Issue 31, 2019

Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids

Abstract

Lithium-ion capacitors (LICs) and lithium-ion batteries (LIBs) have drawn particular interest as renewable and green energy storage devices. However, the behavior of LICs and LIBs is largely limited by the sluggish kinetics and inferior cycling stability of conventional insertion and alloying-type anodes. In this work, we demonstrate novel pseudocapacitive conversion-type and robust hetero-nanostructural cobalt–manganese perovskite fluorides/reduced graphene oxides (KCMF(3 : 2)/rGO) anodes with superior kinetics and stability for advanced LICs, LIBs and their hybrids (LIC/Bs). The KCMF(3 : 2)/rGO candidate composed of stoichiometric KCo0.54Mn0.46F3 and approximately 11 wt% rGO exhibits superior performance to the solvothermally synthesized pure KCMF(3 : 2) and U-KCMF(3 : 2)/rGO composites without ball-milling treatment, which largely benefits from the conversion pseudocapacitance characteristics and strong synergistic effect of the robust perovskite fluorides/graphene hetero-nanostructures. A typical pseudocapacitive conversion reaction mechanism for the perovskite KCMF(3 : 2) anode can be deduced by various ex situ characterizations and electrochemical techniques. The designed LIBs, LICs and LIC/Bs with the KCMF(3 : 2)/rGO as the anode and activated carbon (AC), LiFePO4 (LFP) and AC/LFP(1 : 3) as cathodes respectively show remarkable performance in a broad temperature range. This work provides new insight of pseudocapacitive conversion-type and robust hetero-nanostructural electrode materials for advanced lithium-ion energy storage and will have a significant impact on the development of high-performance energy storage devices.

Graphical abstract: Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids

Supplementary files

Article information

Article type
Communication
Submitted
16 iyn 2019
Accepted
05 iyl 2019
First published
05 iyl 2019

J. Mater. Chem. A, 2019,7, 18257-18266

Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids

D. Ying, R. Ding, Y. Huang, W. Shi, Q. Xu, C. Tan, X. Sun, P. Gao and E. Liu, J. Mater. Chem. A, 2019, 7, 18257 DOI: 10.1039/C9TA06438A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements