Issue 47, 2024

Synthesis and evaluation of bifunctional DFO2K: a modular chelator with ideal properties for zirconium-89 chelation

Abstract

The synthesis and evaluation of the newest generation of our DFO2 chelator family—DFO2K—is described. DFO2K was designed with a simple synthetic route to access different bifunctional derivatives, with each derivative having similar metal ion coordination spheres and high denticity (up to 12 coordinate) to ensure stable coordination of zirconium-89. The high denticity could potentially enhance stability with other large oxophilic radiometals. Zirconium-89 is the most popular radionuclide to pair with large macromolecules such as antibodies (immunoPET) for positron emission tomography applications. Although clinically successful, the stability of the “gold standard” chelator desferrioxamine B (DFO) can be improved as significant bone uptake is observed in animal models, despite no obvious stability issues in humans. Following the synthesis of DFO2K we assessed its radiolabeling efficiency with zirconium-89 and compared with DFO, which revealed rapid and nearly identical radiolabeling kinetics to DFO. The resultant [89Zr]Zr–DFO2K complex showed improved stability over [89Zr]Zr–DFO in different in vitro stability assays such as hydroxyapatite and 1000-fold molar excess EDTA challenges. Furthermore, biodistribution studies of the non-bifunctional chelators in healthy mice showed that [89Zr]Zr–DFO2K had a similar distribution profile and clearance to [89Zr]Zr–DFO. The bifunctional derivative p-SCN–Ph–DFO2K was conjugated to a non-specific human IgG antibody and evaluated after 2 weeks circulating in healthy female CD1 mice. Mice administered [89Zr]Zr–DFO2K–IgG showed substantially lower bone uptake in PET-CT images than [89Zr]Zr–DFO–IgG, with PET ROI data and ex vivo biodistribution revealing a statistically significantly lower bone uptake for DFO2K. Overall, owing to its high denticity, ease of synthesis, improved solubility over DFO2 and DFO2p, and stable chelation of zirconium-89, DFO2K appears to be an improved alternative chelator to DFO for zirconium-89 chelation.

Graphical abstract: Synthesis and evaluation of bifunctional DFO2K: a modular chelator with ideal properties for zirconium-89 chelation

Supplementary files

Article information

Article type
Paper
Submitted
25 iyn 2024
Accepted
08 iyl 2024
First published
23 iyl 2024

Dalton Trans., 2024,53, 18946-18962

Synthesis and evaluation of bifunctional DFO2K: a modular chelator with ideal properties for zirconium-89 chelation

A. K. Salih, E. Khozeimeh Sarbisheh, S. J. Raheem, M. Dominguez-Garcia, H. H. Mehlhorn and E. W. Price, Dalton Trans., 2024, 53, 18946 DOI: 10.1039/D4DT01830C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements