Issue 25, 2009

On the concept of ionicity in ionic liquids

Abstract

Ionic liquids are liquids comprised totally of ions. However, not all of the ions present appear to be available to participate in conduction processes, to a degree that is dependent on the nature of the ionic liquid and its structure. There is much interest in quantifying and understanding this ‘degree of ionicity’ phenomenon. In this paper we present transport data for a range of ionic liquids and evaluate the data firstly in terms of the Walden plot as an approximate and readily accessible approach to estimating ionicity. An adjusted Walden plot that makes explicit allowance for differences in ion sizes is shown to be an improvement to this approach for the series of ionic liquids described. In some cases, where diffusion measurements are possible, it is feasible to directly quantify ionicity via the Nernst–Einstein equation, confirming the validity of the adjusted Walden plot approach. Some of the ionic liquids studied exhibit ionicity values very close to ideal; this is discussed in terms of a model of a highly associated liquid in which the ion correlations have similar impact on both the diffusive and conductive motions. Ionicity, as defined, is thus a useful measure of adherence to the Nernst–Einstein equation, but is not necessarily a measure of ion availability in the chemical sense.

Graphical abstract: On the concept of ionicity in ionic liquids

Article information

Article type
Paper
Submitted
07 yan 2009
Accepted
20 fev 2009
First published
31 mar 2009

Phys. Chem. Chem. Phys., 2009,11, 4962-4967

On the concept of ionicity in ionic liquids

D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat and K. Fraser, Phys. Chem. Chem. Phys., 2009, 11, 4962 DOI: 10.1039/B900201D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements