17, S20, and S23.  

It is noteworthy that all transitions in which the projectile H2 remains elastic (∆𝑗2 = 0, blue 

datapoints) maintain their prominence as one of the largest peaks in all frames of Fig. 5. One 

exception is the upper leftmost frame of Fig. 5 for H2O + H2(𝑗2
′ = 0), where transitions with ∆𝑗2 =

Page 23 of 33 Faraday Discussions



24 
 

2 (orange) exhibit cross sections 𝜎𝑛′→𝑛′′ comparable to those with ∆𝑗2 = 0. Besides this one 

exception, cross sections for all other inelastic transitions (all colors except blue) are smaller than 

the elastic once. For transitions with given initial 𝑗2
′  of H2, the values of inelastic cross sections 

decrease, often by an order of magnitude or more, when the value of H2 inelasticity ∆𝑗2 is raised 

(compare different colors within given frame in Fig. 5) and this effect is more pronounced for 

transitions where H2 is excited (∆𝑗2 > 0, upper frame) than for transitions where H2 is quenched 

(∆𝑗2 < 0, lower frame in Fig. 5). Additionally, for transitions with given ∆𝑗2 of H2 the values of 

cross sections decrease as the initial excitation 𝑗2
′  of H2 is raised. One can notice this trend by 

monitoring evolution of each color going from left to right through the frames of Fig. 5 (in 

particular, orange, gray and yellow datasets). Same trends are also observed in the relevant figures 

of Supplemental Information: Figs. S5, S8, S11, S14, S17, S20 and S23).  

Importantly, the width of each wing in Fig. 5 (the spread of datapoints along the vertical 

direction) is rather large, namely: for a given value of collisional energy transfer ∆𝐸 the values of 

cross sections 𝜎𝑛′→𝑛′′ for individual state-to-state transitions vary withing two orders of 

magnitudes. This property is seen clearly for transitions with elastic H2 (blue datasets in the upper 

row of frames in Fig. 5 for 𝑗2
′ = 4, 6 and 8) but also for inelastic transitions in H2 (orange and gray 

datasets in the lower row of frames in Fig. 5 for 𝑗2
′ = 2 and 4). This feature suggests that one or 

several more factors, other than ∆𝐸, have a significant effect on the collisional energy transfer. 

 To identify these factors, we examined the dependencies of the state-to-state transition 

cross sections 𝜎𝑛′→𝑛′′ on the change of rotational quantum numbers of H2O molecule, ∆𝑗1 and 

∆𝜏1. These are presented in Fig. 6 and 7, respectively, for p-H2O + p-H2 at collision energy U ~ 

704 cm-1. It should be stressed that Figs. 6 and 7 contain the same exactly cross section data as 

Fig. 5, but the abscissa is different in all three figures, giving us three alternative raster images and 

exhibiting the dependence of cross sections on three variables: ∆𝐸, ∆𝑗1 and ∆𝜏1. Overall, the 

behavior of datapoints in Figs. 6 and 7 is similar to that of Fig. 5. All dependencies are centered 

around the elastic process with ∆𝑗1 = 0 and ∆𝜏1 = 0, are roughly symmetric, and exhibit trends 

close to a single-exponential energy transfer.  
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Figure 6: Correlation between the values of individual state-to-state transition cross sections 𝜎𝑛′→𝑛′′ and change in the rotational state of H2O (∆𝑗1)  in the 

p-H2O + p-H2 system, at U ~ 704 cm-1. Here 100 initial states of water are considered. The initial state of H2 molecule is given in the upper left corner of 

each frame. Top and bottom rows of frames correspond to excitation and quenching of H2. Colors represent different transitions in H2: Δ𝑗2 =

0,±2,±4,±6,±8 are shown by blue, orange, grey, yellow, and maroon symbols, respectively. 
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Figure 7: Correlation between the values of individual state-to-state transition cross sections 𝜎𝑛′→𝑛′′ and change in the 𝜏1 of H2O (∆𝜏1)  in the p-H2O + p-

H2 system, at U ~ 704 cm-1. Here 100 initial states of water are considered. The initial state of H2 molecule is given in the upper left corner of each frame. 

Top and bottom rows of frames correspond to excitation and quenching of H2. Colors represent different transitions in H2: Δ𝑗2 = 0,±2,±4,±6,±8 are 

shown by blue, orange, grey, yellow, and maroon symbols, respectively. 
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In Fig. 6, particularly if one looks at the upper leftmost and the lower rightmost frames, 

one can notice two very clear trends: as the magnitude of ∆𝑗2 is raised the data points move towards 

large negative ∆𝑗1 in the case when H2 undergoes excitation (∆𝑗2 > 0), but they move towards 

large positive ∆𝑗1 in the case when H2 undergoes quenching (∆𝑗2 < 0). This behavior is opposite 

to what we saw in Fig. 5, and the reason for that is that in Fig. 6 the abscissa reflects the change of 

rotational angular momentum for water molecule only, while in Fig. 5 the abscissa gives the 

change of rotational energy of two collision partners together. (Note, if one tries to replot Fig. 5 

using ∆𝐸1 as abscissa, not shown here, one sees the trend similar to that of Fig. 6.) The explanation 

of this trend is also similar to that discussed above in the case of Fig. 5. In particular, if we look at 

the maroon dataset in Fig. 6, we see that for ∆𝑗2 = +8 the datapoints shift towards ∆𝑗1 = −8, 

while for ∆𝑗2 = −8 the datapoints shift towards ∆𝑗1 = +8, which reflects an efficient transfer of 

rotational angular momentum between the H2O molecule and the H2 projectile.  

 If one compares Fig. 7 vs Figs. 5 and 6, one notices that the dependence of cross section 

𝜎𝑛′→𝑛′′ on the change of pseudo-rotational quantum number of water  ∆𝜏1 is much more symmetric 

and stable. For all frames of Fig. 7, and all colors within each frame, the datapoints are centered 

around the origin ∆𝜏1 = 0. Neither the initial state of the quencher 𝑗2
′ ,  nor the amount of 

inelasticity of the quencher ∆𝑗2 affect this property, which is in sharp contrast with Figs. 5 and 6.   

Overall, the analysis of Figs. 6 and 7 clearly demonstrates that cross sections 𝜎𝑛′→𝑛′′ 

exhibit strong dependencies on ∆𝑗1 and ∆𝜏1 of H2O. As ∆𝑗1 changes by ±15, the values of cross 

sections drop by ~ 10 orders of magnitude on average. Similar, as ∆𝜏1 changes by ±25, the values 

of cross sections change through the same 10 orders of magnitude, and this dependence is firm. 

Thus, we can conclude that both ∆𝑗1 and ∆𝜏1 need to be considered as parameters governing the 

collisional energy transfer, together with ∆𝐸. Therefore, analytic models of collisional energy 

transfer should, probably, employ expressions that take into account all these factors, for example: 

𝑝 = exp {−
∆𝐸

𝜀
} exp {−

∆𝑗

𝛾
} exp {−

∆𝜏

𝜃
} 

Moreover, the results presented in Figs. 5-7 also indicate strong dependence of collisional energy 

transfer on inelasticity ∆𝑗2 of the projectile H2, and on the initial rotational state 𝑗2
′  of the projectile 

H2, which makes the overall picture even more complex. Analysis of the data presented in the 

Supplemental Information shows similar trends for the other symmetries of p/o-H2O + p/o-H2. 
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Of course, more complexity comes from the dependence of energy transfer on the 

translational energy of two collision partners. In Figs. S14 - 25 of Supplemental Information we 

present the same dependencies as in Figs. 5-7, but computed for very high collision energy, U = 

12000 cm-1, and the readers are encouraged to inspect those results. Many trends seen in Figs. 5-7 

remain relevant at high collision energy too, but there are several differences that we want to 

emphasize here. First of all, at high collision energy the amount of energy transfer is much larger, 

covering the range −3000 < ∆𝐸 < +8000 cm-1 in Fig. S8. A significant part of this energy comes 

from the relative translational motion of collision partners and is sufficient to drive transitions in 

