Issue 18, 2022

A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18

Abstract

The pandemic of coronavirus disease 2019 (COVID-19), due to the novel coronavirus (SARS-CoV-2), has created an unprecedented threat to the global health system, especially in resource-limited areas. This challenge shines a spotlight on the urgent need for a point-of-care (POC) quantitative real-time PCR (qPCR) test for sensitive and rapid diagnosis of viral infections. In a POC system, a closed, single-use, microfluidic cartridge is commonly utilized for integration of nucleic acid preparation, PCR amplification and florescence detection. But, most current cartridge systems often involve complicated nucleic acid extraction via active pumping that relies on cumbersome external hardware, causing increases in system complexity and cost. In this work, we demonstrate a gravity-driven cartridge design for an integrated viral RNA/DNA diagnostic test that does not require auxiliary hardware for fluid pumping due to adopted extraction-free amplification. This microfluidic cartridge only contains two reaction chambers for nucleic acid lysis and amplification respectively, enabling a fast qPCR test in less than 30 min. This gravity-driven pumping strategy can help simplify and minimize the microfluidic cartridge, thus enabling high-throughput (up to 12 test cartridges per test) molecular detection via a small cartridge readout system. Thus, this work addresses the scalability limitation of POC molecular testing and can be run in any settings. We verified the analytical sensitivity and specificity of the cartridge testing for respiratory pathogens and sexually transmitted diseases using SARS-CoV-2, influenza A/B RNA samples, and human papillomavirus 16/18 DNA samples. Our cartridge system exhibited a comparable detection performance to the current gold standard qPCR instrument ABI 7500. Moreover, our system showed very high diagnostic accuracy for viral RNA/DNA detection that was well validated by ROC curve analysis. The sample-to-answer molecular testing system reported in this work has the advantages of simplicity, rapidity, and low cost, making it highly promising for prevention and control of infectious diseases in poor-resource areas.

Graphical abstract: A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18

Supplementary files

Article information

Article type
Paper
Submitted
11 may 2022
Accepted
04 avq 2022
First published
05 avq 2022

Lab Chip, 2022,22, 3436-3452

A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18

Y. Zai, C. Min, Z. Wang, Y. Ding, H. Zhao, E. Su and N. He, Lab Chip, 2022, 22, 3436 DOI: 10.1039/D2LC00434H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements