Issue 12, 2017

Phenolic acetals from lignins of varying compositions via iron(iii) triflate catalysed depolymerisation

Abstract

Lignin is a highly abundant, renewable aromatic polymer that can potentially be obtained in large quantities from lignocellulosic biorefineries. Thus the valorisation of this renewable resource by the production of aromatic chemicals would be highly desirable and is especially important for achieving high yields of these products. In this regard, not only the catalytic method used should be highly selective, but also we must better understand the possible correlations between the structure of the lignin used and the yield of useful products. Here, we demonstrate that lignins obtained from a range of different biomass sources and pretreatment methods can be successfully depolymerized using iron(III) triflate in the presence of ethylene glycol to give p-(1,3-dioxolan-2-yl)methyl substituted phenols. 27 lignins, obtained from 13 different pretreatment methods, were examined in this study. A combined yield of up to 35.5 wt% of acetal products was obtained from a β-aryl ether rich organosolv lignin and the best yield of a single component (16.5 wt%) was achieved starting from pine lignin. Much lower yields were obtained from technical lignins which were low in β-aryl ether content, whilst a range of organosolv lignins of intermediate β-aryl ether content gave intermediate yields of acetal products. Overall, correlations were found between the product distributions and yields and structural data of the parent lignins obtained from 2D HSQC NMR analysis.

Graphical abstract: Phenolic acetals from lignins of varying compositions via iron(iii) triflate catalysed depolymerisation

Supplementary files

Article information

Article type
Paper
Submitted
16 yan 2017
Accepted
20 mar 2017
First published
20 mar 2017

Green Chem., 2017,19, 2774-2782

Phenolic acetals from lignins of varying compositions via iron(III) triflate catalysed depolymerisation

P. J. Deuss, C. S. Lancefield, A. Narani, J. G. de Vries, N. J. Westwood and K. Barta, Green Chem., 2017, 19, 2774 DOI: 10.1039/C7GC00195A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements