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Battery cost forecasting: a review of methods and
results with an outlook to 2050+

Lukas Mauler, 2 *2° Fabian Duffner, (2 2° Wolfgang G. Zeier 2 ® and Jens Leker®®

Rechargeable batteries are a key enabler to achieve the long-term goal to transform into a climate-
neutral society. Within this transformation, battery costs are considered a main hurdle for the market-
breakthrough of battery-powered products. Encouraged by this, various studies have been published
attempting to predict these, providing the reader with a large variance of forecasted cost that results
from differences in methods and assumptions. This article creates transparency by identifying 53 studies
that provide time- or technology-specific estimates for lithium-ion, solid-state, lithium—-sulfur and
lithium—air batteries among more than 2000 publications related to the topic. The relevant publications
are clustered according to four applied forecasting methods: technological learning, literature-based
projections, expert elicitations and bottom-up modeling. Method-specific assumptions are analyzed
in-depth and discussed with regard to their results and empirical evidence. Further, 360 extracted data
points are consolidated into a pack cost trajectory that reaches a level of about 70 $ (kW h)™* in 2050,
and 12 technology-specific forecast ranges that indicate cost potentials below 90 $ (kW h)™t for
advanced lithium-ion and 70 $ (kW h)™* for lithium-metal based batteries. Recent studies show
confidence in a more stable battery market growth and, across time-specific studies, authors expect
continuously declining battery cost regardless of raw material price developments. However, large cost
uncertainties are found to exist on technological and chronological levels that will remain a key
challenge for researchers and industry in the future.

In the global endeavor to combat climate change, more than 180 countries committed to the Paris Climate Agreement in order to transform into a climate-neutral
society during the second half of this century. Adequate measures to achieve that goal include the extension of renewable energy usage and the decarbonization of
transportation. A key enabler to implement these measures are rechargeable batteries that provide the possibility to decouple energy production and usage, and to
replace fossil fuels, respectively. In addition to concerns regarding raw material and infrastructure availability, the levelized cost of stationary energy storage and total
cost of ownership of electric vehicles are not yet fully competitive to conventional technologies, mainly due to high battery cost. However, battery costs have fallen fast
during the last years and an accurate prediction of their future development is vital for profound research in academia and sustainable decisions in industry. This
article outlines the most relevant literature on battery cost forecasting and provides transparency on methodological and technological details.

1. Introduction

hurdle for widespread electric vehicle (EV) adoption®* and for
overcoming generation variability from renewable energy sources.>”

The forecasting of battery cost is increasingly gaining interest Since both battery applications are supporting the combat against
in science and industry."” Battery costs are considered a main climate change, the increase of their market share is currently

supported by the regulation of policy makers.* " Yet, during the
last years, battery costs and especially those of lithium-ion batteries
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technology and the increase of production scale.'*"*'” Additionally,
beside the optimization of LIBs, advanced lithium-based concepts
such as solid-state batteries (SSBs), lithium-sulfur batteries (LSBs)
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further improvements in battery cost and parameters such as
energy density.'®° Considering the cost, these battery technologies
promise further reductions,?** linked to decreased raw material
cost (e.g, oxygen,>?*® sulfur®®*’) or improved concepts of cell
components (e.g:, anode-free cells*®**?). However, while LIBs are
already produced on a large scale and industry players are investing
billions of dollars in the construction of respective battery factories
across the globe,*® SSBs, LSBs and LABs are currently produced
at lab or pilot scale.'®!

Encouraged by the requirement for further reduced battery
cost, various studies attempting to predict these have been
published in the last decade. These studies aim to answer
questions arising from a broad field of strategic subjects such as
efficient subsidy designs,*** optimal R&D spending schemes,**>*
EV penetration forecasts,**® cost-effective technology choice'**”*®
and raw material market forecasts.’®> However, for the year
2030, LIB pack cost forecasts range from below 100 to above
400 $ (kw h) '**° thus implying large cost uncertainties
potentially resulting in inefficient policies,*® incorrect timing
of mobility transitions,*® missed investment opportunities,*>
and company bankruptcy filings.*'

To allow for an in-depth understanding of the drivers
behind this cost range, a review of these publications providing
transparency with regard to applied forecasting methods and
underlying assumptions is necessary. To date, such a review is
not available within the scientific community. This study
intends to close this gap and identifies 53 relevant publications
with original battery cost or price forecasts from peer-reviewed
literature by applying a framework to an initial number of more
than 2000 studies related to battery cost. Subsequently, these
publications are classified according to four superordinate
forecasting methods (technological learning, literature-based
projections, expert elicitations and bottom-up modeling). For
each method, forecast results, relevant drivers and assumptions
are identified, analyzed and discussed. From relevant studies, a
total of 360 single data points is gathered. Based on this data set,
a general LIB forecast trajectory throughout 2050 and technology-
specific forecast ranges for LIBs by cathode technology, and LSBs
and LABs are derived.

This review contributes to the research fields of battery
technology and energy transition in multiple ways. It provides
transparency by an in-depth analysis of the most relevant
battery cost forecasts including application, applied method,
underlying assumptions and forecasted values, Further,
it provides a data base of extracted forecasts, discusses under-
lying assumptions and aggregates estimates into both, a fore-
cast trajectory throughout 2050 and 12 technology-specific
forecast ranges.

The remainder of this article is structured as follows: Section
2 describes the search strategy, outlines identified articles,
describes the four forecasting methods and the method of
analysis. Section 3 gives an overview of the relevant publications
since 2010. Section 4 discusses and compares publications on
comprehensive and method-specific levels and provides a future
outlook. Section 5 summarizes the main findings and outlines
contributions and limitations.

This journal is © The Royal Society of Chemistry 2021
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2. Search strategy, relevant studies
and method of analysis

In order to identify relevant articles from peer-reviewed litera-
ture that provide original forecasts of battery cost, the Web of
Science database has been searched and 2361 publications
have been retrieved. The search strategy displayed in Table 1
has been used on article titles and abstracts published between
January 2010 and February of 2021. Further, additional litera-
ture from the field has been identified based on a previously
published review on battery cost models from 2020> and an
application of the associated search strategy on the time inter-
val between January 2020 and February 2021.

By analyzing the abstracts of the search results, 53 articles
that provide forecasts for lithium-based batteries have been
identified and are listed in Table 2.

After the identification of relevant publications, these have
been analyzed according to the following framework:

e The year of publication,

e the applied forecasting method, the technique used to
derive battery cost forecasts,

e the battery application, the examined final product for
which battery costs are estimated,

o the battery technology, the technical concept the investigated
battery is based on,

o the forecast item, the object of the forecast being battery
cost or price,

o the forecast level, the evaluated stage in the battery value
chain from material to pack,

o the forecast horizon, the latest point in time for which
values are reported,

o the forecasting period, the time interval between publication
and forecast horizon,

e the method-specific set of assumptions, the underlying
parameters or beliefs that drive forecasting values,

e the forecasted values, the time- or technology-specific
values of the forecast item studies are reporting.

In addition, to further structure the analysis, publications
have been classified by four superordinate forecasting methods
that have been applied within these publications in order to
derive cost or price estimates: technological learning, literature-
based projection, expert elicitation and bottom-up modeling.
These methods are briefly described in the following.

Technological learning, in literature also referred to as
learning curve or experience curve analysis, assumes a funda-
mental relationship between technology cost and one or more

Table 1 Search strategy

Conceptualization Operationalization

Keywords used “batter*” AND (“‘cost’” OR “‘price’’) AND
(“forecast®”” OR “‘predict*”’ OR ‘“‘project*”
OR “‘prospect*”)

Field of search: Article title, abstract
document search
Focus: year

Number of studies

2010-February 2021
2361
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Table 2 Analyzed articles that provide original battery cost or price projections

Authors & year

Publication title

NGNSV SN

w1

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33

34
35
36

37
38
39
40
41
42

43

44
45

46
47
48

49
50
51
52

53

learning parameters.*> This method has been introduced in the
past century and since then, has been applied in strategic

industries such as airplane®*** or ship manufacturing.*® With regard
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Baker et al. (2010)
Thiel et al. (2010)

Gerssen-Gondelach and Faaij (2012)

Weiss et al. (2012)
Mayer et al. (2012)

Brodd and Helou (2012)
Catenacci et al. (2013)

Gallagher et al. (2014)

Patry et al. (2014)

Nelson et al. (2015)

Matteson and Williams (2015, a)
Eroglu et al. (2015)

Schiinemann (2015)
Nykvist and Nilsson (2015)
Hagen et al. (2015)
Matteson and Williams (2015, b)
Petri et al. (2015)

Sakti et al. (2015, a)

Berg et al. (2015)

Wood et al. (2015)

Ciez and Whitacre (2016, a)
Cole et al. (2016)

Sakti et al. (2017, b)

Schmidt et al. (2017, a)
Kittner et al. (2017)
Berckmans et al. (2017)
Ciez and Whitacre (2017, b)
Cano et al. (2018)

Few et al. (2018)

Vaalma et al. (2018)
Schmuch et al. (2018)
Edelenbosch et al. (2018)
Safoutin et al. (2018)

Nykvist et al. (2019)
Schmidt et al. (2019, b)
Philippot et al. (2019)

Wentker et al. (2019)

Hsieh et al. (2019)

Schnell et al. (2019, a)

Comello and Reichelstein (2019)
Zhou et al. (2019)

Schneider et al. (2019)

Schnell et al. (2020, b)

Ciez and Steingart (2020)
Duffner et al. (2020, a)

Yan and Obrovac (2020)
Mongird et al. (2020)
Nemeth et al. (2020)

Beuse et al. (2020)
Penisa et al. (2020)

He et al. (2020)
Duffner et al. (2021, b)

Mauler et al. (2021)

43,44
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Battery technology for electric and hybrid vehicles: expert views about prospects for advancement
Cost and CO, aspects of future vehicle options in Europe under new energy policy scenarios
Performance of batteries for electric vehicles on short and longer term

On the electrification of road transport-learning rates and price forecasts for hybrid-electric and
battery-electric vehicles

Feasibility study of 2020 target costs for PEM fuel cells and lithium-ion batteries: a two-factor
experience curve approach

Cost comparison of producing high-performance Li-ion batteries in the U.S. and in China

Going electric: expert survey on the future of battery technologies for electric vehicles

Quantifying the promise of lithium-air batteries for electric vehicles

Cost modeling of lithium-ion battery cells for automotive applications

Cost savings for manufacturing lithium batteries in a flexible plant

Learning dependent subsidies for lithium-ion electric vehicle batteries

Critical link between materials chemistry and cell-level design for high energy density and low cost
lithium-sulfur transportation battery

Modell zur Bewertung der Herstellkosten von Lithiumionenbatteriezellen

Rapidly falling costs of battery packs for electric vehicles

Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells
Residual learning rates in lead-acid batteries: effects on emerging technologies

Material cost model for innovative Li-ion battery cells in electric vehicle applications

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification
Rechargeable batteries: grasping for the limits of chemistry

Prospects for reducing the processing cost of lithium ion batteries

The cost of lithium is unlikely to upend the price of Li-ion storage systems

Utility-scale lithium-ion storage cost projections for use in capacity expansion models

Consistency and robustness of forecasting for emerging technologies: the case of Li-ion batteries for
electric vehicles

The future cost of electrical energy storage based on experience rates

Energy storage deployment and innovation for the clean energy transition

Cost projection of state-of-the-art lithium-ion batteries for electric vehicles up to 2030

Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model
Batteries and fuel cells for emerging electric vehicle markets

Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis
informed by expert elicitations

A cost and resource analysis of sodium-ion batteries

Performance and cost of materials for lithium-based rechargeable automotive batteries

Transport electrification: the effect of recent battery cost reduction on future emission scenarios
Predicting the future manufacturing cost of batteries for plug-in vehicles for the U.S. Environmental
Protection Agency (EPA) 2017-2025 light-duty greenhouse gas standards

Assessing the progress toward lower priced long-range battery electric vehicles

Projecting the future levelized cost of electricity storage technologies

Eco-efficiency of a lithium-ion battery for electric vehicles: influence of manufacturing country and
commodity prices on GHG emissions and costs

A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials
Learning only buys you so much: Practical limits on battery price reduction

Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries
The emergence of cost-effective battery storage

Learning curve with input price for tracking technical change in the energy transition process

A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion
batteries

Solid versus liquid—a bottom-up calculation model to analyze the manufacturing cost of future high-
energy batteries

Asymptotic cost analysis of intercalation lithium-ion systems for multi-hour duration energy storage
Battery plant location considering the balance between knowledge and cost: a comparative study of the
EU-28 countries

Quantifying the cost effectiveness of non-aqueous potassium-ion batteries

An evaluation of energy storage cost and performance characteristics

Lithium titanate oxide battery cells for high-power automotive applications-electro-thermal properties,
aging behavior and cost considerations

Projecting the competition between energy-storage technologies in the electricity sector

Projecting the price of lithium-ion NMC battery packs using a multifactor learning curve model
Greenhouse gas consequences of the China dual credit policy

Large-scale automotive battery cell manufacturing: analyzing strategic and operational effects on
manufacturing costs

Economies of scale in battery cell manufacturing: the impact of material and process innovations

to energy technologies beside batteries, major areas of research have
been electricity generation®®*® and fuel production*®" from renew-
able sources. In order to derive cost projections, first, the historical

This journal is © The Royal Society of Chemistry 2021
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correlation between cost and the learning parameter is examined
and learning rates are calculated. Second, this learning rate is
combined with future expectations for the learning parameter and
future cost estimates can be obtained.

In literature-based projections, forecasts are derived by the
aggregation of previously published predictions. These meta-
forecasts are based on the idea that forecast accuracy can be
increased by combining individual projections.”>>* This method
has been used to derive economic trends in general and to obtain
cost and price forecasts in particular.>® In addition to batteries, it
has been applied in cost forecasting of power-to-gas technologies®
and hydrogen fuel production.”® Consulted sources include
academic publications as well as industry and analyst reports
that are combined by an aggregation technique such as the
determination of time-specific means or forecast ranges.

In expert elicitations, future-oriented cost estimates are derived
by a structured interview process between authors and experts. This
approach has been used widely specifically for cost forecasting of
energy technologies.”””® Other than batteries, the method has been
applied to predict fuel cell,” electrolyser,’® as well as wind®' and
solar energy cost.*>®® Questions during the interview process can be
asked on different technology levels such as product-, component-
or process level and can reflect distinct external scenarios such as
regulatory support or R&D funding levels.®***

Bottom-up modeling describes an approach to translate
technical parameters underlying the product and production
process into technology cost.®> This method has been applied
in various manufacturing industries.®>®” Regarding energy
technologies other than batteries, it has been used to project
costs for fuel cells and electrolysers,’®®® renewable energy
technologies” > and integrated energy systems.”>’* In order
to derive cost projections, the product is first separated into its
individual components, required resources and processes are
assigned, and cumulative cost are calculated. Regarding cost
forecasting, estimates can be obtained by simulating parameter
sets that reflect technological advances.””’® These parameter
sets can either be defined by the authors or by external sources
such as academic literature, industry reports or experts.*®

In order to compare assumptions and results of the studies
in Section 4, the focus is set on battery cost on pack-level in
$ (kw h™), since the majority of studies agrees on this reporting
format. Whenever values for multiple applications are reported,
the forecast dedicated to electric vehicle batteries is preferred.
Among the relevant studies, several studies predict the development
of battery prices instead of cost. In general, prices do not equal costs
since they reflect the willingness to pay of customers in contrast to
costs that represent the value of all input factors required for the
production of the battery combined.”””® In the battery industry,
prices are further influenced by strategic pricing, long-term contracts
and rebates to utilize excess production capacity.””* Industry experts
report that battery prices may be set below current cost levels in
order to gain market share, stimulate overall battery demand and
compensate for potential losses with expected profits in the
future.”””®" In addition, several diversified corporations exist
among market leaders that are assumed to subsidize their growing
battery business with profits from other industries.*" In general, the

This journal is © The Royal Society of Chemistry 2021
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increase of a company’s market share is intended to strengthen its
future cost position by allowing for economies of scale in manu-
facturing and purchasing, and by providing favorable access to raw
materials and capital, and as a result, increasing future profits and
raising the entry barrier for new competitors.®> However, details on
company-specific prices, costs and profit margins are not publicly
available and differences are difficult to assess.”® In battery
literature both terms are frequently used interchangeable, a
phenomenon reported earlier,**””% which may be explained by
different perspectives on the same value, since the price paid to a
battery manufacturer represents the cost to the manufacturer of the
final product. Therefore, in line with other studies,”® prices are
treated the same way as cost in this study, but are signified
differently (in all figures, solid polygons signify prices and hollow
polygons costs). If values are reported on a different level than packs,
surcharge rates are applied to allow for a comparative analysis. These
rates are based on recent peerreviewed publications and are
+30.89% to adjust from cell to pack level,** +33.51% from material
to cell level,® +16.14% from electrode stack to material level,** and
have been validated with recent estimates of industry experts.>*®” If
forecasts are reported in a different currency, respective values in $
are calculated with regard to exchange rates in the year of publication
provided in the data base of the Federal Reserve.”® In all studies
reporting total battery costs, the respective value is divided by
mentioned battery sizes. All values on the forecast level originally
reported can be retrieved in the ESL{ Further, for publications
reporting multiple time-specific values, as in the case of the elicita-
tion of various experts, the arithmetic mean is calculated. Yet if
central values or scenarios are reported, the central value for each
year is taken into account. For publications reporting technology-
specific forecasts, cost uncertainties originating from parameter
variations such as battery design or price assumptions, are
made transparent. Study-specific sources such as referenced
tables or figures are provided in the ESL{ In order to set time-
specific estimates into empirical context, we include industry
price observations®>®° from 2010 to 2020. The respective source has
been chosen since values are based on a market average, are
frequently cited in official reports®*® and are publicly available.

3. Review battery cost forecasting

A comprehensive overview of the analyzed publications sorted
by their year of publication and classified by battery applica-
tion, forecasting method, forecast horizon, battery technology:
alongside noteworthy additional aspects relevant for battery
cost is presented in Fig. 1. In the following, the publications
associated to each of the four introduced forecasting methods
are described in brief. Studies that use multiple or a

+ Battery technologies have been categorized into lithium-ion (LIB), solid-state
(SSB), lithium-sulfur (LSB) and lithium-air batteries (LAB). LIBs are further
classified by the cathode technologies lithium nickel manganese cobalt oxide
(NMC), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LCO),
lithium manganese oxide (LMO), lithium nickel manganese oxide (LNMO),
lithium iron phosphate (LFP), lithium iron manganese phosphate (LMFP),
lithium cobalt phosphate (LCP), and by the anode technologies graphite (C),
silicon composite (Si/C) and lithium titanate oxide (LTO).

Energy Environ. Sci., 2021, 14, 4712-4739 | 4715
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Technology B  Lithium-ion battery (LIB) Post-LIB
¥ Year of publication and forecast horizon Cathode Anode Concept
Additional
Publication Application Method WMW WW i f research object
Baker et al. 00 = v/’ ) [TW—| R&D funding
Thiel et al. @ @ ( W////////////////////////////// //////////////4 I LIB unspecified ‘ |
Gerssen-Gondelach and Faaij m . W///// ////////////% | LIB unspecified ‘ I ZEBRA, Zn-air
Weiss et al. ® m | [ LB unspecfied_ |
Mayer et al. e = 77777777/m [ LIB unspecified ‘ | Patent activity
Brodd and Helou . u . . Plant location
Catenacci et al. @ ; Wé///////////////////////////////////////% [. LIB unspecified . . | R&D funding
Gallagher et al. LAB pack concept
Patry et al. @ . u .. . . . Electrode design
Nelson et al. @ . u . . . Plant flexibility
Matteson and Williams (a) u\ | LIB unspecified I Public subsidies
Eroglu et al. . u Sulfur loading
Schiinemann - u\ . . Prod. process
Nykvist and Nilsson W////% | LIB unspecified |

(=)

=)

(=)

(0}

=)

=)

=)

=)

®

(=)

(=)

(=)
Hagen et al. @ @ u\ ‘ Sulfur loading
Matteson and Williams (b) @ o u LIB unspecified I Cum. production
Petri et al. @ . u‘ . . . . .
Sakti et al. (a) @ @ . u . . Plant size
Bergetal. @ @ . u‘ .... . . . Sodium-ion
Wood et al. @ . u . Prod. process
Ciez and Whitacre (a) @ @ - u . . . Lithium price
Cole et al. o . u LIB unspecified |
Sakti et al. (b) ®6 A= l [ | i
Schmidt et al. (a) @ o @ [ LIB unspecified |
Kittner et al. @ o @ _ Patent activity
Berckmans et al. @ @ W//// ///////////A . ..
Ciez and Whitacre (b) @ u .. . . Cell format
Cano et al. ® O \ [ B unspeciied_ |
Few et al. o W/ //////////////// LIB unspecified I R&D funding
Vaalma et al. O u . . ..
Schmuch et al. @ .. .. Li-metal cost
Edelenbosch et al. @ @ | LIB unspecified |
Safoutin et al. @ @ . . ‘. Vehicle size
Nykvist et al. @ I LIB unspecified |
Schmidt et al. (b) ®0 [ 15 unspecified |
Philippot et al. @ . u . . Plant location
Wentker et al. @ . u .. ... . Cobalt price
Hsieh et al. @ . . Metal prices
Schnell et al. (a) @ - u Prod. process
Comello and Reichelstein () [T [ LIB unspecified |
Zhou et al. @ @ o u I LIB unspecified ‘ | Cum. production
Schneider et al. @ . u . . Sodium-ion
Schnell et al. (b) @ @ . u .. .. Li-metal cost
Ciez and Steingart o . u . . Cell design
Duffner et al. (a) @ . u . . Plant location
Yan and Obrovac O . u . . Potassium batt.
Mongird et al. o . Z///////////A .. . .
Nemeth et al. @ . u . . .
Beuse et al. o m . / .. . . . . Material prices
Penisa et al. o n . . Patent activity
He et al. @ @ . | LIB unspecified |
Duffner et al. (b) @ . . . Prod. process
Mauler et al. @ . .. . . Plant size

@ Battery-electric vehicle ﬁ Technological learning i Literature-based projection

@ Hybrid electric vehicle

@ Unspecified electric vehicle @ Electronics . Forecast value available

o Stationary energy storage u Year of publication % Lack of intermediary data . Bottom-up modeling = Expert elicitation

Fig. 1 Overview of the analyzed publications on battery cost forecasting including year of publication, battery application, forecasting method, forecast
horizon, battery technology and noteworthy additional aspects relevant for battery cost.
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combination of methods are classified according to their
focused approach.

3.1. Technological learning

Thiel et al. (2010) compare the total cost of ownership of EVs
and conventional vehicles for the years 2010, 2020 and 2030 by
applying a method based on technological learning.*® The
battery is identified as the major cost driver in both, plug-in
hybrid and battery EVs and induces high cost penalties on
these vehicles. The authors suggest that policy measures such
as public R&D funding or temporary subsidies are required
for a market breakthrough of these technologies in their initial
phase. Consequently, increased sales volumes lead to an
expected drop in LIB cost to 258 € (kW h)™" until 2020 and to
between 188 and 200 € (kW h) ™" in 2030, leading to competitive
CO, abatement cost. Gerssen-Gondelach and Faaij (2012) examine
the prospects of five selected battery technologies including LIB,
LSB and LAB and their impact on the total driving cost of purely
EVs.*® Battery cost is determined to be one of the most relevant
criteria among eight investigated battery properties. In their
technological learning approach, forecasted pack-level LIB cost
range from 990 $ (kW h)™" in 2012 to 210 $ (kW h) " in 2020 based
on different initial values and learning rate scenarios. For LSB and
LAB, a literature review is conducted and forecasted values range
from 250 to 500 $ (kW h)~" for LSB and 300 to 700 $ (kW h) ™" for
LAB, respectively. The authors conclude that even though other
battery technologies promise advantages in cost and performance,
only LIBs may fulfill all requirements in the medium term. Mayer
et al. (2012) challenge the feasibility of industry cost targets for
2020 of high-energy and high-power LIBs and fuel cell stacks for
vehicle traction.”® Cost reductions are based on technological
learning assumptions of both, the growth of production volumes
and patent activity. Based on initial high-energy LIB cost of
871 € (kW h)™", the authors calculate a drop to 309 € (kW h)™*
until 2020 based on the most optimistic assumptions, still
exceeding the target of 300 € (kW h)~". Matteson and Williams
(2015, a) quantify the required amount of public subsidies for
EVs in the U.S. in order to reach LIB prices of 300 $ (kW h)~'.*°
Based on different learning rate scenarios and the frequency of
policy adjustments, the authors find cumulative required funds
to be between 2 and 34 billion $ and underline their high
sensitivity to learning rate variations. Nykvist and Nilsson (2015)
review more than 80 estimates of LIB battery pack cost for EVs.¥
The authors find that LIB pack cost decreased by about 14%
annually between 2007 and 2014, leading to a decline from
above 1000 to 410 $ (kW h)™'. A steeper decline that has
previously been reported, which is explained by the high cost
in the early phase of EV sales growth, characterized by low
production volumes, high pack variance and immature pack
production processes that allowed for rapid learning. Further
cost reductions from battery R&D improvements and economies of
scale are expected by the authors and a cost level of 230 $ (kW h) "
is projected based on technological learning for 2017-2018.
Matteson and Williams (2015, b) evaluate LIB price competitiveness
with lead-acid technology as a function of cumulative battery
production.** Technology-specific price trajectories are calculated
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by separating material and residual cost and applying a tech-
nological learning method. For large-format LIBs, 6500 GW h of
cumulative production are forecasted to be necessary to reach
price parity. By taking into account future cost improvements
for both technologies, the authors conclude that LIB prices will
not undercut those of lead-acid batteries for more than twenty
years. Schmidt et al. (2017, a) forecast price developments for
eleven electrical energy storage technologies including LIB for
EVs, electronics and stationary energy storage until 2050."*
Technology-specific price reductions are projected based
on experience rates. The authors find that, independent of
technology, battery pack prices range from 150 to 200 $ (kW h) ™"
once a total installed capacity of 1 TW h is reached. Based on
market growth assumptions, this capacity threshold is estimated
to be first surpassed by LIB battery packs for EVs in 2027, likely
making LIB the most cost-competitive storage technology with
expected battery pack prices between 36 to 96 $ (kW h)~" in 2050.
Kittner et al. (2017) combine learning-by-doing (increased pro-
duction output) and learning-by-researching (increased patent
activity) in their approach to predict LIB battery prices for EVs,
electronics and stationary energy storage until 2020.>*> For EV
battery packs, prices are estimated to drop from the 2017 level of
178 to 124 $ (kW h)~" in 2020. Further, the authors find that the
allocation of public funds to R&D activities might play a larger
role than deployment incentives since they allow for cost reduc-
tions in a shorter time frame. Edelenbosch et al. (2018) test the
sensitivity of sales projections for hybrid and purely EVs in
different battery cost and climate policy scenarios until 2050.%%
While their article uses exogenous battery cost forecasts, the
authors provide endogenous trajectories in the supplementary
information, that are based on technological learning and
include total battery pack cost that range from 3400 to 8650 $
(90 to 230 $ (kw h) " if divided by expected battery sizes) in 2050.
In their article, the authors highlight the importance of the lower
boundary of battery cost, since global EV sales shares exceeding
15% will require battery cost to fall below 100 $ (kW h) . Nykvist
et al. (2019) evaluate the progress of EV attributes and assess their
economic competitiveness compared to conventional cars
throughout 2030.*° In order to model the impact of reduced
LIB cost, the authors apply the learning methodology of Nykvist
and Nilsson (2015) and extend the underlying data set by 25
recent battery cost estimates. Compared to the original data,
accelerated cost reductions and a narrower variance of estimates
are observed. By taking the updated data set into account, the
authors expect EVs to achieve competitiveness at pack-level
costs of 150 $ (kW h)™" in 50% of U.S. car market segments
by 2020. Further cost reductions to a level ranging from 43 and
119 $ (kW h) " are estimated until 2030. Schmidt et al. (2019, b)
evaluate the impact of technology-specific price reductions on
levelized cost of storage for twelve power system applications
throughout 2050.>” The authors project reductions for LIB
dedicated to EVs, electronics, residential and utility-scale stationary
energy storage. For EVs, battery pack prices between 23 and
67 $ (kW h) ™" are projected for the year 2050. The authors state
that, for most stationary applications, LIB is likely to become
the most cost-efficient technology by 2030 due to reductions
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reinforced by knowledge spillovers from other markets such as
EVs. Hsieh et al. (2019) project pack-level price estimates for
NMC-based LIB until 2030 and set a particular focus on
material cost.*® By applying a two-stage learning model that
separates cost improvements of active material cost and
residual LIB pack cost and considers mineral and material
price floors, battery prices between 93 and 141 $ (kW h) ™' are
estimated for 2030. The authors infer that, due to LIB cost
reductions limited by material prices, EVs might still not be
able to fully compete with conventional vehicles by then. As a
consequence, they advise policy makers to focus on stimulating
R&D for alternative battery chemistries and on stabilizing raw
material prices. Zhou et al. (2019) compare the price perfor-
mance of LIBs and lead-acid batteries based on cumulative
battery production.®® For lead-acid batteries, the authors apply
a decomposition method that separates technological learning
into variations in material prices, material quantities and
residual cost, while for LIB a single factor learning approach
is used. LIB prices are estimated to fall to 100 $ (kW h)™" once
cumulative production reaches 2500 GW h. Beuse et al. (2020)
investigate the economic competitiveness of six technologies
for stationary energy storage throughout 2030."> For LIBs, price
trajectories are derived by applying a one-factor technological
learning method that integrates material cost floors. In a first
step, average LIB prices are projected for 2030 based on
material price scenarios and average LIB material composi-
tions, resulting in pack-level prices of 110 and 157 $ (kW h) ™" in
2030 for average and high raw material prices, respectively. In a
second step, the authors use a bottom-up method in order to
identify specific LIB technologies that can serve as a techno-
logical hedge against high material prices. The choice of LFP or
LMEFP cathodes (107 $ (kW h) ") is shown to be most promising
in mitigating high raw material prices in 2030 compared to
LNMO, NCA, NMC622, NMC811, LMR-NMC and HE-NMC-
based batteries.§ The authors conclude that LIBs are likely to
outcompete other stationary energy storage in all considered
applications by 2030 and warn of risks associated with a
technological lock-in. Penisa et al. (2020) project prices of NMC-
specific LIBs with a focus on stationary energy storage until 2025
by taking multiple approaches of technological learning.’* A two-
factor model based on cumulative LIB demand and patent
activity shows the most statistically sound results and yields
LIB pack-level prices of 92 $ (kW h) ™" in 2025. From their four-
factor model reflecting increased lithium and cobalt prices, the
authors derive a nonetheless decreasing LIB price trend and
conclude that the effect of learning and innovation outweighs
raw material price effects.

