Issue 20, 2023

Recent advances of metal oxide catalysts for electrochemical NH3 production from nitrogen-containing sources

Abstract

World ammonia production reached 235 million tons in 2019, and roughly 88% of NH3 produced goes into the agriculture sector as fertilizers. Industrial ammonia production relies on the Haber–Bosch process, which is highly energy demanding and results in high CO2 emission. More than 1% of global energy generation was required to power this Haber–Bosch process. While sustainable development has become a general consensus across the globe, there has been enormous research interest toward the possible modification or replacement of the Haber–Bosch process, aiming to reduce the environmental impact of NH3 production. With the successful commercialization of various renewable source-powered electricity generation techniques, the electrochemical reduction of nitrogen-containing chemicals (including N2, NO3, NO2 and NO) to produce NH3 under ambient conditions has emerged as a potential green alternative to the Haber–Bosch process. This technique utilizes renewable electricity to achieve small-scale, on-site and on-demand ammonia production, serving as a critical contribution to the overall carbon neutral economy. The design and synthesis of novel catalysts with high NH3 production rate and selectivity is the key challenge in determining economic feasibility for this electrochemical NH3 production. In view of the rapid and fruitful development of metal oxides as promising electrocatalysts toward NH3 formation, this review summarizes different types of metal oxides used for the electrochemical N2 reduction reaction and electrochemical NOx reduction reaction, together with design strategies to enhance their catalytic performance. As a concluding remark, our thoughts are given on the critical challenges in this field, suggesting possible future research directions to accomplish industrialization for the electrosynthesis of NH3.

Graphical abstract: Recent advances of metal oxide catalysts for electrochemical NH3 production from nitrogen-containing sources

Article information

Article type
Review Article
Submitted
25 iyl 2023
Accepted
17 avq 2023
First published
17 avq 2023

Inorg. Chem. Front., 2023,10, 5812-5838

Recent advances of metal oxide catalysts for electrochemical NH3 production from nitrogen-containing sources

B. Li, Y. Zhu and W. Guo, Inorg. Chem. Front., 2023, 10, 5812 DOI: 10.1039/D3QI01448G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements