Chiral nanomaterials as vaccine adjuvants: a new horizon in immunotherapy
Abstract
Chiral nanomaterials are emerging as a promising class of vaccine adjuvants with the potential to significantly enhance vaccine efficacy, especially in the context of cancer immunotherapy. These nanomaterials can trigger enantioselective immune responses, enabling more precise and efficient vaccines. Their distinctive optical, electronic, and catalytic characteristics, along with the ability to be engineered with specific physical and chemical properties, make them highly suitable for next-generation vaccines development. Chiral nanomaterials can enhance antigen presentation, modulate the tumor microenvironment, and boost the efficacy of immune responses, particularly against complex diseases such as cancer. Nevertheless, significant challenges remain, such as ensuring the reproducibility of their synthesis, conducting thorough safety assessments, and gaining a deeper understanding of their interactions with the immune system. Continued research and development are crucial to unlocking the potential of chiral nanomaterials in vaccine technology, thus paving the way for more effective, targeted, and personalized immunotherapies.
- This article is part of the themed collection: Chiral Nanomaterials