Issue 7, 2015

High throughput absorbance spectra of cancerous cells: a microscopic investigation of spectral artifacts

Abstract

FTIR spectroscopy was recently demonstrated to be a useful tool to obtain a unique fingerprint of the effects of several anticancer drugs on cells in culture. While FTIR spectroscopy appears to have a definite potential to sort anticancer drugs on the basis of the metabolic modifications they induced, the present challenge is to evaluate the drug-induced spectral changes in cancer cells on a larger scale. The coupling of FTIR spectroscopy with a high throughput screening extension could become a useful method to generate drug classifications based on their “modes of action”. Practically, the robustness of this approach is jeopardized by the variability that can appear from one cell smear to the next. When a few cells are scattered on the support, strong scattering effects are observed and locally dense cell aggregates could result in non-linearity of the signal. A microscopic study using infrared imaging demonstrates that the mean HTS (96-well High Throughput Spectroscopy) spectra recorded on 96 well ZnSe plates are the averages of contributions characterized by a wide absorbance distribution and by Mie scattering effects which significantly vary from point to point. Spectrum quality is at its best at the highest cell concentrations, i.e. from 300 000 to 400 000 cells per well, which present the best S/N and a relatively smaller Mie scattering effect. When the breast cancer cell line MDA-MB-231 was treated with four different polyphenols, spectra showed quite similar variations with respect to control spectra, with more intense variations for the quercetin and EGCG compared to resveratrol and capsaicin. Correction of the spectra with the RMieS algorithm improved their clustering according to the polyphenolic treatment.

Graphical abstract: High throughput absorbance spectra of cancerous cells: a microscopic investigation of spectral artifacts

Article information

Article type
Paper
Submitted
13 okt 2014
Accepted
17 dek 2014
First published
17 dek 2014

Analyst, 2015,140, 2393-2401

Author version available

High throughput absorbance spectra of cancerous cells: a microscopic investigation of spectral artifacts

A. Mignolet and E. Goormaghtigh, Analyst, 2015, 140, 2393 DOI: 10.1039/C4AN01834F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements