Comprehensive overview of machine learning applications in MOFs: from modeling processes to latest applications and design classifications

Abstract

As an emerging class of nanoporous materials, metal–organic frameworks (MOFs) have the advantages of designability and structural and functional tunability, compared with traditional porous materials, which are widely used in various fields. The structural adjustability of MOFs provides the possibility of infinite material generation and a huge material space. At present, tens of thousands of MOFs have been synthesized and the number continues to grow at an alarming rate, which makes it difficult to explore the application prospects of all materials only by traditional experimental methods. Therefore, more efficient alternative methods are urgently needed to identify and screen MOFs. As a powerful data analysis tool, machine learning (ML) has shown great potential in the materials field, which can intuitively and quickly analyze the structure–property relationship and guide the rational design and preparation of reticular materials such as MOFs. This review systematically presents the complete workflow and cutting-edge developments in ML applications in the field of MOF research covering data preparation, algorithm selection, model evaluation, model optimization and application status. Further, rational design methods and future challenges are discussed. This review aims to provide the new paradigm of the combination of ML and MOFs and promote ML applied in MOF research efficiently.

Graphical abstract: Comprehensive overview of machine learning applications in MOFs: from modeling processes to latest applications and design classifications

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
21 sen 2024
Accepted
05 dek 2024
First published
17 dek 2024

J. Mater. Chem. A, 2025, Advance Article

Comprehensive overview of machine learning applications in MOFs: from modeling processes to latest applications and design classifications

Y. Liu, Y. Dong and H. Wu, J. Mater. Chem. A, 2025, Advance Article , DOI: 10.1039/D4TA06740A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements