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A metal-free and photo-free method for the perfluoroalkylative pyridylation of alkenes has been developed

via a combination of computational and experimental studies. Density functional theory calculations and

control experiments indicate that the homolysis of Rf�X (X ¼ Br, I) bonds by the 4-cyanopyridine-boryl

radicals in situ generated from 4-cyanopyridine and B2pin2 is the key step. Sequential addition of Rf

radicals to alkenes and the selective cross-coupling of the resulting alkyl radicals and 4-cyanopyridine-

boryl radicals gives alkene difunctionalization products with a quaternary carbon center. This method

exhibits a broad substrate scope and good functional group compatibility.
Introduction

Difunctionalization of C]C bonds is a powerful strategy for the
construction of complex compounds with various functional
groups.1 In particular, building two C–C bonds tandemly in
a single step is highly deserved in terms of structure diversity,
step and atom economy. Incoporation of a peruoroalkyl group
in this tandem reaction would be attractive with potential
applications in medicinal chemistry, agrochemistry, materials
science.2 Along this line, radical-mediated peruoroalkylative
difunctionalization of alkenes, through transition-metal catal-
ysis,3 photoredox catalysis,4 or visible-light activation of electron
donor–acceptor (EDA) complexes,5 has played privileged roles in
these transformations (Scheme 1, up). Developing a metal- and
photo-free method for difunctionalization of alkenes remains
an important synthetic goal.

Pyridine skeletons are oen served as “privileged” scaffolds
in drug design and discovery.6 Radical pyridylation is a useful
synthetic methodology for the synthesis of value-added pyridine
derivatives, due to the good functional group tolerance and
broad substrate scope of these methods.7 The challenge is how
to tune the reactivity and selectivity of various radicals in
a system. The direct hydroarylation of alkenes with pyridines
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has also been investigated by transition-metal catalysts.8

However, the simultaneous introduction of the pyridine moiety
and other functional groups to alkenes has been rarely reported,
which might be attributed to the low reactivity and site-
selectivity of the pyridine group.9 Herein, we describe a metal-
and photo-free protocol for peruoroalkylative pyridylation of
alkenes, which is mediated by in situ 4-cyanopyridine-boryl
radicals (Scheme 1, down).

Our investigation began with the 19F NMR observation of
heating the mixture of peruorobutyl iodide 1a, 4-cyanopyr-
idine and B2pin2 at 80 �C (Scheme 2a, see details in ESI†), based
on previous report that pyridine-stabilized boryl radical could
be easily derived from 4-cyanopyridine and diboranes.10 It was
found that the 19F NMR chemical shi at �60 ppm (which
corresponds to the signal of –CF2I group) disappeared, implying
that the formation of the peruorobutyl radical might be
induced by the 4-cyanopyridine-boryl radicals. The per-
uorobutyl radical could be trapped by 1,1-diphenylethene in
the presence of 4-cyanopyridine, peruorooctyl iodide 1g,
B2pin2, and 1,4-dihydromesitylene (as a hydrogen source) under
the similar conditions (Scheme 2b). These results indicated that
the 4-cyanopyridine-boryl radicals can activate the per-
uoroalkyl iodides to generate peruoroalkyl radicals. Inspired
Scheme 1 Alkene perfluoroalkylation.
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Scheme 2 (a) 4-cyanopyridine boryl radicals-mediated C–I bond
homolysis of perfluorooctyl iodide 1a monitored by 19F NMR; (b)
radical trapping experiment.
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by this observation and recent progress from Studer11 and Liu12

groups that Rf–X (X ¼ I, Br) reagents can act as inexpensive
peruoroalkyl radical precursor for difunctionalization of
alkenes, we envisioned that the peruoroalkyl radical generated
from homolysis of peruoroalkyl halides Rf–X (X ¼ I, Br)
promoted by 4-cyanopyridine radicals might be trapped by
alkenes, and selective cross-coupling of the resulting alkyl
radicals with the persistent 4-cyanopyridine-boryl radicals
might lead to the peruoroalkylative pyridylation of alkenes
(Scheme 1, down).13

Results and discussion

The proposed reaction mechanism of the alkene per-
uoroalkylative pyridylation was postulated in Scheme 3. The
following steps may be involved: (1) 4-cyanopyridine-boryl
radicals (Int1) are generated from the homolytic cleavage of
the B–B bond of B2pin2 by 4-cyanopyridine; (2) Int1 activates the
Scheme 3 Proposed 4-cyanopyridine-boryl radicals-mediated alkene
difunctionalization.

2768 | Chem. Sci., 2019, 10, 2767–2772
C–I bond of CF3I (1b) to produce the CF3 radical and Int3a, and
regenerate 4-cyanopyridine; (3) CF3 radical adds to 4-methyl-
isopropenylbenzene (3a), forming a new alkyl radical (Int4); (4)
the selective cross-coupling of Int1 and Int4 by persistent
radical effect,14 yields the intermediate Int5, which is hydro-
lysed to give the alkene peruoroalkylation product 4b. Notably,
Int1 not only catalyze the C–I bond homolysis of peruoroalkyl
halides Rf–X (X ¼ I, Br), but also serves as the pyridine
precursor.