3.2. Literature-based projection

Weiss et al. (2012) compare expected future prices of hybrid-
electric and battery-EVs to conventional cars based on the
development of technology-specific price differentials.”> While

§ Cathode technology LMR-NMC: lithium and manganese-rich lithium nickel
manganese cobalt oxide; HE-NMC: high-energy lithium nickel manganese cobalt
oxide. Further details regarding cathode technologies are included in Section 4.
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a methodology of technological learning is applied for the
entire cost of electrification (battery, electric motor, inverter,
controller, powertrain integration), average battery-specific cost
of 320 € (kW h) " are discussed for 2020 and 100 € (kW h) " for
2030 based on analyst reports. Based on their results, a price
breakeven between battery-electric and conventional vehicles is
not to be expected before 2026. By analyzing literature and
various industry sources, Cole et al. (2016) derive cost projections
for utility-scale stationary LIB energy storage to forecast the split
of U.S. energy generation capacity and the deployment of battery
storage capacity until 2050.°° In a scenario-based approach, three
trajectories for LIB battery pack cost are derived that range from
64 to 255 $ (kW h)~' for the year 2050. They demonstrate that
lower battery cost lead to an increase in the share of renewable
energy generation and the deployment of battery energy storage,
both resulting in a decrease of natural-gas-powered energy
generation capacity. Cano et al. (2018) evaluate the suitability of
seven energy storage and conversion technologies in different
sectors of the transportation market.”” Among twelve criteria,
cost is considered a primary concern for future vehicle owners
and ranges for three lithium-based battery technologies are derived
based on analyst, industry and literature sources. Identified
pack cost range from 70 to 250 $ (kW h)™" for LIBs, from 36 to
130 $ (kW h)™* for LSBs and from 70 to 200 $ (kW h)~* for
LABs. The authors state that LIBs may not possess sufficient
technological potential to meet performance requirements of all
transportation sectors. Hence, LIBs may be replaced in vehicles
by lower cost LSBs if their challenges such as poor cycle life are
overcome. LABs are facing similar challenges in cycle life, but
due to an inferior specific power may not be able to serve as a
stand-alone battery for vehicle traction. Comello and Reichelstein
(2019) forecast levelized cost of energy storage for LIB stationary
energy storage systems under policy scenarios in Germany and
California.” The authors base their forecast on various stationary
system price estimates from industry and academia. A continuously
decreasing price level is observed and prices of 86 to 164 $ (kW h) ™"
are expected by 2023. Based on this trend, decreased levelized
costs of energy storage are expected that allow for profitable
investments in LIB stationary storage systems in both examined
locations. Mongird et al. (2020) compare the annualized cost of ten
stationary energy storage technologies throughout 2025. Among
other model input parameters, current capital cost estimates are
derived from various analyst, industry and institutional sources. By
applying a method based on arithmetic means and an annual
capital cost improvement of 5%, the authors predict LIBs to have
the lowest capital cost of 189 $ (kW h) " and the lowest annualized
cost of all considered battery technologies in 2025.°® He et al
(2020) evaluate the consequences of different policy instruments
on EV sales and cumulative greenhouse gas emissions in China.”®
Their market penetration model relies on LIB cost predictions
from multiple literature, analyst and institutional sources that
range from 67 to 110 (kW h)™" in 2050. While reduced battery
costs result in higher market shares of EVs, increasing the
efficiency of internal combustion engines is shown to result in
significantly higher cumulative greenhouse gas emissions
potentials under current policy.

This journal is © The Royal Society of Chemistry 2021


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ee01530c

Open Access Article. Published on 02 2021. Downloaded on 05/07/2025 12:25:01 .

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

3.3. Expert elicitation

Baker et al. (2010) asked experts to estimate the performance
and cost for LIB technology after a 10 year period of different
levels of U.S. government R&D spending.** For annual R&D
expenditures of $70 million, LIB cost of 232 $ (kW h)™' are
expected to be achievable. They conclude that present-day
public R&D investments in battery technologies may avoid
significant future CO, tax burdens, encouraging to further
focus on their development. Catenacci et al. (2013) asked
experts from science and industry about the optimal allocation
of public battery R&D investment in the EU and its expected
impact on battery cost in 2030 for hybrid and purely Evs.*
Among seven battery technologies, experts chose to allocate the
highest share of R&D funding to LIB due to its advanced
maturity level. However, the effect of these investments varies
widely across expert opinions and expected 2030 LIB battery
cost range from 200 to 750 $ (kW h) ™. Few et al. (2018) conduct
an expert elicitation to obtain estimations of cost and cycle life
of LIB battery packs for stationary energy storage for the years
2020 and 2030.”> Regarding cost, the authors ask for their
expectations based on different R&D funding scenarios and
for major drivers of expected cost reductions. For 2020, experts’
pack cost estimates range from 50 to 657 $ (kW h)™', major
drivers being economies of scale, incremental improvements in
cell chemistry and engineering potentials in battery management.
For 2030, the estimates are between 20 and 511 $ (kW h)™* and
respective reductions are mainly driven by more fundamental
improvements in cell chemistry. Even though aforementioned
factors are expected to play a more significant role in cost
reductions than R&D funding by the experts, the authors advise
policy makers to reflect an identified lack of funding dedicated
to bring technologies from lab to large-scale in their future
support schemes.

3.4. Bottom-up modeling

Brodd and Helou (2012) compare bottom-up manufacturing
cost LIBs using NMC|C-chemistry dedicated to electronics
between plants located in the U.S. and China.'”® Depending on
plant location, production volume and degree of automation,
calculated cost range from 1.58 to 2.18 $ per cell. Energy-specific
cost or cell energy content are not reported. Across scenarios,
plants located in China are shown to exhibit cost advantages
mainly induced by lower labor cost. However, cost differences
between countries are shown to narrow down to 0.07 $ per cell for
highly automated plants with high production volumes. Galla-
gher et al. (2014) conduct a mass, volume and cost analysis for
LABs dedicated to EVs.>” The authors base their cost calculation
on the publicly available battery performance and cost model
(BatPaC'®) and derive best-case (e.g,, neglecting potential
required gold catalysts) LAB cost of 70 to 200 $ (kw h)™*
depending on pack concept and share of useable energy. Results
are compared to those of LIBs using LMR-NMC|Si, LMR-NMC|C,
and NMC111|C chemistries that range from 95 to 267 $ (kW h)™".
Since advanced LIBs such as LMR-NMC|Si may approach both
energy density and cost of batteries using lithium metal anodes,
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the authors conclude that the former present lower risk pathways
for automotive manufacturers by avoiding lithium-metal-specific
challenges related to lithium deposition and solid electrolyte
interphase formation. Patry et al (2014) compare bottom-up
cost of automotive LIBs using different cathode materials and
electrode thicknesses to provide guidelines for future cost
reductions."® Calculated costs for NMC111|C, NCA|C, LMO|C
and LFP|C-based cells with varying electrode thickness range
from 233 and 402 $ (kW h)~". The authors show that cathode
materials characterized by lower capacities such as LFP and LMO
lead to higher cell cost, despite lower cathode material prices.
Further, they identify an increase of the electrode thickness as a
key lever for cost reduction that needs to be carefully balanced
with power and durability requirements. Nelson et al (2015)
investigate manufacturing cost for LIB packs dedicated to purely
and hybrid EVs and set a particular focus on cost potentials in
flexible plants.'® Four types of batteries using NMC|C and
LMO|C chemistries are investigated and resulting pack cost
range from 161 to 226 $ (kW h) . The authors show that, below
specific production volume thresholds, the manufacturing cost of
each battery type can benefit from a combined production in a
flexible plant by an increased exploitation of economies of scale.
They further outline that battery packs need to comply with joint
restrictions in battery design for flexible manufacturing and that
associated cost benefits decline with increasing production
volumes. Eroglu et al (2015) conduct a cost and performance
analysis for LSBs dedicated to purely EVs.'* The authors inves-
tigate electrode and cell design considerations and their impact
on system-level properties. Key parameters for LSB pack price are
shown to be sulfur loading in the cathode, excess lithium metal
at the anode, electrolyte volume fraction and sulfur to carbon
ratio. Based on the variation of these parameters and additional
material cost uncertainties, reported prices range from 80 to
270 $ (kW h)~'. The authors conclude that, in order to meet
automotive cost and performance targets, LSBs should exhibit
sulfur loadings above 8 mA h cm™? while maintaining durability
targets of 1000 cycles or 15 years. Schiinemann (2015) investigates
the effect of variations in design and process parameters on
manufacturing cost of NMC|C cells dedicated to EVs.'® It is
shown that an increased mass loading of the electrodes results in
a more favorable ratio between active and inactive materials that
decreases material cost and increases energy density. Despite
opposing cost effects in the manufacturing process such as
increased investments for longer dryers, cell costs are shown to
decrease from 189 to 156 € (kW h)~*. Hagen et al. (2015) analyze
the gap between the state-of-the-art and the requirements for
high-energy LSBs.>* The authors calculate cost based on a cell
format used in electronics and EVs and identify crucial design
parameters to be sulfur loading in the cathode and sulfur
utilization. Based on defined parameter intervals, resulting
material cost range from 70 to 250 $ (kW h) . In order to exhibit
cost and energy density similar to LIBs, the authors state that a
sulfur loading of 6 mA h cm™? is required and targets for sulfur
utilization, sulfur fraction and electrolyte sulfur ratio are stated.
Petri et al. (2015) forecast LIB cost for EVs based on different
cathode and anode technologies.'®® Material cost are calculated
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for LR-NMC|Si, LR-NMC|C, LMO|C, LFP|C and NMC|C-based
chemistries that range from 93 to 111 € (kW h)™". The authors
underline that innovative cell materials with high specific
energies could help reduce LIB material cost in the future. Sakti
et al. (2015, a) analyze and optimize manufacturing cost of LIBs
dedicated to purely and hybrid EVs.'®” Based on material costs
derived from a battery design optimization model, related pro-
cessing cost in a cell and pack production plant are calculated
bottom-up for NMC111|C packs. Three scenarios for parameters
in the production process, material prices and battery design
constraints are set up and resulting EV pack cost range from
200 to 370 $ (kW h)™". Berg et al (2015) compare cost and
performance of different LIB, LSB, LAB and sodium-ion battery
cells based on an energy-cost model.'*® Regarding LIB cost, the
authors compare LR-NMC|C, LNMO|C, NCA|C, NMC111|C,
LCO|C, LFP|C and LCP|C cell chemistries and derive estimates
that range from 191 to 295 $ (kW h)~". LSB and LAB cell cost are
calculated to be 154 $ (kW h)™" and 105 $ (kW h)™*, respectively.
The authors expect that LIBs using nickel- and lithium-rich
chemistries will dominate electronic and automotive applications
in the foreseeable future due to either comparable cost or funda-
mental challenges related to their alternatives. Wood et al. (2015)
investigate potential reductions in the processing cost of LIBs.'"
For the production of NMC|C packs, the cost impact of aqueous
electrode processing, increasing electrode thickness and an opti-
mized wetting and formation procedure are evaluated. By imple-
menting these measures collectively, pack-level costs are shown to
decrease from 503 to 352 $ (kW h)™' by decreased electrode
processing cost, energy consumption and formation time. Ciez
and Whitacre (2016, a) investigate the sensitivity of LIB cost to
variations in lithium raw material prices."’® The authors vary the
lithium price from 0 to 25 $ kg~ " and quantify the impact on cell
cost of four battery types classified by application requirements,
being high-energy and high-power, and used cathode material,
being NCA|C and LMO|C. Reported cell cost range from 162 to
435 $ (kW h)™", mainly due to different requirements and cathode
materials, variations from lithium price volatility remain below
10%. They conclude that the thread of lithium price increases will
have limited impact on the battery market and future cost reduc-
tions. Sakti et al. (2017, b) test the consistency of expert forecasts of
LIB pack-level cost estimates for hybrid and purely EVs with both,
the sum of experts’ component-level estimates and a cost estimate
derived by a process-based cost model fed with the experts’
expectations regarding underlying cell design, material and
process.”” Expert- and method-specific pack-level estimates for
purely EV batteries vary from 255 to 766 $ (kW h)™" for the year
2018. In addition to the high range of estimates among experts,
most experts’ immediate pack-level estimates are found to
be inconsistent with their component-level forecasts and the
bottom-up cost modeling results. Berckmans et al. (2017)
develop market and LIB cost and price projections for hybrid
and purely EVs. The authors calculate bottom-up cost estimates
for NMC622|C and NMC622|SiC-based battery packs of 432 and
293 $ (kW h)™', respectively.’”® Based on current LIB market
prices and the calculated cost differences between both battery
types, the authors use a technological learning method for
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material and processing cost to project 2030 prices of 76 and
50 $ (kW h) ™7, respectively. They conclude that reduced battery
prices will be reflected in EV purchase prices and will drive their
mass adoption. Ciez and Whitacre (2017, b) evaluate the impact
of cell format on LIB cost by using a process-based cost model. The
authors investigate cylindrical and prismatic formats, different cell
dimensions, electrode thicknesses and plant production
volumes.'™" For LMO|C, NCA|C and NMC|C-based chemistries,
reported cell cost range from 163 to 439 $ (kW h)™'. The
authors conclude that even though chemistry itself plays a
substantial role in cell cost, the prismatic format offers cost
potential for all chemistries. Vaalma et al. (2018) compare cost
and resource availability of LIBs and sodium-ion batteries.
For the first, pack-level cost based on BatPac calculations
of NMC622|SiC, NMC622|C and LMO|C ranging from 234 to
259 $ (kW h) ™' are reported for stationary application.?! In all
three evaluated scenarios, LIBs are shown to undercut sodium-
ion battery cost levels at current raw material prices. Never-
theless, the authors underline potential raw material shortages
due to insufficient lithium production expansion that may
increase the attractiveness of sodium-ion batteries. Schmuch
et al. (2018) evaluate performance and cost of LIBs and SSBs for
EVs. For LIBs, material costs are calculated for LMR-NMC|SiC,
NMCS811|SiC, LMR-NMC|C, NCA|C and NMC622|C-based
chemistries that range from 51 to 79 $ (kW h)™" at electrode
stack level.® For SSBs, a concept of LMR-NMC cathode, sulfidic
LPS solid electrolyte and lithium metal anode is evaluated and
material costs of 59 to 127 $ (kW h) ™" at electrode stack level are
reported. The wide range of SSB results from significant
uncertainties related to the cost of lithium metal foil and the
amount of lithium depleted during battery operation. Based on
their analysis, the authors expect further cost improvements of
LIBs by material advances, economies of scale and automation,
helping them maintain a dominant position in the automotive
market throughout 2030. In a project for the U.S. Environmen-
tal Protection Agency, Safoutin et al. (2018) project LIB pack
cost, battery size, battery power and motor power capabilities
for the year 2025.'"> After calculating required properties of
NMC/LMO|C and NMC-622|C batteries for several plug-in hybrid
and purely EV types, the authors feed BatPac with relevant data to
derive battery cost estimates. For the year 2025, bottom-up pack-
level NMC622|C costs from 115 to 223 $ (kW h)™" are derived
depending on EV size. Philippot et al. (2019) analyze the influence
of plant location on greenhouse gas emissions and cost of LIB
manufacturing.’™® In both aspects, the production of NCA|C
packs with 2% anode silicon content between plants located
Korea, China, Poland, Germany, Sweden, France and the U.S. are
compared. Resulting pack-level cost for large-scale manufactur-
ing range from 155 € (kW h)™" in Poland to 180 € (kW h)™" in
Korea. Since higher variabilities are found for greenhouse gas
emissions, the authors conclude that a country’s electricity mix is
a key parameter for the impact of battery manufacturing on
climate change. Wentker et al. (2019) compare the cost of LIBs
based on different cathode materials. In their bottom-up model,
respective cell energy content and material cost for an automotive
cell format are calculated.™™* Resulting cost for LNMO|C, LMO|C,
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NCA|C, NMC111|C, NMC442|, NMC532|C, NMC622|C, NMC811|C,
LR-NMC|C and LFP|C range from 65 to 88 $ (kW h)~" on material
level. The authors conclude that advanced chemistries such as
nickel-rich materials promise both, potentials in energy density
and cost. Schnell et al (2019) outline prospects of production
technologies and cost of oxide-based SSBs.”® Based on a cell format
for hybrid EVs, the authors calculate bottom-up material cost for
concepts using LNMO, NMC811 or HE-NMC cathodes, an oxidic
LLZ solid electrolyte and a lithium metal anode. Production costs
for cell manufacturing are based on a potential future process
derived from already industrialized fuel cell and ceramic capacitor
fabrication. Estimated large-scale cell cost range from 120 to
415 $ (kw h)™", depending on cathode material and price for
the solid electrolyte. The authors conclude that cost of oxide-
based SSBs could become competitive to LIBs if LLZ prices fall
below 60 $ kg™' or lighter solid electrolytes are developed.
Schneider et al. (2019) compare specific energy, cost and green-
house gas emissions of LIBs and sodium-ion batteries. Current
automotive LIB cell cost based on NMC111|C are estimated to
be 186 $ (kW h) ", significantly below the evaluated sodium-ion
alternatives. According to the authors, this finding is mainly
due to the lower specific charges and voltage of the active
materials of sodium-ion batteries, leading to higher material
requirements and longer processing times per kW h of capacity.
They further show current LIB superiority regarding greenhouse
gas emissions and attribute this fact to the same mechanism.
Consequently, the authors state that sodium-ion batteries can
only become competitive if a performance similar to LIBs is
achieved. Schnell et al. (2020) compare the manufacturing cost
of LIBs with sulfide and oxide-based SSBs based on an NMC811
cathode and a cell format dedicated to hybrid EVs.'"® For LIBs
using graphite and Si composite anodes, cell cost of 119 and
107 $ (kW h) ™" are calculated, respectively. For SSBs with lithium
metal anode, cell costs range from 86 to 132 $ (kW h)™" using a
sulfide solid electrolyte (LPS), and from 123 to 267 $ (kW h) " using
an oxide solid electrolyte (LLZ). The large variances in respective
cost can be attributed to the high uncertainty in solid electrolyte
prices in their study. In addition, the authors evaluate the cost of
a sulfide-based SSB with graphite anode and derive cell cost of
159 $ (kW h)~*. The authors conclude that, in contrast to all other
investigated SSBs, sulfide-based SSBs with lithium metal anode
have the potential to become competitive to LIBs if LPS prices drop
below 60 $ kg™ '. Ciez and Steingart (2020) investigate performance
and cost of different LIB cell designs and formats in grid storage
applications.’® For LMO|C-based chemistries, the authors inves-
tigate bobbin cells, a format known from alkaline batteries and
compare it to pouch cells with different electrode thicknesses. Cell-
level costs of 105 to 180 $ (kW h) ™" are reported for pouch formats
with an electrode thickness of 100 pm. Due to the higher electrode
loading of bobbin cells, these are shown to be cost competitive
with pouch cells up to an electrode thickness of 300 pm, but are
unlikely to be suitable for EV applications due to limited rate
capability. Duffner et al. (2020) analyze the suitability of the EU27
countries and the UK for LIB cell manufacturing.®® Country-
specific indicators are gathered to compare both, potentials
in the knowledge required for LIB production and location-
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based cost for energy, labor and buildings. Based on an
NMC622|C chemistry for EVs, cell costs range from 92 to
98 $ (kW h)~! from Bulgaria to Denmark, respectively. While
leading countries can be found in both single categories, no
country is found to be superior in both categories. The authors
conclude that the location decision is company-specific and
that experienced market leaders may favor lower cost countries
and new entrants potentially prefer locations with sufficient LIB
expertise. Yan and Obrovac (2020) quantify the cost-effectiveness
of LIBs and potassium batteries for stationary energy storage.'”
For LIBs based on NMC622|C chemistry, costs of 147 $ (kW h) ™"
are reported on pack-level. Potassium batteries are shown to have
overall cost drawbacks due to their inferior energy density,
despite cost advantages in current collectors. The authors
conclude that competitiveness to LIBs can only be achieved
by significantly improving the currently low cycle life. Nemeth
et al. (2020) evaluate performance and price of LIBs using
graphite and LTO anodes in automotive applications.'*® Price
estimations for NMC111|C and NMC111|LTO are based on
BatPac and are reported to range from 85 to 220 $ (kW h)™*
for mass-manufactured large high-energy cells. High-energy
LIBs using LTO anodes are shown to result in higher prices
than those using graphite anodes due to their lower energy
density. The authors conclude that LTO-based LIBs are more
suitable for high-power automotive applications due to their
excellent rate capability. Duffner et al. (2021) evaluate cost of
LIBs for EVs based on improvement potentials related to the
categories production process, material and cell design, and
location.”® Initial NMC622|C-based cell cost are calculated to be
106 $ (kW h) ™" and are forecasted to reach a level of 64 $ (kW h) ™"
by changing the cell chemistry to NMC811|C and simulating
eleven additional improvements from the three categories. By
analyzing the effect between categories, process improvements
are shown to result in the highest cost decrease. The authors
conclude that future cost reduction efforts should focus on
process improvements in mixing, coating, stacking, formation
and aging. Mauler ef al. (2021) analyze the effect of material and
process innovations on the cost-efficient plant scale in LIB
production for EVs."” LIB cells using LFP|C, NCA|C, NMC811|C,
and LR-NMC|C analyzed based on current and future scenarios
of the production process and cell cost between 75 and
145 $ (kW h)™" are calculated. The authors identify electrode
manufacturing to be the bottleneck process for plant sizing and
conclude that the analyzed innovations lead to a more than fivefold
increase in plant scales required for cost-efficient production.

4. Analysis of publications and
identification of future needs

4.1. Analysis across forecasting methods

An overview of forecasted pack-level ranges in the 53 analyzed
studies sorted by year of publication including an extract of the
parameter set of upper and lower bounds, applied forecasting
method, forecast item and the original forecast level before
conversion to pack-level is presented in Fig. 2. Regarding the

Energy Environ. Sci., 2021, 14, 4712-4739 | 4721


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ee01530c

Open Access Article. Published on 02 2021. Downloaded on 05/07/2025 12:25:01 .

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Energy & Environmental Science

0?0?

6}0?

0"7?

(]o?

s,oé

5‘10?

b].o?
&
I'o?

?Ib?

0)0?

T r
l?o? J lw\s)t a\dﬂ <[> lm\s yT 32 qu|d afvau | = ‘|e 12 J3|neN . O 2]
| |
ssar0 au||aseq 3|zzggw~ <p ssesod pazlu.ll)do 5| T8N [ ] (q) "|e 32 Jauyng . O | m
o14eUE25 1503 YBIY ‘0707 4 P OLIEUIS 1503 MO 00T mu |eweH . O | e
! | g
Iozoz <’> szoz 1 1€ 19 esiuad . @ | »
Iuoz <l> DIdd'I ‘0g0T — |e 3@ asnag .. . Ped
YM9 0T ‘0L TTIONN ‘f» YMO 00T Awdede aueld ‘3| TTTONN — ‘|e 18 YiswsN . . 2
|
IBIOZ <> sw0t ] ‘e 13 paiSuoly . Q | e
SITTTINN < | 2BA0IQQ pUB UBA . QO | e
|
jiewuaq « P eLeding uoneso] wuejd 3| ZZOIAN 1 (e) |e 32 Jauyng . (®) 1129
saoud :ua;:mlqﬂlH 4{; seoud [ensrew Mo :‘>Iow1 [ 1esulais pue zal) . @ 1195
| |
2o1d 711 Y81y ‘9SS PO o B 221d 541 MO| ‘8SS APy m 55 . . O =]
e e |‘ (CINCRENETTES =
2ITISIAN «p S| TT8IWN 1 H . O [
3Imawn 4’ | ‘|e 19 J3pIauYdS . Q| m
qus 0 <) UoNINPOId FAREINWIND YML S == ‘le 3@ noyz . @ | »
! |
. ud Y81y ‘6T0C <[> ouseuads 2dud MO| ‘E207 | uiR1s|ay2IaY puE oj|aWo) H @ | v
| | | | |
@aud 71 ql?w ‘nlowN <’> 22ud-717 Mo| 11| JNN-3H m ass‘ (e) "|e 33 |]3UYdS . ) 1122
Iswz 4{; saaud |eLIa1eW MeJ JURISUOD ‘OE0Z. I ‘[e 33 YyaIsH . @ | »
|
ITITONN <’> alowm | ] HEREFENTETY . Q |reuorew
|
210y B Puejog UORED| ueld I|VIN n “Je 39 10ddIjIyd . @ | v
| |
Supuiea| mofs 6107 4‘» Suuiea) e} ‘0507 P [CINERERTJINIES Ee ] @ | v
S mols 1oz < B eoi 50 g0 |10 19 AN B | O r
h : n
} :
o215 \38 llews ‘5207 <P ous A38 9B1e| ‘570 0| ZZ9IAN ‘ | | ‘ |e 33 unnojes . O yed
e el o e | w1239 yosoquajepa B | O
| | | I
$590X8 1173 1500 |10} I YSIH <« P> S539X@ I MO| 450 [10§ 11 M| ‘11| JAN-YIT m gss . Q | we=s
sl 1233 Yonwyds
olzzaonN <;> IS |DNN-YIAT = H . O | res
| | | i
slow <’> 2151229N | ‘e 32 ewjeep . QO | wee
0By XT ‘Wadxa 'ssad Iozoz < Suipuny @iy x0T “Madxa ansiwndo ‘uiw GE07 ‘e 13 ma4 6 O yoeg
Ipunoqjaddn 4‘; 592,08 Jo punoq JaN‘\oj a1 . Q | we
| |
punoq;sddn <[> 592105 J0 punog Jomo7 851 § ‘|e 32 oue) H QO | e
ey L 4‘; e e e e | ] QO | we
| " n
onedisud 2 o <‘I> P 5 o — ] \ \ (q) s1e3uMm pue a1y < O] m™
| ! | |
2|2Z9N ‘STOZ « P> DIS|ZZIDNN ‘00T == 55 . . Ped
| | | | ‘| 19 suewnjdIag
Slzzgonn <!> 2151229IWN < Q | we
|
107 4 0207 =, ‘|e 33 Jauny o] @ | »=
|
161 20usL1adke Mo| LT <’> 101 30uLadke yBIY 0507 e | (e) ‘e 1@ Ipruyos ke @ | »
| | | | |
1200 ansiuissad ‘YTOZ « P 1adxa MsIwdo ‘BTOZ i ) QO | wee
Iy O | () e 32 yes
siorowesed ansiussad YTOL 4 siwese : . QO | e
| . . :
uonasfo1d 1505 UBIY ‘9T0Z 4 P uouaalom 1505 M0) 0507 I | |23° 2100 B O | wee
| | | | |
a1 wniy) 48 2 [VON <E> aoud wnigy) mo| 5| OW | ‘- (e) 210831YM pue za1) L] Q| m
uBisap 1 ss9501d auljaseq P UBisap 3 s53501d paziwindo D[N — ‘|e 32 poom . O | wea
|
111%0% < av1 . O | m
|
nlsn < gs1 ‘|e 12 8iog « O | m
|
21421 4P AN — ] O | m
u8isap g ssa201d :usgwlgssed 4\; ugisap 13 ssa20.d onsiwndo 3| TTTIAN (e) |e 32 Ies . O | e
{iremre
SN 4P JSIDWN-¥1 F ‘le38 1nad . Q |reveren
s aor <*> Uonanposd AN J0 YML 00T [ s s s e | (q) sweypm pue uosanen | ¥ @ | »=
|
uoneznn g Su!peol moy 4’; uonezn g Buipeo) inyjns qslm w&m gs1 ‘|e 32 uasey . QO |reuoew
| | | |
v10z 4 8107 === UOSS|IN pue ISIVIAN B | O »
usisep auljaseq ’Suzpzul moy 4‘; usisep paziwindo ‘Suipeo] nyins ySiH NN 657 |2 39 NjBou3 . @ | r=
|
wrl g 4'; wrl gg ssauyIy apoLaes 3| IAN [ ] uuewaUANYIS . @ 1123
fon e <[> oud 1a8e) e (e) sweym pue uosaney | FH @ | »
|
queid %ol 2| OWT <E> Juey pa;e:lpap a{e:s o%e 3|m3 N | | [ ‘|e 139 Uos|aN . QO | e
T T ) L L
wr 05> 2] d41 « p wrt 00I> ssaupILp PO 3 TTIINN ——— ‘e 32 Aeg . O | m
auqsl moq 4‘, maua a|qea‘sn 3 a)e‘qs qSlHI .\ o . QO | e
| | |e 10 JaySe|jen
SITIIWN <P ISIONN-YWT ; I < QO | e
etk onsuissad ‘0707 q'p iadxe apsiwindo ‘080z ! | ‘ ‘e 13 1DoRUBIED 6 O | e
| . . . . . |
Seteis paun < B euiy) uoneso| weid D[ JWN | -2/gjionD 1uajuos Abiaua ou ‘pajiodal 3503 0101 AjuQ -| NOJOH PUE ppolg . O m
| | | | | | | | |
0107 « P =1el w08 austed Jeak-g ‘Bujuies|3se) 0gog | ‘ ‘|e 39 Jakey . Q | we
i e e e e e
: omz <> ozoz : ; : : ) 1219 SslPM ] Q | wee
T
henansiatssod g0z 4y oA apsuRED 0E0) _OO_O_TSSOOS = O | we
st ; r llee4 pue Yoejapuon-uassian . O | we
| | | .
Supuea| mojs Izmz <’> Bupuies| 52 * : & O | we=
otoz <\> ‘oueudds sajes By ‘ococ | ‘1233 pIyL o] QO | wee
!
Bulpun ou ‘0707 < Bulpuny gy [enuue Sui o 0207 | | | | . ‘[e 13 Jaxeg ) QO | wea
(=] (=] (=] [=] o [=3 (=3 (=3 o (=] (=] (=] [=3 [=3 [=3 o
o o (=] (=] o o o o o o o
. < M ~N - (=} (=% ) ~ ©o 2] < o0 ~ -
o = L I
-]
“n o
b4 £
8 H
23 E £ |3
23 < » | 8|3
4 SR £ -] s |2 =
st S ] R
o o c
He= 2 o G |6 .£
c ez el 2 g |2®
G c S S S [0 5
x oL a o [ A

Year of publication

Fig. 2 Overview of forecasted pack-level ranges in the

forecasting method, forecast item, and originally reported forecast level.
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analyzed technologies, 50 studies investigate LIB (signified by
solid bars), three studies SSB, five studies LSB and four studies
LAB technology (dashed bars). In addition, four studies apply
two different forecasting methods. For two of these, respective
values could be separated, yielding the total of 64 distinct
columns. The two remaining multi-method studies have been
classified according to their methodological focus. One study
did not provide energy-specific cost or respective battery energy
content, but has been included as an empty column."*® Most of
the resulting ranges are derived by bottom-up modeling
(33 forecasts), followed by technological learning (16),
literature-based projection (10) and expert elicitation (4). Battery
cost is the most reported forecast item (40 forecasts) and the
majority of originally derived ranges is on pack-level (34).
Across the examined studies, reported values range from 20 to
1543 $ (kW h)~'. This extensive spread can be explained by a
look at the parameter extractions across methods (positioned
above the colored bars in each column of Fig. 2). Exceptionally
high ranges can be observed for early time-specific studies
with long forecasting periods using technological learning or
literature-based projection, which can be dedicated to a higher
initial level of battery cost reported at the beginning of the
decade that are not included in the ranges of later studies.
Further, the majority of studies that involve experts exhibit high
ranges, which can be explained by a high variability and
disagreement among experts reported by all respective authors.
Even though most studies applying a bottom-up method do
report values for a specific year, cost uncertainties are observable
for different technological and market assumptions. A closer look
at the parameter extracts reveals a variety of interacting dimen-
sions that are investigated across methods and affect battery cost

View Article Online
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across methods. Apart from time, these include battery technology,
battery design and format, production process and technology,
plant location, plant size, material prices, vehicle size, cumulative
production, R&D funding, and public subsidies. From the analysis
between methods and parameter sets, we derive that studies using
technological learning, literature-based projection and expert eli-
citation are, in most cases, applied to derive battery cost in the
time dimension (ie., for a specific year), whereas studies using
bottom-up modeling show a focus on battery technology (i.e.,
technological concept such as cathode and anode technology).
For this reason, in the following method-specific analysis, we focus
on time for the first three methods and on battery technology for
the latter. In addition, we include remarks regarding the effect of
the further outlined criteria.

4.2. Technological learning

The results of examined publications that derive time-specific
battery cost forecasts based on technological learning are
summarized in Fig. 3. We further include industry-average
price observations®*®®° on pack-level for comparison that are
displayed as a histogram. When looking at the empirical price
development from 2010 to 2020, high absolute reductions can
be perceived especially in the first half of the decade from
1160 $ (kw h)™" in 2010 to 384 $ (kW h)~' in 2015. This
reduction has been explained by high cost in the early phase of
EV sales growth, characterized by low production volumes, high
pack variance and immature pack production processes that
allowed for fast learning.! In the second half of the decade,
more moderate absolute reductions are observable that reach a
level of 137 $ (kW h)™" in 2020. Similar to the development
of industry data, all authors expect a decline in LIB cost.

1$ (kwhy] |4 Technological learning
1,200
Thiel et al. (2010)
1,100 —O— Gerssen-Gondelach and Faaij (2012)
—B— Mayer et al. (2012)
1,000 Nykvist and Nilsson (2015)
—&— Schmidt et al. (2017, a)
900 —ll— Kittner et al. (2017)
—{ Berckmans et al. (2017)
800 —<O— Edelenbosch et al. (2018)
Nykvist et al. (2019)
—@— Schmidt et al. (2019, b)
700
Hsieh et al. (2019)
Beuse et al. (2020)
600 —@— Penisa et al. (2020)
Reference Bloomberg NEF (2020)
500
400
300
200
100
0 - e e : .

2010 2015

2020

Fig. 3 Forecasted values of studies applying technological learning methods to derive time-specific estimates.
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Table 3 Publications applying technological learning and details regarding specific methods and assumptions

View Article Online

Review

Learning factor

Learning rate

Time
Forecast period for Industry for Integration of
Publication Approach item Description CAGR Value calculation calculation material prices
Thiel et al. (2010) 1-Factor Cost Cum. battery sales 39% 10% <2002 Battery-specific No
Gerssen-Gondelach 1-Factor Cost Cum. battery production 64% 9-17% 1993-2004 Battery-specific Feasibility test
and Faaij (2012)
Mayer et al. (2012) 2-Factor Price  Cum. battery sales, 27% 8% 1991-2005 Battery-specific No
cum. patents 30% 27%
1-Factor Price Cum. battery sales 27% 14% 1991-2005 Battery-specific No
Nykvist and Nilsson 1-Factor Cost Cum. battery sales 100% 9% 2006-2014 Battery-specific No
(2015)
Schmidt et al. (2017, a) 1-Factor Price  Cum. installed capacity 35% 15.9% 2010-2016 Battery-specific Feasibility test
Kittner et al. (2017) 2-Factor Price  Ann. battery production, 13% 16.9% 1991-2015 Battery-specific Feasibility test
cum. PCT patents 10% 2% per 100 (See 4-factor)
PCT patents
1-factor Price  Ann. battery production 13% 17.3% 1991-2015 Battery-specific (See 4-factor)
1-Factor Price  Cum. battery production 16% 15.5% 1991-2015 Battery-specific (See 4-factor)
1-Factor Price  Cum. patents 10% 31.4% 1991-2015 Battery-specific (See 4-factor)
4-Factor Price  Ann. battery production, cum. 13% 14.8% 1991-2015 Battery-specific Lithium & cobalt
patents, lithium/cobalt price 10% n/a price included
n/a, n/a,n/a
n/a
Berckmans et al. (2017) 1-Factor Price  Ann. battery sales 30% 23.5% <1984 Chemical Only in bottom-up
processing
Edelenbosch et al. 1-Factor Cost Cum. battery sales n/a n/a n/a n/a n/a
(2018)
Nykvist et al. (2019) 1-Factor Cost Cum. battery sales 36% 16.8% 1991-2016 Battery-specific No
Schmidt et al. (2019, b) 1-Factor Price  Cum. installed capacity 28% 19.1% 2010-2017 Battery-specific No
Hsieh et al. (2019) 2-Stage Price  Cum. installed NMC 43% 16.5% (pack) 2010-2016 Battery-specific Floor for mineral &
(1-factor) battery capacity 3.5% (NMC) material cost
Beuse et al. (2020) 1-Factor Price  Ann. installed capacity 20% 20.8% 2010-2017 Battery-specific Material cost floor
Penisa et al. (2020) 2-Factor Price  Cum. NMC battery sales, 11% 21.2% 2007-2019 Battery-specific Feasibility test
cum. PCT patents 10% 3% per 100 (See 4-factor)
PCT patents
1-Factor Price ~ Cum. NMC battery demand 11% 25.3% 2007-2019 Battery-specific (See 4-factor)
1-Factor Price  Cum. PCT patents 10% 35.9% 2007-2019 Battery-specific (See 4-factor)
4-Factor Price Cum. NMC battery demand, cum. Variables in 4-factor model stated to be Lithium & cobalt

PCT patents, lithium/cobalt price

In bold: central method applied in the respective study.

statistically insignificant

price included

Study-specific average estimates range from 1120 $ (kW h) " for
2010 to 63 $ (kW h)~" for 2030. In comparison to the industry
average, the majority of forecasts until 2020 are above empirical
price observations and high variances in forecast levels and
developments can be identified across studies and time of
publication. These variances can be attributed to differences
in methodological variants and specific assumptions, both of
which will be discussed in further detail.

The central methods used in the respective publications
can be further specified in three different approaches. First, the
1-factor approach that relates forecast values to the future
development of one learning factor. This is the most common
approach for battery cost forecasts and used as the central
method in nine studies.'**>35738:80:92 gecond, the multi-factor
approach, which is characterized by cost or price reductions
that are derived based on the future development of multiple
learning factors. Regarding forecasts in this study, a 2-factor
approach is applied by three studies.**°** Third, only applied
by one study,*® a 2-stage approach, meaning that technological
learning is conducted in two subsequent stages for different
cost components with specific learning rates. While in some

4724 | Energy Environ. Sci., 2021, 14, 4712-4739

of these studies, more than one approach is used in order to
validate assumptions, one central method is stated to explain
cost developments most accurately. This study-specific approach
is highlighted in bold in Table 3 where detailed assumptions of
the respective publications are displayed.

Across all studies, at least one type of battery production,
capacity or sales volume is defined as a learning factor, which
has been applied in various studies on energy technologies*®
and has been shown to be a particularly reliable metric in
technological forecasting."*® The authors relate their time-specific
forecasts to “experience”, namely cumulative battery production,®®
cumulative battery sales'****»*> or cumulative installed battery
capacity,"*””?° and “economies of scale” such as annual battery
production,"**?* all of which will be referred to as “the battery
market”, for the sake of simplicity. Regardless of the specific
learning factor, each predicted value is significantly impacted by
the determination of three parameters. First, the initial value of the
time series that affects the level of subsequent estimates. Second,
the learning rate, also referred to as experience rate if prices are
concerned, that signifies the reduction rate in the forecast item for
each doubling of the learning factor. Third, the expected growth

This journal is © The Royal Society of Chemistry 2021
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a| Forecast assumptions affecting cost decline
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b| Time period for learning rate calculation
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Fig. 4 Assumptions for learning rates and battery market growth (a) and time period for the learning rate calculation (b).

rate of the learning factor that represents the speed of progress
throughout the forecasting period and allows for a translation into
a chronological scale. Regarding all three assumptions, remark-
able differences are conceivable. The initial values can be extracted
from the time-specific development in Fig. 3. Unsurprisingly, a
decreasing trend is observable for initial values with an advancing
year of publication that has been described earlier." For both other
parameters, that largely determine the slope of the forecast series,
an unambiguous development is not apparent and will be
discussed in detail. Learning and experience rates alongside
the underlying expectations for future battery market growth,
calculated as compound annual growth rate (CAGR) of the
learning factor in the forecasting period, are displayed in
Fig. 4a and are provided in the ESL.{ Market growth assump-
tions, mostly based on the respective metrics for EVs from
various analyst, industry and agency reports combined with
assumptions regarding vehicle battery size, range from 11 to
100% per annum. In spite of this vast range, differences in timing
and length of the forecasting period as well as individual beliefs
regarding future policy support can justify these variances and
need to be taken into account in a comparison.*® The variability in
this assumption is particularly large for earlier studies, whereas
assumptions of market growth converge between 11 and 43% p.a.
for studies after 2015, further narrowing to between 28 and 43% p.a.
for those who forecast until 2030, indicating confidence in a more
stable level of future battery market growth in academic literature.
Regarding learning and experience rates, a differentiated analy-
sis between 1-factor and 2-factor forecasts is essential since,
based on the same data set, 2-factor approaches generally find
lower factor-specific rates due to partial allocation of cost
reductions to other factors.*® For 1-factor models, a convergence
can be perceived for learning and experience rates that range
from 9% to 24% across publications and stabilize at a higher
level between 16% and 24% in studies after 2015. For 2-factor
models that also integrate the growth in patent activity,
although only supported by three studies, similar observations
can be made for the learning rate related to the battery market.

A major determinant of the learning rate is the time period
chosen for its calculation.”® Since learning rates are derived

This journal is © The Royal Society of Chemistry 2021

from the historical correlation between the learning factor (in
most cases, the battery market) and the forecast item (battery
cost or price), results may vary across years. The analysis of the
relationship between learning rates and underlying time periods
is a common research object for technologies in the renewable
energy sector such as solar modules,"””' wind turbines and
farms,*®"'?* or hydro power plants."*® For batteries, study-specific
time periods for the calculation of learning rates are displayed in
Fig. 4b. When examining this relationship, an unambiguous
development cannot be identified. However, when taking into
account that Berckmans et al. derive their learning rate from a
study that investigates chemical processing in general (see
Table 3), an observation can be made for the remaining studies
that obtain their learning rate based on a battery-specific market
analysis. Among these studies, authors that integrate the years
2015 to 2019 into their calculation derive higher learning rates.
The effect of both, stabilizing market assumptions and conver-
ging battery-specific learning rates, finds its expression in less
volatile forecasts from studies after 2015, depicted in Fig. 3 as
lines at the lower end between 2017 and 2030. In a comparative
analysis between the methodological variants among this
limited dataset, we find that even though the 2-factor approach
yields the lowest time-specific results, it relies on lower initial
values than the other examined variants. Regarding the 1-factor
approach, above mentioned similarities lead to comparable
slopes across studies, excluding Edelenbosch et al. that could
not be analyzed in detail due to limited transparency of assump-
tions. In contrast, the forecasts of Hsieh et al., using a 2-stage
approach, tend to level off beginning from 2025. This can be
explained by two specific characteristics of their approach. First,
the authors separate learning between active material synthesis
and pack production. They derive, based on historical 