Molecular sandwich-based DNAzyme catalytic reaction towards transducing efficient nanopore electrical detection of antigen proteins†
Abstract
Despite significant advances in nanopore nucleic acid sequencing and sensing, protein detection remains challenging due to the inherent complexity of protein molecular properties (i.e., net charges, polarity, molecular conformation & dimension) and sophisticated environmental parameters (i.e., biofluids), resulting in unsatisfactory electrical signal resolution for protein detection such as poor accessibility, selectivity and sensitivity. The selection of an appropriate electroanalytical approach is strongly desired which should be capable of offering easily detectable and readable signals regarding proteins particularly depending on the practical application. Herein, a molecular sandwich-based cooperative DNAzyme catalytic reaction nanopore detecting approach was designed. Specifically, this approach uses Mg2+ catalyzed DNAzyme (10–23) toward nucleic acids digestion for efficient antigen protein examination. The proposed strategy operates by initial formation of a molecular sandwich containing capture antibody–antigen–detection antibody for efficient entrapment of target proteins (herein taking the HIV p24 antigen for example) and immobilization on magnetic beads surfaces. After that, the DNAzyme was linked to the detection antibody via a biotin–streptavidin interaction. In the presence of Mg2+, the DNAzyme catalytic reaction was triggered to digest nucleic acid substrates and release unique cleavage fragments as reporters capable of transducing more easily detectable nucleic acids as a substitute for the complicated and hard to yield protein signals, in a nanopore. Notably, experimental validation confirms the detecting stability and sensitivity for the target antigen referenced with other antigen proteins, meanwhile it demonstrates a detection efficacy in a human serum environment at very low concentration (LoD ∼1.24 pM). This cooperative DNAzyme nanopore electroanalytical approach denotes an advance in protein examination, and may benefit in vitro testing of proteinic biomarkers for disease diagnosis and prognosis assessment.
- This article is part of the themed collection: New horizons in nanoelectrochemistry