Issue 18, 2013

Integrating biological vasculature into a multi-organ-chip microsystem

Abstract

A chip-based system mimicking the transport function of the human cardiovascular system has been established at minute but standardized microsystem scale. A peristaltic on-chip micropump generates pulsatile shear stress in a widely adjustable physiological range within a microchannel circuit entirely covered on all fluid contact surfaces with human dermal microvascular endothelial cells. This microvascular transport system can be reproducibly established within four days, independently of the individual endothelial cell donor background. It interconnects two standard tissue culture compartments, each of 5 mm diameter, through microfluidic channels of 500 μm width. Further vessel branching and vessel diameter reduction down to a microvessel scale of approximately 40 μm width was realised by a two-photon laser ablation technique applied to inserts, designed for the convenient establishment of individual organ equivalents in the tissue culture compartments at a later time. The chip layout ensures physiological fluid-to-tissue ratios. Moreover, an in-depth microscopic analysis revealed the fine-tuned adjustment of endothelial cell behaviour to local shear stresses along the microvasculature of the system. Time-lapse and 3D imaging two-photon microscopy were used to visualise details of spatiotemporal adherence of the endothelial cells to the channel system and to each other. The first indicative long-term experiments revealed stable performance over two and four weeks. The potential application of this system for the future establishment of human-on-a-chip systems and basic human endothelial cell research is discussed.

Graphical abstract: Integrating biological vasculature into a multi-organ-chip microsystem

Supplementary files

Article information

Article type
Paper
Submitted
18 fev 2013
Accepted
07 may 2013
First published
09 may 2013

Lab Chip, 2013,13, 3588-3598

Integrating biological vasculature into a multi-organ-chip microsystem

K. Schimek, M. Busek, S. Brincker, B. Groth, S. Hoffmann, R. Lauster, G. Lindner, A. Lorenz, U. Menzel, F. Sonntag, H. Walles, U. Marx and R. Horland, Lab Chip, 2013, 13, 3588 DOI: 10.1039/C3LC50217A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements