Issue 39, 2017

Spectroscopic and computational studies of reversible O2 binding by a cobalt complex of relevance to cysteine dioxygenase

Abstract

The substitution of non-native metal ions into metalloenzyme active sites is a common strategy for gaining insights into enzymatic structure and function. For some nonheme iron dioxygenases, replacement of the Fe(II) center with a redox-active, divalent transition metal (e.g., Mn, Co, Ni, Cu) gives rise to an enzyme with equal or greater activity than the wild-type enzyme. In this manuscript, we apply this metal-substitution approach to synthetic models of the enzyme cysteine dioxygenase (CDO). CDO is a nonheme iron dioxygenase that initiates the catabolism of L-cysteine by converting this amino acid to the corresponding sulfinic acid. Two mononuclear Co(II) complexes (3 and 4) have been prepared with the general formula [Co2+(TpR2)(CysOEt)] (R = Ph (3) or Me (4); TpR2 = hydrotris(pyrazol-1-yl)borate substituted with R-groups at the 3- and 5-positions, and CysOEt is the anion of L-cysteine ethyl ester). These Co(II) complexes mimic the active-site structure of substrate-bound CDO and are analogous to functional iron-based CDO models previously reported in the literature. Characterization with X-ray crystallography and/or 1H NMR spectroscopy revealed that 3 and 4 possess five-coordinate structures featuring facially-coordinating TpR2 and S,N-bidentate CysOEt ligands. The electronic properties of these high-spin (S = 3/2) complexes were interrogated with UV-visible absorption and X-band electron paramagnetic resonance (EPR) spectroscopies. The air-stable nature of complex 3 replicates the inactivity of cobalt-substituted CDO. In contrast, complex 4 reversibly binds O2 at reduced temperatures to yield an orange chromophore (4-O2). Spectroscopic (EPR, resonance Raman) and computational (density functional theory, DFT) analyses indicate that 4-O2 is a S = 1/2 species featuring a low-spin Co(III) center bound to an end-on (η1) superoxo ligand. DFT calculations were used to evaluate the energetics of key steps in the reaction mechanism. Collectively, these results have elucidated the role of electronic factors (e.g., spin-state, d-electron count, metal–ligand covalency) in facilitating O2 activation and S-dioxygenation in CDO and related models.

Graphical abstract: Spectroscopic and computational studies of reversible O2 binding by a cobalt complex of relevance to cysteine dioxygenase

Supplementary files

Article information

Article type
Paper
Submitted
02 may 2017
Accepted
27 iyn 2017
First published
07 iyl 2017

Dalton Trans., 2017,46, 13229-13241

Spectroscopic and computational studies of reversible O2 binding by a cobalt complex of relevance to cysteine dioxygenase

A. A. Fischer, S. V. Lindeman and A. T. Fiedler, Dalton Trans., 2017, 46, 13229 DOI: 10.1039/C7DT01600J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements