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Investigating magnetic van der Waals materials
using data-driven approaches†

Romakanta Bhattarai, Peter Minch and Trevor David Rhone *

In this work, we investigate magnetic monolayers of the form

AiAiiB4X8 based on the well-known intrinsic topological magnetic

van der Waals (vdW) material MnBi2Te4 (MBT) using first-principles

calculations and machine learning techniques. We select an initial

subset of structures to calculate the thermodynamic properties,

electronic properties, such as the band gap, and magnetic properties,

such as the magnetic moment and magnetic order using density

functional theory (DFT). Data analytics approaches are used to gain

insight into the microscopic origin of materials’ properties. The

dependence of materials’ properties on chemical composition is also

explored. For example, we find that the formation energy and mag-

netic moment depend largely on A and B sites whereas the band gap

depends on all three sites. Finally, we employ machine learning tools

to accelerate the search for novel vdW magnets in the MBT family with

optimized properties. This study creates avenues for rapidly predicting

novel materials with desirable properties that could enable applica-

tions in spintronics, optoelectronics, and quantum computing.

Introduction

Two-dimensional (2D) materials represent an important family
of materials that have been of central interest since the discovery
of graphene in 2004.1 A large number of 2D materials have been
investigated using computational and experimental approaches.
The tunability of their properties down to a single layer makes
them ideal candidates for a variety of applications including
nanoelectronics, optoelectronics,2–4 sensing,5 memory devices,6

spintronics,7 and quantum computing.8,9 This implies that 2D
materials hold great potential for driving future industrial
innovation. Materials with intrinsic 2D magnetism are of parti-
cular interest because these materials can exhibit phenomena
such as ferromagnetism, and the quantum anomalous hall effect

(QAHE). Although existing materials databases, such as C2DB,10

and 2DMatPedia,11 contain a lot of 2D magnetic materials
that are predicted via computational methods, there are only a
handful of such materials that are experimentally demonstrated
to show intrinsic 2D magnetism. Examples of these include
Cr2Ge2Te6,12 CrI3,13 VSe2,14 Fe3GeTe2,15 and FePS3.16

MnBi2Te4 is one of the most studied 2D magnetic materials17–28

whose bulk phase was experimentally studied in 2013.29 It
consists of blocks of a septuple layer (SL) of Mn, Bi, and Te
in the following order: Te–Bi–Te–Mn–Te–Bi–Te. Each SL can be
exfoliated as a single layer that exhibits intralayer ferromagnet-
ism (FM). Interestingly, any two adjacent SL blocks can be
stacked to give rise to an anti-ferromagnetic (AFM) order. Bulk
MBT has an AFM order and is a topological insulator (TI).17,30

Meanwhile, the MBT monolayer is a direct band gap semicon-
ductor with a band gap of 0.70 eV.6 In addition, MBT also hosts
several exotic phases that depend on the layer number. These
include the quantum anomalous hall insulator,26 Weyl
semimetal,6 and axion insulator.31 The alternating magnetic
ordering and rich topological properties make MBT an exciting
2D topological quantum magnetic material that can have
potential applications in topological quantum computing,
nanoelectronics, spintronics, and data storage.

Discovering novel materials with desirable properties in a
large materials space via experiments or first-principles quantum
calculations is prohibitive as both methods are expensive in terms
of time and cost. Access to supercomputers has accelerated the
exploration of materials resulting in an increasing number of
novel materials in recent years. The rise of materials
databases10,11,32,33 and access to efficient ML algorithms facilitate
the growing area of materials informatics, i.e. applying machine
learning to materials science. Materials informatics enables the
accelerated discovery of materials with desirable characteristics
through the efficient exploration of a large set of materials.34–45

ML lowers the computational cost of materials discovery due to its
ability to learn from a small dataset and make predictions on a
much larger dataset. As a result, ML techniques have been
employed in various areas of materials science including 2D
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magnetic materials,37,46 Janus materials,47 energy materials,48,49

MXenes,50,51 catalysts52 and other functional 2D materials38 to
accelerate materials discovery.

In this paper, we use first-principles calculations and machine
learning techniques to investigate monolayers of the form
AiAiiB4X8 based on the well-known intrinsic topological magnetic
layered material MnBi2Te4. We consider a very large number of
candidate materials (B104) formed by making chemical substitu-
tions at A, B, and X sites. We select an initial subset of 240
structures and study their thermodynamic (i.e. formation energy),
electronic (i.e. band gap), and magnetic properties (i.e. magnetic
moment, magnetic order) using DFT calculations. Data analytics
methods are employed to gain insight into the microscopic origin
of materials’ properties. Finally, we use ML tools to predict novel
materials from the MBT family having desirable properties, such
as materials with large magnetic moments and high chemical
stability. This study creates avenues for the design of novel
materials that can enable technological innovation.

Methods

First, we generate a database of candidate structures of the type
AiAiiB4X8 based on the parent material MnBi2Te4 with different
elements occupying A, B, and X sites. In our study, we consider
20 transition metals at the A site, 4 elements from group
IVA–VA at the B sites, and 3 chalcogens at the X site, yielding
12,600 AiAiiB4X8 candidate materials that comprise our chemical
space. Initially, we consider a small subset of 240 structures for
DFT calculations. The unit cell of MnBi2Te4 consists of 7 atoms.
We use a 2 � 1 � 1 supercell in the calculation to ensure that a
minimum number of sites are available for making composite
materials from the parent structure. The chemical formula of
composite materials thus becomes AiAiiB4X8. All the structures
considered in DFT calculations have an Mn atom at one of the two
A sites of AiAiiB4X8 (eg. (MnCr)Sb4Te8). Geometrical optimization
is performed with spin-polarization and spin–orbit interactions.
We use VASP53 to perform first-principles calculations with pro-
jected augmented wave pseudopotential54 along with the GGA-
PBE type55 of exchange and correlation functional. The Hubbard
U parameter (U = 4 eV) is introduced to consider the localized 3d-
states of all the transition metals.56 A plane wave basis set with a
kinetic energy cut-off of 450 eV is used. The electronic and force
convergence criteria are set to be 10�6 eV and 10�2 eV Å�1

between any two successive SCF steps respectively. The Gaussian
smearing method with a width of 0.03 eV is used in the calcula-
tions. Gamma-centered k-points mesh of 5 � 10 � 1 is used for
the integration of the Brillouin zone. A vacuum region of more
than 30 Å is chosen to avoid the interaction between any two
adjacent layers. Using DFT, we calculate the total ground state
energy, electronic band gap, magnetic moment, and magnetic
order of the initial subset of structures. We also calculate the
formation energy and use it as a proxy for the chemical stability of
a material. It is the difference in energy between the chemical
compound and individual elemental phases constituting that
compound, which, for AiAiiB4X8 structures, is given as,

Eform = E(AiAiiB4X8) � E(Ai) � E(Aii) � 4 � E(B) � 8 � E(X)

The corresponding energies are obtained from the DFT calcula-
tions. It should be noted that the materials with the lowest
energy spin configurations are considered when calculating the
formation energy.

To train the ML models on the DFT-calculated data, we
construct a set of materials descriptors using atomic properties
obtained from the Mendeleev python package.57 We use a total
of 55 descriptors built from 11 different atomic properties
including dipole polarizability, ionization energy, electron affinity,
covalent radius, number of valence electrons, and number of
unpaired electrons (see ESI† for detailed information). These
descriptors are the inputs of the ML models and DFT-calculated
formation energy, magnetic moment, and band gap are the target
variables of the ML models.

To train the machine learning model, we randomly split our
dataset into a training set, a validation set, and a test set in the
ratio of 0.6 : 0.2 : 0.2 respectively. Different types of supervised ML
models are then employed to predict the materials’ properties. For
instance, random forest regression and extra trees regression are
used for predicting the formation energy, whereas random forest
regression is used for making predictions on the magnetic
moment, and band gap.58 The random seed is not kept fixed in
the random forest regression models. Also, we use K-fold cross-
validation with K = 10 while tuning the hyperparameters. See ESI†
for details on the hyperparameters used for each ML model.
These models are useful for making physical interpretations of
the predictions because they allow us to extract the relative
importance of the features used to make predictions (Fig. 1).58,59

Results and discussion
Workflow overview

The workflow of data-driven virtual screening of the magnetic
vdW materials is presented in Fig. 2. We start with a monolayer
of MBT as the archetypal material. Then we make chemical
substitutions at the A, B, and X sites of MnBi2Te4, with one of
the two A sites (i.e. Ai) unchanged, to get a subset of the
chemical space for DFT calculations. 20 transition metals are
chosen for the Aii sites (making MnAii, e.g. MnCr, MnNi), 4

Fig. 1 The crystal structure of the AiAiiB4X8 (a) FM and (b) AFM state. (c)
Elements that are considered for the substitution on A (blue), B (magenta),
and X (tan) sites.
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group IVA–VA elements for the B sites (i.e. Bi2, Sb2, Sn2, and
Pb2) and 3 chalcogens at the X sites (i.e. S4, Se4, and Te4) are
used for the substitutions. This generates a total of 240 candi-
date structures. Next, we perform DFT calculations on those
structures and apply data-analytics techniques to analyze the
DFT results. Our data-analytics method focuses on the follow-
ing materials’ properties: formation energy, magnetic moment,
magnetic states, and band gap. We train ML models and then
use them to predict the properties of the entire materials space
of AiAiiB4X8 structures consisting of 12,360 candidate materials.
Next, we apply three screening criteria on the ML predicted
materials properties: formation energy (Ef) o 0 eV, (ii) magnetic
moment (m) 4 4.55 mB, and (iii) band gap (Eg) 4 0 eV. These
filters will search for stable magnetic insulators from the
materials space of AiAiiB4X8. Finally, the candidate materials
that are passed through the filters are tested via DFT calcula-
tions. The dynamic stability tests are performed on the struc-
tures that are confirmed by DFT calculations.

Formation energy

Calculating formation energy is the very first step in screening
the materials in our work. It is used as a proxy for the chemical

stability of a material. A plot of the formation energies of 240
structures considered in the initial calculations is shown in
Fig. 3(a). In the calculations, one of the two A sites (i.e. Ai) is
always fixed to Mn. It is evident that the cases where the
elements Sc, Zn, Y, and Cd are on the Aii site have the lowest
formation energies than any other substitutions. This behavior
also resembles that of Cr2Ge2Te6 in Ref. 37. The structures
comprising certain transition metals such as Mo, Tc, Ru, Rh on
the Aii site tend to have larger formation energy implying less
stability. The number of electrons present in their d-orbitals is
associated with this behavior (see ESI†). Also, a trend of slightly
decreasing formation energy is seen as we go up the column
from Te to Se or S at X sites. For any given A and X sites, the
structures with Bi on the B site tend to have lower energies.
There is a trend of increasing formation energy for the B site as
follows: Bi o Sn o Pb o Sb.

Magnetic moment

Calculating magnetic moments is another important step in
our materials search. We aim to find materials that have
ferromagnetic spin configurations as well as large magnetic
moments. Fig. 3(b) shows a heatmap of the DFT-calculated

Fig. 2 The workflow of data-driven virtual screening of magnetic vdW materials.

Fig. 3 (a) Formation energy per unit cell (in eV) and (b) magnetic moment per unit cell (in mB) of AiAiiB4X8 structures at the lowest energy states.
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magnetic moment per unit cell for the 240 candidate structures
in their lowest energy spin configurations. Since only the A site
(Ai and Aii) of MBT contains magnetic elements, the magnetic
moments depend mainly on the Aii site (Ai is fixed to Mn).
A pattern in Fig. 3(b) emerges: as we go from left to right of the
first two rows of transition metals in the periodic table, the
structures comprising the elements such as V, Cr, Mn, Fe have
larger (or nearly zero) magnetic moments if there is FM (AFM)
ordering whereas the elements such as Sc, Ti, Cu, Zn have
significantly smaller values. This is consistent with the total
number of unpaired electrons in the atoms: the elements with
the higher (lower) number of unpaired electrons have larger
(smaller) magnetic moments (see ESI†). Also, elements like
Sc, Y, Zr, Cu, Zn, and Ag are non-magnetic, substituting these
in the Aii site will reduce the magnetic moment to around
2.2 mB per unit cell. The white blocks represent the AFM
structures having magnetic moments close to zero. In addition,
some of the structures exhibit ferrimagnetism with the mag-
netic moment between 0 and 2 mB such as (MnNi)Sb4Te8,
(MnCo)Sn4Se8, and (MnV)Sb4S8.

Interestingly, the elements on the B sites play a role in
determining the magnetic moment, and magnetic order of the
structures although their contribution is not highly significant.
Relatively larger magnetic moments are found in the cases
where Bi and Sb are on the B site (i.e. B2 = Bi2, Sb2). We expect
that structures with both Bi and Sb at the B site also have
similar magnetic moments (i.e. B2 = BiSb). On the other hand,
Sn and Pb at the B site tend to lower each atom’s local magnetic
moments, resulting in smaller magnetic moments. This
emphasizes the role of additional 5p (unpaired) electrons in
group VA elements that are absent in group IVA. The magnetic
moment of pure MBT monolayer is 4.62 mB per unit cell. We
find that the following four additional candidate materials have
slightly larger magnetic moments than pure MBT monolayer:

Mn2Bi4S8 (4.66 mB), Mn2Bi4Se8 (4.65 mB), Mn2Sb4S8 (4.65 mB),
and Mn2Sb4Se8 (4.64 mB).

Magnetic spin configurations

A plot of magnetic spin configurations of 240 candidate struc-
tures of AiAiiB4X8 is shown in Fig. 4(a). The blue and yellow
colors represent the respective FM and AFM spin ordering in
their ground states. Most of the structures with Co, Ni, Ru on
the Aii site strongly prefer AFM configurations irrespective of B
and X sites whereas those comprising Mn, and Tc prefer FM
configurations. A total of 182 out of 240 structures have FM and
the remaining 58 have AFM spin configurations. Our analysis of
magnetic ordering gives an overall scenario of how the mag-
netic spins are aligned in the candidate materials depending
upon the atomic substitutions at different sites. This helps us
to search for structures in the chemical space of AiAiiB4X8 with
specific magnetic configurations.

Band gap

The electronic properties of the candidate structures are also
investigated. The electronic band gaps are calculated using the
pymatgen package.60 The calculated electronic band gaps are
shown in Fig. 4(b). Analysis of electronic band gaps is an
important step to search for candidate materials in the family
of MBT monolayers that exhibit topological properties. Since
standard DFT is known to underestimate the band gap,61 we
use the DFT+U method to better approximate the band gaps.
We expect that the results will also be useful for the comparative
study of the family of MBT materials. The exact band gap
calculation requires computationally very expensive methods such
as hybrid-DFT (HSE),62,63 many-body green function (GW),64–66

and Bethe–Salpeter equations (BSE) approaches,67,68 which are
not suitable for high-throughput calculations. All the structures
comprising the elements from group IVA, namely, Sn and Pb, at

Fig. 4 (a) Magnetic spin states (FM/AFM) and (b) electronic band gap (in eV) of AiAiiB4X8 structures at the lowest energy states.
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the B site show zero band gap hence the metallic behavior
irrespective of A and X sites. But those with Sb and Bi at the B
site are mostly semiconducting and show an increasing trend of
the band gap as we go up from Te to Se or S at X sites. This implies
that the band gap is sensitive to the occupancy of A, B, and X sites.

Next, we apply the following three filters on the materials in
the DFT dataset: (i) formation energy (Ef) o 0 eV, (ii) magnetic
moment (m) 4 4.55 mB, and (iii) band gap (Eg) 4 0 eV. The first
filter, Ef, is a proxy for chemical stability. It is a necessary but
not sufficient condition for chemical stability. The second
filter, m, screens for the materials with magnetic moments
greater than or equal to that of monolayer MnBi2Te4. This also
ensures that the screened materials are ferromagnetic with
large magnetic moments. The third filter is applied to exclude
the candidate materials that are metallic. Since the topologically
nontrivial insulators tend to have non-zero band gaps, we expect
that the last filter may help to identify novel materials in the
MnBi2Te4 family that have topological properties. We find that
five candidate structures satisfy these criteria including one with
Tc on Aii site. Since Tc is a radioactive element, we do not
consider the structure comprising Tc as a viable material for
further investigation. These structures are Mn2Bi4S8, Mn2Bi4Se8,
Mn2Sb4S8, and Mn2Sb4Se8. Their corresponding values are pre-
sented in Table 1.

It should be noted that the monolayer Mn2Sb4S8 and few-
layer Mn2Bi4Se8 have been successfully synthesized in
experiments.69–73 While the monolayers of Mn2Bi4Se8, and
Mn2Sb4Se8 are predicted using first-principles calculations in
the past,74 the bulk phase of Mn2Bi4S8, and a quasi-one-
dimensional phase of Mn2Sb4Se8 are also experimentally
synthesized.75,76 This supports the ability of DFT methods to
discover novel materials.

ML models for high-throughput screening

We train ML models on the DFT data aiming to facilitate a better
understanding of the structure–property relationships so that
this relationship can be exploited for quantitative predictions.
ML will then be used to screen the entire space of AiAiiB4X8

materials. We use two non-linear regression models to predict

the formation energy of the materials. Fig. 5(a) and (b) represent
the performance of extra trees regression and random forest
regression on predicting the formation energy of AiAiiB4X8

structures respectively. The models’ performance is measured
in terms of R2 and mean absolute error (MAE). It is evident that
both models work very well for predicting the formation energy,
indicated by the high (R2) test scores. We also examine the
performance of random forest regression on the test data with
the size of the training set in Fig. 5(c). The model performance
increases with the training set size at first, then reaches almost a
plateau region after the training set size exceeds 96 data points
(40% of the DFT-generated dataset). The corresponding highest
test score (R2) is 0.92 with an MAE of 0.27 eV.

The random forest descriptor importances for the top
descriptors for formation energy is shown in Fig. 5(d). This
shows that certain descriptors such as atomic volume, electron
affinity, electronegativity, dipole polarizability, and covalent
radius are the most important for predicting the formation
energy. The larger the difference in atomic volume between B
and X sites, the more negative the formation energy (indicating
higher stability). Similarly, the greater the difference in electro-
negativity between two A sites, the more positive the formation
energy is (indicating lower stability. The structures with higher
electronegativity, a tendency to make chemical bonds, are more
chemically stable. This means the structures comprising two
completely different elements on A sites (in terms of electro-
negativity) are less chemically stable.

The random forest model performance for the magnetic
moment of AiAiiB4X8 structures is shown in Fig. 6(a). The model
has a test score (R2) of 0.59 and MAE of 0.35 mB. The model
performance here is lower than that of the formation energy.
This is likely due to the fact that the magnetic moment is a
complex property whose behavior is not fully captured within
the descriptors used. For instance, the magnetic moment is
sensitive to the position of atoms within the structures because
of the direct and indirect exchange interactions. However, the
descriptors used do not directly include the atomic positions.
Also, the model performance is impacted by the distribution of
the data. For instance, a large portion of the data has m near

Table 1 Predicted candidate structures. DFT and ML represent the structures that are predicted from DFT calculations and machine learning,
respectively

Chemical formula Predicted from Magnetic state Formation energy (eV per unit cell) Magnetic moment (mB per unit cell) Band gap (eV)

Mn2Bi4S8
a76 DFT FM �2.511 4.655 0.732

Mn2Bi4Se8
a69,70,74 DFT FM �2.751 4.651 0.493

Mn2Sb4S8
a71–73 DFT FM �0.601 4.652 0.707

Mn2Sb4Se8
a74,75 DFT FM �0.783 4.639 0.431

Mn2Bi4S4Te4
b84,85 ML FM �1.522 4.613 0.169

Mn2Bi4Se4Te4
b84,85 ML FM �1.928 4.619 0.178

Mn2Sb2Bi2Te8
b86 ML FM �0.807 4.641 0.278

Mn2Sb2Bi2S4Se4 ML FM �1.558 4.641 0.465
Mn2Sb2Bi2S4Te4 ML FM �0.627 4.611 0.252
Mn2Sb2Bi2Se4Te4 ML FM �1.024 4.618 0.249
Mn2Sb2Bi2Se8 ML FM �1.856 4.644 0.335
Mn2Sb4Se4Te4 ML FM �0.137 4.616 0.493
Mn2Bi4S4Se4 ML FM �2.439 4.645 0.533

a Structures that are synthesized in the experiment. b Structures predicted from DFT calculations.
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2 mB (see ESI† for more details). To more accurately predict m,
we need a sophisticated set of descriptors. Examples include,
CGCNN,77 and SOAP.78 However, these models are more
complex and less physically interpretable. So, we choose a less
sophisticated interpretable model for our analysis. We are able to
employ this model for making reasonably accurate predictions on
magnetic moments of the new structures, which is discussed
below. The top descriptors are the average number of unpaired
electrons, average electron affinity, and standard deviation of
valence electrons. Since the total magnetic moment comprises
the local magnetic dipole moments of individual spins, a larger
(smaller) number of spin-up electrons will yield a higher (lower)
magnetic moment. Among the elements on A sites, Mn and Tc
have the highest number of unpaired electrons. So we expect the
structures comprising these elements to have the largest magnetic
moments (see ESI† for the most important descriptors).

Fig. 6(b) shows the performance of random forest regression
on band gap prediction. The model performs well with a test

score (R2) of 0.70 and MAE of 0.08 eV. The performance is not as
good as formation energy but better than the magnetic moment.
The average number of unpaired electrons, average dipole
polarizability, average number of valence electrons, and average
ionization energy are some of the most important descriptors.
For example, a higher ionization energy implies that the elec-
trons are more tightly bound to the nucleus and thus are not
easily liberated from the atom. This results in a larger separation
of the valence band and conduction band in solids thereby
increasing the band gap. Also, the materials with larger (smaller)
dipole polarizabilities have smaller (larger) band gaps. However,
the reverse trend is observed in the case of unpaired electrons
(see ESI† for additional details). Several studies have already
shown that data-driven approaches can be used to efficiently
predict the band gap of a variety of materials.79–83

After training the ML models, they are then used to make
predictions on the entire space of AiAiiB4X8 materials containing
12,360 structures that are not included in the original dataset of

Fig. 5 ML prediction of formation energy (in eV) of AiAiiB4X8 structures (a) extra trees regression (b) random forest regression. Training and test data are
displayed in blue circles and orange squares respectively. (c) Performance of random forest regression on the test data with the size of the training set (d)
Top 9 descriptors for the formation energy prediction by random forest regression.
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240 structures used for DFT calculations. Next, we apply the
following three filters on the materials in the resulting dataset: (i)
formation energy (Ef) o 0 eV, (ii) magnetic moment (m) 4 4.55 mB,
and (iii) band gap (Eg) 4 0 eV. After applying the screening
criteria to the ML predictions, we find 25 promising materials.
Three of them contain technetium (Tc). Being a radioactive
element, we exclude the structures comprising Tc during the
final DFT simulations. We then check these 22 predictions with
further DFT calculations and find that 9 of them satisfy all the
criteria. Interestingly, 3 of these 9 structures are already
reported as ferromagnetic vdW Janus materials. They are
Mn2Bi4S4Te4,84,85 Mn2Bi4Se4Te4,84,85 and Mn2Sb2Bi2Te8.86 This
validates our data-driven method for discovering novel materi-
als. All the predicted candidate structures (9 ML-predicted and
4 DFT-calculated) are presented in Table 1.

We find that our data-driven approach is successful in
identifying the candidate materials in the MBT system that have
not yet been reported in the literature. The ML model perfor-
mance can be determined by the R2 scores and the MAE. Using a
random forest model we find an R2 score (MAE) of 0.92 (0.27 eV)
for the formation energy, 0.59 (0.35 mB) for the magnetic moment,
and 0.70 (0.08 eV) for the band gap. These scores indicate that the
models are performing well. We report a materials screening
success rate of 41% (9 out of 22) that includes three criteria -
formation energy, magnetic moment, and band gap. A 100%
success rate would imply that ML predictions exactly match
DFT calculations. Our result does not imply that the models’
performance is poor. The metric for success of the screening is
determined by a combination of the strict (i.e. well defined cutoff)
screening criteria, model performance error (small in our case),
and the number of screening criteria used.

To further test the stability of our best candidates, we test
the dynamical stability by calculating the phonon spectra using

the Phonopy package.87 The stability is also verified by ab initio
molecular dynamics simulations at 500 K (see ESI† for detailed
information). We find that Mn2Bi4S8, Mn2Sb2Bi2S4Se4, Mn2Sb2Bi2-
Se4Te4, Mn2Sb2Bi2Se8, Mn2Sb4Se4Te4, and Mn2Bi4S4Se4 are
dynamically stable. In addition to the chemical stability tests
performed in our study, we note that calculating the energy
above the convex hull of the candidate materials could provide
further evidence for assessing their synthesizability. Although,
satisfying the convex hull test does not guarantee that the
materials can be synthesized. Convex hull calculations involve
exploring all the possible competing phases in the same
materials system and comparing their energies. However, when
dealing with complex materials like MBT from ternary, quatern-
ary, and higher-order space, finding the competing phases is
complicated because the number of possible phases increases
tremendously with the number of constituent elements.88 For
this reason, we believe that identifying these phases is outside
the scope of this work. Nevertheless, investigating competing
phases is a worthwhile endeavor that we will plan to explore in a
future publication. Furthermore, these results will provide the
impetus for other researchers to carry out convex hull calcula-
tions, which are important metrics for chemical stability.

All the predicted AiAiiB4X8 structures have Mn at both Ai and
Aii sites. This is the result of the magnetic filter that searches
for structures with the highest magnetic moments. Mn has the
highest number of spin-up electrons, which is the major
deciding factor for magnetic moment. Although the elements
occupying B and X sites are non-magnetic, they possess mini-
mal magnetic moment values resulting from the indirect
exchange interaction with the magnetic elements at A sites.
We find that the local magnetic moments at X sites are always
negative for X = Te. However, this doesn’t hold true when S and
Se are substituted at X sites. In fact, they possess smaller (in

Fig. 6 ML prediction of AiAiiB4X8 structures (a) random forest regression on the magnetic moment (in mB) (b) random forest regression on band gap
(in eV). Training and test data are displayed in blue circles and orange squares and red circles respectively. The dashed line (green) is a guide to the eye
and represents the perfect prediction line.
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magnitude) positive magnetic moments as opposed to the
former case. That’s why the structures (Table 1) comprising
Te at the X sites have relatively smaller magnetic moments as
compared to the ones without Te. We expect that this behavior
is associated with the large-spin–orbit coupling in Te as com-
pared to S and Se. Also, all of the predicted structures are
ferromagnetic.

Mn2Sb2Bi2S4Se4, Mn2Sb2Bi2S4Te4, Mn2Sb2Bi2Se4Te4, Mn2Sb2-
Bi2Se8 are Janus 2D materials. They are a special class of materials
showing exotic physical phenomena such as varying electronic
band gap,89,90 the Rashba effect,91,92 and piezoelectricity,86,89,90

which makes them promising candidates for numerous potential
applications including photo-catalytic water splitting,89,93

hydrogen-evolution reaction,94,95 and sensing devices.96,97 We
believe these candidate materials will spark novel and emergent
phenomena in 2D Janus materials. In addition, MBT-type materi-
als are well-known for their rich topological properties.6,17,26,30,31

Thus, our work creates avenues for the future study of the
topological properties of the most promising candidate structures
identified in this study. However, this is beyond the scope of the
present study.

Conclusions

First-principles calculations combined with machine learning
techniques are used to investigate monolayers of the form
AiAiiB4X8 based on the intrinsic topological magnetic van der
Waals material MnBi2Te4. DFT is used to investigate a small set of
structures. The formation energy, band gap, magnetic moment, and
magnetic order are calculated. Data analytics approaches are used to
gain insight into the microscopic origin of materials’ properties. We
find that the formation energy and magnetic moment depend
largely on A and B sites whereas the band gap depends on all three
sites. Finally, we employ machine learning tools to search for novel
materials within the family of MBT structures with desirable proper-
ties. This study creates avenues for predicting novel materials with
desirable properties that have applications in spintronics, optoelec-
tronics, and quantum computing.
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