H2 up to ∆𝑗2 = 10 (green data points in Figs. S14 - 16). Importantly, the energy transfer profile is 

not symmetric anymore, with a much longer excitation wing that exhibits a double-exponential 

character. For transitions with elastic quencher (∆𝑗2 = 0) cross sections are slightly smaller at high 

collision energy, compared to those in Fig. 5, but for transitions with inelastic quencher (∆𝑗2 ≠ 0) 

cross sections are larger than those in Fig. 5, and show somewhat less variation between excitation 

and quenching of the quencher (less difference between the upper and lower rows of frames in Fig. 

S14, S17, S20 and S23, compared to Fig. 5). Another feature that becomes very clear at high 

collision energy is a group of transitions with large cross sections and relatively small value of 

energy transfer, ∆𝐸 = ±500 cm-1. They show up in Fig. S14, S16, S17, S19, S20, S22, S23 and 

S25 as a concentration of datapoints in the vicinity of elastic process at the top of each frame. In 

fact, these transitions are also present at low collision energy (e.g., in Figs. 5 and 7) but are less 

prominent in that case. These state-to-state transition processes correspond to ∆𝑗1 = 0,±1 and 

∆𝜏1  = 0,±1. As ∆𝑗1 and ∆𝜏1 increase to ±2 and beyond, the values of cross sections drop sharply 

by almost an order of magnitude. 

VI. CONCLUSIONS 

In this paper we presented a theory for the description of collisional energy transfer in a 

general asymmetric-top-rotor + linear rotor system using a mixed quantum/classical approach, in 

which the rotational states of collision partners are described quantum mechanically using time-

dependent Schrodinger equation while the translational motion of scattering partners is described 

classically using a mean-field Ehrenfest trajectory method. This theory was applied to describe the 

energy transfer in H2O + H2 system, for which the accurate full quantum results are also available 

from the time independent coupled-channel calculations (for lower rotational states of two 
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collision partners) and can be used as a solid benchmark. We found a very good agreement between 

state-to-state transition rate coefficients computed by MQCT and the benchmark quantum data, 

for all four symmetries of the system (ortho- and para-water combined with ortho- and 

parahydrogen), for about 8000 individual state-to-state transitions, and through a broad range of 

temperature. The differences between the results of the two methods were shown to originate, 

largely, in different basis set sizes and in the Monte-Carlo sampling procedure employed to 

generate the initial conditions for MQCT trajectories. In principle, these sources of remaining 

errors can be eliminated if needed.  

            Massive parallelization of MQCT calculations permits us to run them efficiently with 

larger basis sets and at higher collision energies compared to what is typically feasible using the 

full quantum approach. Here we took MQCT calculations to the limit, by increasing the number 

of rotational states by more than a factor of two in both water target and hydrogen projectile, and 

increasing the maximum collision energy by 50%, relative to the previous calculations. The huge 

amount of data generated by MQCT was analyzed to obtain a broader picture of collisional energy 

transfer in molecule + molecule systems. The dependencies of inelastic cross sections (for 

individual state-to-state transitions) on the initial rotational state of the quencher 𝑗2, on the extent 

of inelasticity of the quencher ∆𝑗2, on the total rotational energy transfer in the molecule-molecule 

system ∆𝐸, and on the change of rotational quantum numbers of the target water molecule ∆𝑗1 and 

∆𝜏1, all were plotted, analyzed, and discussed in detail. The findings permit us to better understand 

not only the H2O + H2 system, but also the phenomenon of collisional energy transfer in general. 

State-to-state transition rate coefficients for H2O + H2 system generated in this work will be 

deposited into the BASECOL database61 for users in the astrophysical modelling community. In 

the future, these data can also be used to develop a simplified analytic model of collisional energy 

transfer in H2O + H2.      
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