To verify whether the proposed mechanism is thermody-
namically or kinetically feasible, we performed DFT calculations
with the M06-2X15 functional to explore the free energy prole of
the proposed mechanism for the model reaction of 1b and 3a in
the presence of Int1 as a reactive intermediate. The reaction
mechanism of generating Int1 was reported in our previous
works.10c,d,j,k The calculated free energy prole and transition
state structures are listed in Fig. 1 (the optimized structures of
all minimum species are shown in Fig. S1†). First, the associa-
tion between the iodine atom of 1b and the carbon atom at the
C2 position of the radical Int1 forms an encounter complex
(Int2a), which is endergonic by 7.2 kcal mol�1. Then, the
transfer of the iodine atom from 1b to Int1 to give the CF3
radical and Int3a involves a barrier of 32.6 kcal mol�1 (via TS1)
and is endergonic by 20.2 kcal mol�1 (relative to the isolated
reactants Int1 and 1b). It should be mentioned that the
homolytic dissociation energy of C–I bond in CF3I is
49.1 kcal mol�1. There results indicate that the homolysis of C–I
bond in CF3I is indeed assisted by Int1. Subsequently, CF3
radical adds to the alkene 3a to generate a new alkyl radical Int4
via TS2, being exothermic by 11.3 kcal mol�1 with a barrier of
29.2 kcal mol�1 (with respect to the separated reactants Int1, 3a
and 1b). Finally, the C–C coupling between Int1 and Int4
produces an intermediate Int5 through TS3 with a barrier of
6.8 kcal mol�1 (relative to Int4 and Int1), and the whole process
is exothermic by 30.1 kcal mol�1 (with respect to the reactants
Int1, 1b and 3a). In addition, the hydrolysis of the intermediate
Int5 will produce the nal product 4b. The results indicate that
the proposed alkene peruoroalkylation is thermodynamically
favorable. Alternatively, the C–I bond homolysis by the 4-
cyanopyridine-boryl radicals at the C4 position is also investi-
gated (shown in Fig. S2†). This process is endergonic by
31.0 kcal mol�1, with a barrier of 37.7 kcal mol�1 (relative to
Int1 and 1b), suggesting that the pathway is less favorable.
Furthermore, we also calculate the isomerization reaction of
Int3a (see Fig. S3†). Starting from Int3a, the intramolecular
migration of the iodine atom from C2 atom to B atom via TS4,
could yield another isomer Int3b, which further proceeds
through the breaking of the B–N bond (via TS5) to regenerate 4-
cyanopyridine. Overall, the rate-determining barrier height of
this process is 10.1 kcal mol�1 and endergonic by 2.9 kcal mol�1

(relative to Int3a), indicating that the C–I bond homolysis is
a catalytic process by 4-cyanopyridine. Moreover, our calcula-
tions suggest that the direct single electron transfer (SET)
process between 4-cyanopyridine-boryl radicals and CF3I is
highly endergonic by 60.0 kcal mol�1 (see Fig. S4†). Thus, the
SETmechanism is unlikely responsible for the generation of the
peruoroalkyl radicals in the reaction.
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Computed Gibbs free energy profile of the alkene carbopyr-
idylation via 4-cyanopyrodine boryl radicals. The optimized structures
of transition states are also displayed. Interatomic distances are in Å.

Table 1 Substrate scope for the radical precursora
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Based on the predicted reactivity, we rst examined the
proposed alkene difunctionalization using 4-cyanopyridine,
peruorobutyl iodide 1a, 4-methylisopropenylbenzene 3a as
model substrates. The optimization details are given in ESI.†
We found that the desired product could be obtained in 74%
yield at 80 �C in the presence of B2pin2 with N,N-diisopropyle-
thylamine (DIPEA) as additives (Scheme 4a). Control experi-
ments suggest that this transformation occurs via a thermally
induced process, as decreased yield was observed at lower
Scheme 4 Control experiments.

This journal is © The Royal Society of Chemistry 2019
temperatures. The requirement of a relatively high temperature
(80 �C) are in qualitative accord with the DFT results discussed
above. Moreover, the generation of intermediates Int3a (or its
isomer Int3b), and the compound 7-like (from the addition of
Int1 and the peruorobutyl radical) in the presence of 1a, 4-
cyanopyridine and B2pin2 under the standard conditions were
conrmed by high resolution mass spectroscopy (HRMS)
experiments, which provide direct evidence on the C–I homol-
ysis mechanism of 1a via 4-cyanopyridine-boryl radicals (see
Fig. S5 and S6†). In addition, the intermediacy of the cross-
coupling intermediate Int5-like as well as the by-product I-
Bpin could be detected by the HRMS analysis of the reaction
mixture of the peruorobutyl, 4-cyanopyridine and 4-methyl-
isopropenylbenzene 3a under the standard conditions (Scheme
4b, Fig. S7 and S8†). Finally, the addition of the peruoroalkyl
radical to alkenes could be further conrmed by a radical clock
experiment using vinyl cyclopropane 3r as the substrate (see
Fig. S9† for details). In combination, the studies revealed an
unique strategy for the generation of peruoroalkyl radicals and
for subsequent peruoroalkylative pyridylation of alkenes using
the inexpensive 4-cyanopyridine/B2pin2 system.

Then, we examined the substrate scope of the carbon radical
precursor with 4-methylisopropenylbenzene 3a as the radical
acceptor (see Table 1). With peruoroalkyl iodides (CnF2n+1–I),
the corresponding a-peruoroalkyl-b-pyridylation product
could be obtained in moderate to good yields (4a–4e, 4g, 4i).
a Reaction conditions: 1 (0.2 mmol), B2(pin)2 (0.3 mmol), 4-
cyanopyridine 2 (0.3 mmol), 4-methylisopropenylbenzene 3a (0.4
mmol), MTBE (1.0 mL), DIPEA (0.2 mmol), 24 h, 80 �C. Isolated yield.
b 5 mmol scale. 1e (5 mmol), B2(pin)2 (7.5 mmol), 4-cyanopyridine (7.5
mmol), MTBE (15.0 mL), DIPEA (5.0 mmol), 24 h, 80 �C. Me ¼
methyl, Et ¼ ethyl.

Chem. Sci., 2019, 10, 2767–2772 | 2769
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Notably, the sterically congested substrate, peruoro-isopropyl
iodide, reacted smoothly to afford the desired product in
moderate yield (4j, 45%). 1-Chlorotetrauoro-2-iodoethane
Table 2 Substrate scope for the alkenesa

a Reaction conditions: 1a (0.2 mmol), B2(pin)2 (0.3 mmol), 4-
cyanopyridine (0.3 mmol), alkene (0.4 mmol), MTBE (1.0 mL), DIPEA
(0.2 mmol), 24 h, 80 �C. Isolated yield. Me ¼ methyl, Et ¼ ethyl, tBu ¼
tert-butyl.

2770 | Chem. Sci., 2019, 10, 2767–2772
could also be converted into the desired product 4k in good
yield via the selective cleavage of C–I bond. For the per-
uoroalkyl bromides, the desired products (4f, 4h, 4l, 4m) could
be formed in moderate yields under the standard conditions.
The reaction of C6F13I, 4-cyanopyridine and alpha-methyl
styrene on a 5 mmol scale in the presence of B2pin2 readily
afforded 4e in 71% yield (1.8 g).

Next, the substrate scope of alkenes was evaluated. As shown
in Table 2, alpha-methyl styrene bearing a variety of functional
groups (such as Br, MeS, CF3O, MeSO2, CN, CF3, CO2Me etc.) on
the phenyl rings, were well compatible with this protocol,
offering corresponding carbopyridylation products with
quaternary carbon center (5aa–5as) in moderate to good yields
(43–74%). Alpha-methyl naphthalenes also reacted to provide
the desired products in good yields (5ba, 73% and 5bb, 70%).
Furthermore, other alpha-methyl arylethene containing fused
heterocycles, such as benzofuran, phenanthrene, uorene and
carbazole, could be converted into the corresponding products
5c–5f in moderate to good yields. The reactions of more steri-
cally congested alpha-ethyl and -propyl styrenes provided the
desired products (5ga–5h) in moderate yields. In addition, 1,1-
disubstituted unactivated alkenes could also smoothly trans-
form into the corresponding products (5i–5k, 45–54% yields).
However, the reactions of methacrylate and 4-methoxystyrene
only afforded the carbopyridylation products 5l and 5m in lower
yields. With internal alkenes as substrates, no corresponding
carbopyridylation products can be detected under standard
conditions. Our DFT calculations suggest that the barrier
heights for the addition of triuoromethyl radical to internal
alkene or terminal monosubstituted styrene are higher than
that of disubstituted styrene by 1.2–3.4 kcal mol�1 (see Table
S1†). This result may be responsible for the experimental facts
described above. Thus, internal alkenes or terminal mono-
disubstituted styrenes are not suitable for the present
transformation.

Both pyridine and peruoroalkyl groups are prevalent motifs
in drugs and natural products. The simultaneous incorporation
of these two groups into bioactive molecules might improve
their properties, such as reactivity and metabolic stability and
selectivity.2,6 As illustrated in Table 2, four complicated alkene
substrates derived from abietic acid, gembrozil, 1-ada-
mantaneacetic acid, and cholesterol, readily underwent the
carbopyridylation to give products 5n–5q in moderate to good
yields.

Conclusions

In summary, we reported a metal- and photo-free synthetic
method for peruoroalkylative pyridylation of alkenes. Density
functional theory calculations and control experiments indicate
the in situ prepared 4-cyanopyridine-boryl radicals from 4-cya-
nopyridine and B2(pin)2, which not only activates the C–I bond
homolysis but also serves as a pyridine precursor, play a key role
in this transformation. A high functional group tolerance and
broad substrate scope were achieved. This method provides
a scalable and operationally simple protocol for difunctionali-
zation of alkenes with inexpensive 4-cyanopyridine/B2(pin)2
This journal is © The Royal Society of Chemistry 2019
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reagents. We anticipated that the present approach would be
useful for the construction of molecules with complexity and
late stage modication of drugs and natural products.
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