Issue 11, 2021

Kinetics of furfural electrochemical hydrogenation and hydrogenolysis in acidic media on copper

Abstract

Electrochemical processes can be implemented for the valorization of biomass-derived species such as furfural to generate fine chemicals and fuels. The electrochemical hydrogenation and hydrogenolysis (ECH) of furfural (FF) can produce furfuryl alcohol (FA) and 2-methylfuran (MF) as the major products over Cu catalysts in acidic conditions. The production of these species are in competition and the kinetics of these reactions should be studied so that the product distribution can be better controlled. In this work, the competing kinetics of furfural ECH to furfuryl alcohol and 2-methylfuran were studied on Cu in acidic media by using the applied cathodic potential, temperature, and initial concentration of furfural as probes. An increased temperature of the system was shown to promote the MF production in the range tested (15 °C and 45 °C), however the production of FA was decreased when the temperature was increased from 35 °C to 45 °C, due to significant promotion of side reactions. By varying the concentration of FF used in bulk electrolysis, we saw that the rates of reaction to FA and MF shift from positive order to zero order, suggesting a Langmuir–Hinshelwood or Eley–Rideal mechanism at −0.56 V vs. RHE and 25 °C. An analysis of the reaction mechanisms showed that a non-competitive Langmuir–Hinshelwood mechanism is likely occurring. In addition, we suggest the likely rate limiting steps based on the mechanisms are the first hydrogenation step of FF to C4H3O–CH2O to form FA, and the C–O cleavage of the C4H3O–CHOH intermediate to form MF.

Graphical abstract: Kinetics of furfural electrochemical hydrogenation and hydrogenolysis in acidic media on copper

Supplementary files

Article information

Article type
Paper
Submitted
03 iyn 2021
Accepted
16 avq 2021
First published
16 avq 2021

React. Chem. Eng., 2021,6, 2075-2086

Author version available

Kinetics of furfural electrochemical hydrogenation and hydrogenolysis in acidic media on copper

A. S. May, S. M. Watt and E. J. Biddinger, React. Chem. Eng., 2021, 6, 2075 DOI: 10.1039/D1RE00216C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements