Issue 17, 2016

Graphene in perovskite solar cells: device design, characterization and implementation

Abstract

Conversion of light energy directly into electricity by solar cell devices represents one of the most promising options for highly scalable renewable power. Tremendous effort has been directed at improving photovoltaic (PV) conversion efficiencies, resulting in dramatic device performance increases over the past two decades for novel, cost-effective PV systems. Nevertheless, performance issues related to device stability, scalability, and flexibility prevent these novel designs from achieving their market potential. For mechanically flexible architectures, integration of new materials such as graphene-derived nanomaterials (i.e. graphene/graphite oxide and their modified analogs with other nanocarbons and carbon nanotubes) may be necessary to enhance alternatives to silicon-based PV systems. Among the diverse solar technologies, perovskite solar cells—most notably organometal halides—have stood out from the crowd with solar efficiencies over 20% and potential for highly scalable manufacturing. Here, we review the use of graphene and graphene-derived nanomaterials in new designs of perovskite solar cells associated with organic–inorganic metal halide perovskites utilized as light-harvesting layers, outlining design perspectives, device characterization, and performance. Recent efforts to clarify stability issues and efficiency control mechanisms are also briefly discussed, and we provide some perspective on the currently available literature and future research directions in the field.

Graphical abstract: Graphene in perovskite solar cells: device design, characterization and implementation

Article information

Article type
Review Article
Submitted
04 dek 2015
Accepted
08 mar 2016
First published
09 mar 2016

J. Mater. Chem. A, 2016,4, 6185-6235

Graphene in perovskite solar cells: device design, characterization and implementation

M. Acik and S. B. Darling, J. Mater. Chem. A, 2016, 4, 6185 DOI: 10.1039/C5TA09911K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements